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Abstract

Researchers are often interested in estimating average treatment effects in observational settings based on treatment uncon‑
foundedness, which is often only plausible conditional on a large number of pretreatment variables. We provide methods to
combine recent advances in model‑agnostic variable selection using ’knockoffs’ with high‑dimensional regularized regression
and entropy‑balancing to perform covariate adjustment. These methods allow for the inclusion of complex interaction terms
in both the outcome and treatment‑assignment regressions, which makes the conditional unconfoundedness assumption more
plausible than the conventional practice of controlling for them linearly. Knockoff‑based variable selection methods improve
the precision of estimates and substantially alleviate the curse of dimensionality in balancing methods with many controls and
interactions. We provide simulation evidence that finds these selection methods often outperform other standard treatment ef‑
fect estimators, and ease computational constraints for balancing. Finally, we provide an illustration of thesemethods using two
empirical examples.
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1 Introduction
Observational causal inference in the social sciences often involves the incorporation of a large set of covariates,
conditional on which the treatment is argued to be as good as random. Researchers typically perform covariate
adjustment by including controls on the right hand side of a linear regression to justify the treatment unconfound‑
edness assumption that permits a causal interpretation of the regression coefficient as the average treatment effect
(ATE). While this practice of ‘kitchen‑sink’ regressions has been studied and critiqued extensively in methodological
work related to the ‘credibility revolution’ in the social sciences (Angrist and Pischke 2010; Samii 2016), it remains
widespread in applied work, especially in settings where experiments and more credible research designs are un‑
available for thequestionat hand. Researchers’ substantive knowledge typically informsa set of variables thatmight
be important to adjust for, but seldom identifies exactly which ones or the functional formwith which they ought to
enter the model. The choice over functional form and what covariates to adjust provides for ample ‘researcher de‑
grees of freedom’, which gives rise to concerns over p‑hacking and ‘the garden of forking paths’ wherein researchers
report subgroup‑effects that are likely mined statistical noise (Gelman and Loken 2013).
To address this problem, this paper proposes a method that combines recent advances in variable selection tools
flexibly adjust for covariates in both regression and balancing estimators for treatment effect estimation, and an R
implementation1. The approach involves a variable selection followed by estimation and inference. In the first step,
covariates (and their basis expansion and interactions) that are important predictors of either the treatment or the
outcomeare selected following thedouble‑LASSOapproach (Belloni, Chernozhukov, andHansen2014b) (henceforth
BCH), where variable selection is performed using permutation‑based ‘knockoffs’ methodology (Barber and Can‑
dès 2015). Next, treatment effects are estimated using OLS (post‑LASSO) or weighting, for example using entropy‑
balancing weights (Hainmueller 2012) with standard errors that account for the high‑dimensional covariates and
heteroskedasticity (Cattaneo, Jansson, and Newey 2018). The variable selection step selects the variables and their
corresponding highermoments and interactions for covariate adjustment in the estimation and inference step. This
is particularly important in light of recent work by Wuthrich and Zhu (2021) shows that the BCH approach of per‑
forming variable selection using the standard LASSO produces non‑negligible omitted‑variables bias in finite sam‑
ples, and as such a better variable selection approach is needed. We find that the combination of covariate selection
using knockoffs and estimation using entropy and residual balancing improves upon popular estimators in mean
squared error (MSE) terms.
Theuseof ℓ1‑basedknockoffbased variable selectionbeforebalancingpermits researchers to consider balancingon
many possible covariates and their interactions. Researchers seldom know particular interaction terms that might
be important to adjust for, or the exact functional form with which the variables of interest enter the model. It is
plausible that unbeknownst to the researcher, particular combinations of covariate values are particularly predictive
of treatment takeup, or are correlated with an unobserved confounder, and therefore must be adjusted. With even
a moderate number of controls, the total number of regressors from including pairwise interactions is p + p(p−1)
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may exceed the number of observations in the data, which renders classical estimation infeasible, and also yields an
infeasible number of constraints for balancing estimators.
We contribute to a growing literature on the use of high‑dimensional regression for causal inference (Belloni et
al.2012; Belloni, Chernozhukov, andHansen2014b, 2014a; Chernozhukov,Hansen, andSpindler 2015; Chernozhukov,
Hansen, and Spindler 2016a; Imai and Ratkovic 2013; Farrell 2015; Bloniarz et al. 2016; Ratkovic 2020). Much of this
literature begins with the notion of regularization bias: naive applications of regularized regression wherein a low‑
dimensional parameter of interest (the treatment effect) is left un‑regularized while control coefficients are selected
using the LASSO’s variable selection property induces a form of omitted‑variables bias (Leeb and Pötscher 2005)
because of imperfect model selection. Subsequent work (Chernozhukov et al. 2017; Chernozhukov et al. 2018) on

1. R programs to implement the procedure is available at https://github.com/apoorvalal/KnockoffEntropyBalancing
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Double Machine Learning generalises this approach to estimating any treatment effect or structural parameter that
can be represented using a Neyman orthogonality condition2 and permits the use of arbitrary machine learning al‑
gorithms such as random forests and neural nets. However, thesemethods tend to bemore opaque, demand tuning
several hyperparameters, and generally rely on algorithms that fewer social scientists are familiar with, and as such
is beyond the scope of our paper. Our approach is also related to hierarchically regularized entropy balancing, as
proposedby Yang andXu (2021), who impose ℓ2 (ridge) regularizationon the variables that enter into entropybalanc‑
ing. Our approaches differ in the variable selection methods: hierarchical regularization does not impose sparsity
and instead imposes larger penalties on higher order terms, while we remain agnostic on the extent of regulariza‑
tion and instead identify variables tomatch‑on using the knockoff selectionmethod. Our work also relates to recent
work using double‑LASSO approaches to model specification for interaction terms (Blackwell and Olson 2021) and
the estimation of survey weights (Ben‑Michael, Feller, and Hartman 2021).
The rest of the paper is organised as follows: we provide methodological background to the problem and the pro‑
posed solution in section 2, provide results from a simulation exercise that compares the performance of LASSO‑
selection estimatorswith that of other standard estimators in section 3, illustrate the application of these estimators
to two examples in section 4, and conclude in section 5.

2 Covariate adjustment and balancing in high dimensions
Consider a setting with n units with data (yi, di, zi)

n
i=1, where di is a binary treatment, yi is the outcome, and zi

is a k‑vector covariates. y(d), d ∈ {0, 1} is the potential outcome unit i under each treatment status, only one of
which is observed for any given unit. The individual treatment effect τi := yi(1)−yi(0) is never estimable, andmost
researchers are typically interested in the Sample Average Treatment effect SATE := 1

n

∑n
i=1 τi or Sample Average

Treatment effect on the treated SATT := 1
n

∑
i:di=1 τi. To proceed, we need the standard identification assumptions

1. No interference: yi = y(di) ∀ d−i where d−i is the vector of treatment assignments for all other units.
2. Unconfoundedness: y(1) y(0) ⊥⊥ d|x
3. Overlap: 0 < e(x) < 1where e(x) is the propensity score.
The inverse‑probability‑of‑treatment weighting (IPTW) estimator for the ATT involves imputing average missing po‑
tential outcome for the treated units in the absence of treatment

Ê[y(0)|d = 1] =

∑
i:di=0 yiwi∑
i:di=0 wi

where wi are weights that yield balance between treated and control units along covariates. These weights may
be computed as π̂(xi)/(1 − π̂(xi)) using a parametric model for the propensity score π(xi), at the risk of model
misspecification.
We focus on Entropy balancing (Hainmueller 2012), which is a balancingmethod that directly incorporates covariate
balance into the weight function in the form ofmoment conditions, and uses an entropy loss that is more robust un‑
dermodelmisspecification (Imbens, Johnson, and Spady 1998). It is doubly‑robust : it is consistent as long as either
the assignment model or regression model is correctly specified (Zhao and Percival 2016), and typically achieves
excellent balance and lower MSE relative to other matching and propensity score methods. The entropy‑balancing
weightwi for each control unit is chosen by a reweighting scheme that solves the following optimization problem:

max
wi

H(w) = −
∑

i:D=0

wi log(wi)

2. which sets up the problem such that the parameter of interest solves the equation E∂ηψ(Zi, τ, η0) = 0, where Zi is the data, η is the
nuisance function, and the Gateaux derivative of the score ψ with respect to the nuisance function is set to zero. Chernozhukov et al call the
approach DML – double machine learning – because of their connection to the notion of double‑robust estimation under unconfoundedness
Robins, Rotnitzky, and Zhao (1994)
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subject to balance/moment‑condition
∑

i:D=0 wicri(Xi) = mr r ∈ 1, . . . , R and normalising (‘proper weights’)∑
i:D=0 wi = 1 andwi ≥ 0 ∀{i : di = 0} constraints. This problem is convex but has dimensionality of n0 (non‑

negativity) + p (moment conditions) + 1 (normalisation). The dual, on the other hand, only has dimensionality p+ 1

and unconstrained, which is considerably easier to solve using Newton‑Raphson‑like techniques. EB has the addi‑
tional benefit of being achieving one‑shot balancing, unlike other propensity‑score approaches, which involve itera‑
tively fitting the pscore model and assessing balance. It relates closely to Empirical Likelihood (EL) approaches that
directly incorporate covariate balance into theobjective function for propensity score fitting (Imai andRatkovic 2014;
Ben‑Michael et al. 2021).
Nevertheless, in complexmodels withmany interactions, p+1 can be quite large, andNR‑like algorithms frequently
run into numerical instability errors3 with large sets of constraints if balance on all covariates is specified in the en‑
tropy balancing problem. Furthermore, the correctly specifying the outcome and/or assignment model remains a
challenge with only linear lower‑order terms [as is common in most applications of entropy balancing], and can be
greatly aided by adding polynomial terms and interactions, which increases the dimension of the optimisation prob‑
lem. Data‑drivenmethods are a promising avenue for reducing the dimension of the problem. We propose selecting
variables to balance onmotivated by the double‑LASSO, which discuss next.

Double‑LASSO for covariate adjustment Belloni, Chernozhukov, and Hansen (2014b) motivate the use of LASSO
regression (Tibshirani 1996) for covariate adjustment writing by linear approximations of the propensity score and
outcomemodels as follows:

di = e(zi)︸ ︷︷ ︸
x′
iβd+rei

+ νi ,E(νi|xi) = 0 (1)

yi = m(zi)︸ ︷︷ ︸
x′
iβy+rmi

+ υi ,E(υi|xi) = 0 (2)

where the unknown flexible functions e(·) andm(·) are approximated using a dictionary of flexible polynomials and
basis expansions xi of the high dimensional covariates zi4. The linear‑expansion approach can be thought of as a
Taylor expansion of the true conditional expectation function with some approximation error r·i.5

Omitted Variables Bias (OVB) arises when one fails to adjust for x’s that are correlated with both d and y, i.e. have
nonzero true coefficients in both βy and βd, thereby resulting in a failure of the unconfoundedness assumption.
To guard against resultant OVB from such omissions, BCH suggest using both equations for selection, which immu‑
nizes the resulting procedure against model‑selectionmistakes in one of the two steps, thereby giving it the double‑
robustness property. This is a special case of the general Neyman Orthogonalization approach described in Cher‑
nozhukov et al. (2018)6.
The double selection approach involves estimating both reduced form equations using LASSO, and using the union
of the selected variables for the final estimation step. LetS1 andS2 denote the controls selected by the LASSO in the

3. particularly because of the Hessian in the denominator
4. theexistenceof suchbasis representations is guaranteedunder standard regularity conditions foreandm: that theyhaveboundedvariation

on a compact interval. This guarantees the existence of a Fourier expansion
5. a key assumption underlying the BCH approach is (approximate) sparsity, wherein s := ||βy ||0 =

∑p
j=1 1{β0j ̸= 0} << n, which is

that the number of relevant regressors is much smaller than sample size. Equivalently, we need it to be the case that n→∞, s log p/n→0. This
formulation also allows for small estimation error rgi in the approximation of the nonlinear function g(·)

6. BCHalsoproposeaFrisch‑Waugh‑Lovell style‑procedureof usingpredictive tools onbothoutcomeand treatment regressions, andusing the
residuals to estimate treatment effects, as proposed by Robinson (1988). This is typically implementedwith regressions of the form y− Ê[y|x] =
τ(d−Ê[d|x])+ν where Ê[·] are estimates fromLASSO regressions. This procedure is an early versionof double‑machine learning (Chernozhukov
et al. 2018), which proves that the residuals‑on‑residuals approach is

√
n consistent for treatment effects even when the CEFs are fitted using

nonparametric regressions with slower rates.

4



regression of yi on xi and di on xi respectively. The ‘double‑selection’ estimator can be written as

(τ̌ , β̌) = argminτ∈R,β∈Rp

1

n

N∑
i=1

[yi − τdi − x′
iβ]

2
: βj = 0 ∀j ̸∈ S := S1 ∪ S2

We prove that these estimators satisfy the Neyman orthogonality condition in appendix section A.1. The double‑
LASSO is robust to ‘small’ modelmisspecification. It is are implemented in the hdm package (Chernozhukov, Hansen,
and Spindler 2016b) in R and pdslasso package in STATA.
It is worth noting that the specific value of LASSO coefficients isn’t important to us, since we are interested in the
treatment effect τ instead of the entire (potentially very large) coefficient vector β, and as such we can treat the
latter as a nuisance parameter. Double‑LASSO therefore uses ‘post‑LASSO’ OLS as the final estimation step, where
the LASSO is used purely as amodel‑selection device and un‑regularized regression is fit with the subset of variables
selected by the LASSO.

2.1 Variable Selection Step
The double‑LASSO approach relies on the LASSO estimator

β̂ = argmin
β

N∑
i=1

yi − p∑
j=1

xijβj

+ λ

p∑
j=1

∥βj∥1︸ ︷︷ ︸
regularisation term

where λ is a penalty term that penalises model complexity, and the use of the ℓ1 norm ∥.∥1 induces sparsity in the
estimated coefficient vector β̂ . The kink in the penalty term produced by the L1 norm induces β̂ to have lots of
zeros, which has resulted in the LASSO’s popularity as a model‑selection device The LASSO is well suited to p > n

problemsandestimates β̂withmanyzeroes in it, dependingon thepenalty termλ. Thepenalty is typically chosenby
cross‑validation, but other procedureshavebeenproposed, including the rate‑optimal procedure7, perfect selection
procedure 8, and the iterative procedure 9 ,which is recommended for the double‑LASSO approach by BCH.
Choosing λ for model selection is a challenging problem because a single parameter needs to perform both shrink‑
age and selection, it trades off shrinking relevant variables’ coefficients with the inclusion of irrelevant variables.
Wuthrich and Zhu (2021) show that in finite samples, the BCH regularization parameter typically under‑selects (i.e.
zeroes‑out toomany variables), resulting in severe omitted‑variables bias, especially in settings where theR2 of the
generativemodel is low. Yang (2005) andMeinshausen, Bühlmann, et al. (2006) show that a single value for λ cannot
simultaneously be used for model‑selection as well as regression function estimation, and therefore various other
regularisation approaches have been proposed10. This is a particular problem whenXs are correlated, as is typical
in social‑scientific datawith highly correlated, since the LASSO’s ‘oracle’model selection property relies on the irrep‑
resentable condition, which requires that the sum of signed regression coefficients of unimportant variables (i.e. xs
absent from the true model) on the important variables (xs present in the true model) cannot exceed 1 (Zou 2006;
Fan et al. 2020), which is highly restrictive.

7. λ = 2σ
√

(2(1 + υ) log(p))/n, υ > 0, Bickel, Ritov, and Tsybakov (2009)
8. σψ−1

√
log p/n, ψ ∈ (0, 1], Wainwright (2009)

9. This involves rewriting the penalty term as λ
n
∥Ψ̂β∥1, where Ψ̂ := diag(ψ̂, . . . , ψ̂p) is a diagonal matrix of penalty loadings that can be

chosen for the problem at hand, such as 0 for parameters one wants to avoid shrinking, such as treatment effects or group‑fixed effects. These
penalty loadings can be chosen to address heteroskedasticity in errors, in which case the loadings are set to ψ̂j =

√
En[x2

ij ε̂
2
i ], where ε̂ are

preliminary estimates of residuals, Belloni et al. (2012)
10. There have been attempts to improve the LASSO by moving beyond l1 penalties and introducing a mixture of l1 and l2 using the elastic

net (Zou and Hastie 2005), introducing a non‑convexity in the penalty term (Zhang 2010; Mazumder, Friedman, and Hastie 2011) introducing an
additional ‘relaxing’ parameter (Meinshausen 2007).
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Variable selection using permutation knockoffs Since the LASSO is far from the best variable selection proce‑
dure available in finite samples, we contend that improving upon the LASSO’s variable selection properties is likely
to help us estimate treatment effects better. In finite samples, the variable selection step is paramount: Under‑
inclusion of variables relevant for both outcome and treatment models results in omitted variables bias (Wuthrich
andZhu2021), while over‑inclusionof variables in the treatment equation (that havenodirect effect on theoutcome)
canhurt precisionby reducing variation in the residualised treatment d̃, thereby increasing theSEof treatment effect
(by simple Frisch‑Waugh‑Lovell reasoning). 11

To improve upon the LASSO’s model selection, we propose adopting a permutation‑based version of the knockoffs
methodology proposed by Barber and Candès (2015) and Barber, Candes, and Samworth (2020) for LASSO. The ba‑
sic intuition for variable‑selection using knockoffs is that if a variable X predicts the outcome well, it ought to do
better than a knockoff X̃ , whichmimics the covariance structure similar to the datamatrix but is independent of Y .
This then motivates the use of regularized regression on the augmented data matrix [X X̃]; this increases problem
dimension to 2p. This approach is also related to the popular boruta algorithm for variable selection and feature
importance for random forests (Kursa, Rudnicki, et al. 2010) and is widely used in model selection procedures with
various other machine learning algorithms.
Knockoff construction is a burgeoning literature with different procedures relying on different assumptions about
the DGP. The exact finite‑sample FDR control property of the original Barber and Candès (2015) procedure relies
on a fixed design matrixX, which is suitable for its motivating use case in genetics studies but is far too strong an
assumption for typical observational causal inference settings. Candès et al. (2018) settingswith knownFX , which is
weaker but remains too stringent for our case. We adopt the approachwith no distributional assumptions onX and
choose to construct knockoffs by permuting the rows of the regressor matrixX to construct X̃. This approach that
doesnotprovide finite sampleFDRcontrol guarantees12 (Barber andCandès2015, sec3.1), but reliesonsubstantially
weaker assumptions and works well in simulation studies (Gégout‑Petit, Gueudin‑Muller, and Karmann 2020).

Knockoff construction procedure We propose constructing knockoffs simply by repeatedly permuting the rows
of the design matrixX to construct X̃ (Barber and Candès 2015; Gégout‑Petit, Gueudin‑Muller, and Karmann 2020).
In each iteration k,
1. A permutation matrixPk is constructed by permuting the rows of a n × n identity matrix. Pk contains precisely

a single 1 in each column and row and 0 everywhere else 13 (Banerjee and Roy 2014).
2. A knockoffmatrix X̃k with reshuffled rows is constructed by pre‑multiplying the datamatrixXwith the permuta‑

tion matrixP
X̃k = PkX

3. The knockoff matrix X̃k is (column‑) concatenated with the original data matrixX to construct the n × 2p aug‑
mented data matrix [X, X̃k].

4. The outcome y is regressed on the augmented data‑matrix using LASSO regression. For each variable j,
(a) Compute a LASSO test statistic Tj := sup{λ > 0, β̂j(λ) ̸= 0} j ∈ {1, . . . , 2p}, which is the largest penalty λ

at which a variable j has a nonzero coefficient in the LASSO.

11. Reducing the variance in treatment (by over‑controlling for variables that predict the treatment but are uncorrelated with the outcome)
reduces the denominator of the standard error estimator, which in turn increases the standard error of the treatment effect estimate.
12. this occurs because although the permuted matrix X̃ has the same covariance structure as X, it is unable to mimic the correlation of X

with y
13. For example, a typicalPmay look like

P =


0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0


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(b) Compute the following measure of how often j enters into the model before its knockoff:

Wj := Tj ∨ T̃j ×

+1 Tj ≥ T̃j

−1 Tj ≤ T̃j

We repeat this procedure a largeK number of times.
We then keep a variable j ifWj ≥ q, some threshold value of times the true variable enters the model before the
knockoff acrossK iterations. This selection procedure is implemented in the kosel package 14.
This approach is based on the heuristic that If xj is truly predictive of y, it should enter the model earlier (for larger
penalty λ) than over many possible knockoffs x̃j . Gégout‑Petit, Gueudin‑Muller, and Karmann (2020) propose 0.1

as a rule of thumb value. These permutation knockoffs constitute an improvement over the LASSO and outperform
both the original LASSO and Candes and Barber knockoffs in simulations (sec 3.2, Ibid).

2.2 Estimation Step
Entropy balancing delivers one‑shot balancing weights, which constitute a major improvement over the aforemen‑
tioned loop, but runs into convergence and numerical stability issues when balancing onmany covariates and their
interactions. Our proposed combination of the double‑LASSO principle of balancing on selected variables both re‑
duced form equations, combined with variable selection using knockoffs, promises to provide a list of variables and
their higher moments15 ease the computational burden of entropy balancing substantially. Alternatively, if the re‑
searcher believes the linear approximation of the outcome model is correct, they may use an amended version of
double‑LASSO.
In summary, the method we propose involves the following steps:
1. Variable selection:

• regress outcome on covariates using LASSO, select predictive variables using the knockoff selector, call them
S1

• regress treatment on covariates using LASSO, select predictive variables using knockoff selector, call them S2

2. Estimation:
• Knockoff Entropy Balancing (KOEB): Perform entropy balancing on the set of moment conditions (S1 ∪ S2

instead of the full set of predictors and polynomials and interactions)
• KnockoffSelection (KOSEL): perform ‘post‑LASSO’ linear regression, as in Belloni, Chernozhukov, andHansen
(2014b), wherein the researcher regresses the outcome on treatment, controlling for variables that are predic‑
tive of either the outcome of the treatment (i.e. S1 ∪ S2).

3 Monte‑Carlo Simulations
We perform a monte‑carlo exercise to evaluate the performance of LASSO‑based methods with other popular esti‑
mators. To this end, we adapt experiment 2 in Hainmueller (2012), which involves using covariates from the Dehejia
andWahba (1999)) experimental sample of LaLonde (1986)) data, and specifying a highly nonlinear data‑generating
process for the propensity score and outcome with a known treatment effect in order to evaluate performance.
We focus on benchmarking our proposed knockoff‑selection entropy balancing estimator (KOEB) against conven‑
tional regression adjustment using OLS, Double selection (DS), propensity score matching (PS), Mahalanobis dis‑
tance matching (MD), entropy balancing (EB) on the entire design matrix. We provide a detailed description of the
data‑generating process in B.

14. https://cran.r‑project.org/web/packages/kosel/
15. this is because balancing on a polynomial, say x2, is equivalent to entropy‑balancing on the variance of x since the columns inX are all

centered
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Figure 1. Distribution of effect estimates from simulations. The Blue vertical line is the truth, the red line is the mean estimate,
and green lines indicate 2.5th, 50th, and 97.5th percentile

We plot the distribution of estimates from 10,000 replications of the simulation procedure in figure 1, and summary
statistics in table 1. Among regression‑based methods, we find that DS and KOSEL improve substantially upon
OLS, and that KOSEL has the lowest variance. Knockoff selection is more precise (i.e. it has lower RMSE) than the
LASSObasedalternatives. Amongweightingmethods,we find theLASSO‑selectedentropybalancingmethod isbest‑
performing in terms of bias, median absolute deviation (MAD), and root‑means‑squared‑error (RMSE), with Propen‑
sity score Matching (PS) performing worst16. We find that knockoff‑augmented entropy‑balancing (KOEB) performs
comparably to ‘full’ entropy balancing on the covariate matrix (EB), and is easier to compute. Furthermore, the ‘re‑
duced’ entropy‑balancing weights are computable the large matrix of covariates with many interactions, while the
‘full’ entropy‑balancing weights computation on the wide covariatematrix very frequently ran into numerical errors,
which is not reflected in the figure because the resultant effect estimates are NAs.
In summary, we find that KOSEL and KOEB are the best performing (in MSE terms) in their respective classes of re‑
gression and re‑weighting estimators. KOEB is unbiased in our simulations with a highly nonlinear treatment and
outcome model, and therefore should be preferred when its implementation is feasible. However, if researchers
prefer to use regressions for other (computational, longitudinal data, or interpretation) reasons, KOSEL clearly out‑
performs naive covariate adjustment in both bias and variance terms, and is weakly superior to double‑selection
LASSO thanks to higher precision.

16. Indeed, much of the mass of the PS estimate distribution is to the left of the x‑scale in the figure, hence the suspiciously thin histogram
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Marginal Effects of Abduction on Social And Political Participation

Figure 2. OLS, Double‑Selection, Knockoff Entropy Balancing, Knockoff LASSO, and Partialling Out for all outcomes in Blattman
(2009) table 3

4 Empirical Examples
4.1 Blattman (2009)

Blattman (2009) attempts to provide causal evidence of the political legacy of violent conflict by studying the effects
of involuntary rebel recruitment on postwar political engagement and socio‑political behaviour of ex‑combatants
using an individual level dataset. Blattman argues that patterns in rebel abduction during Uganda’s civil war gener‑
ated ‘nearly exogenous variation’ in recruitment, and as such, causal estimates of its impact on later‑life outcome
such as political participation can be identified. Blattman uses data from the Survey of War Affected Youth (SWAY)
and estimates the effects of being abducted on downstream outcomes conditional on a list of controls using logistic
regression (table 3).
We replicate Blattman’s findings using OLS,17 controlling for possible every pairwise interaction between the 36 con‑
trols that Blattman includes his regressions, and report the results in figure 2. This produces a matrix of 666 covari‑
ates.18 For several of the outcomes (notably vote05, the titular voting indicator that is the focus of much of the
paper), the number of nonmissing observations is lower than 666 – in the case of voting, the number of observations
is 542. Thus, p >> n in this setting even with pairwise interactions.
Double‑selection, partialling out, selected‑entropy balancing, and Knockoff‑selection generally produce estimates
that agreewith the vanilla OLS estimates on sign andmagnitude, with slightly higher precision. This, combinedwith

17. the marginal effects estimates are very close to the estimates from logistic regression
18. this is equal to 36 + (36× 35)/2
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Marginal Effects of Democracy on Intensive and Extensive margin

Figure 3. Logit, OLS, Partialling Out, Double‑Selection, Knockoff, and Entropy Balancing Estimates for Lyall (2010) table 2 (model
3), table 5 (model 19)

Blattman’s sensitivity analysis to evaluate how large the effects of unobserved confounders needs to be in order to
reduce the voting effect by half, increases our confidence in the findings.

4.2 Lyall (2010)
Lyall (2010) studies the effect of democracy’s impact on counterinsurgency (COIN) war outcomes and duration. He
collects data on war outcomes and covariates for internal conflicts from 286 insurgencies from 1800‑2005, and es‑
timates the ‘effect’ of a democratic regime on COIN outcomes such as war outcomes (win/draw/loss, truncated to
win/loss for a subset of the analysis) and war duration. The paper begins by noting that the conventional wisdom
that democracies are bad at COIN operations is rendered questionable by omitted variables bias, and proceeds to
estimate logit regressions on the full and matched samples and finds that the effect of democracy on outcomes is
generally small and statistically indistinguishable from zero.
We replicate Lyall’s analysis using all possible pairwise interactions and report the results in figure 3. We find that
although the confidence intervals still cover zero for both outcomes, the sign of the estimated coefficients changes
when using double‑selection and knockoff‑selection with more flexible sets of controls for the dichotomous victory
outcome. The confidence intervals for the estimated coefficient for the war duration outcome is substantially nar‑
rower than the vanilla OLS (or Weibull, as reported in the paper).

5 Conclusion
This paper has outlined amethod of combining recent advances in variable selectionwith balancing and regularized
regression (double‑LASSO) estimators to estimate causal effects. This approach promises to be particularly use‑
ful in settings where researchers use a selection‑on‑observables approach to estimate treatment effects. The high‑
dimensional regression‑based approach permits researchers to adjust for many interactions of control variables,
possibly more than the number of observations, in order to render the conditional unconfoundedness assumption
more credible. As such, it presents a simple and interpretable step in credibly estimating treatment effects in ob‑
servational settings. In addition to improving the plausibility of the unconfoundedness assumption, thesemethods

10



also reduce researcher degrees of freedom in specifying the regression used to estimate effects of interest. We see
from the two applications replicated in the paper that these methods tend to find smaller and sometimes precise
effects than the original studies, and as suchmay reduce the number of published false‑positives.
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A Proofs
A.1 Proof of Neyman Orthogonalization for Double Selection

A parameter of interest τ0 is the solution to an orthogonalized moment condition of the form

Eψ(Zi, τ0,η0) = 0

whereψ(·) is a real‑valued function satisfying the Orthogonality conditionE∂ηψ(Zi, τ0,η0) = 0, a vector of observ‑
ablesZi := {yi, di,xi}, and a high‑dimensional nuisance parameter η0.
For our particular setting, recall the two equations

yi = τdi + x′
iβ0 + εi , E [εi|xi, di] = 0

di = x′
iδ0 + νi , E(νi|xi) = 0

We denote the nuisance parameter η := (β0, δ0)
′. We can now write the corresponding moment condition for our

linear setup using the two residuals

Eψ(Zi, τ0, η0) = E(
Residual from outcome regression︷ ︸︸ ︷

(yi − diτ0 − xiβ0) (di − x′
iδ0)︸ ︷︷ ︸

Residual from treatment regression

) = 0 (3)

We now prove that this moment condition satisfies the orthogonality conditionE∂ηψ(·) = 0. To see this, write

∂ηψ(zi, τ, η) =

[
∂βψ(zi, τ, η)

∂ηψ(zi, τ, η)

]
=

[
−(di − x′

iδ)xi

−(yi − diτ − x′
iβ)xi

]
The two pieces of the above expression are normal equations for the corresponding treatment and outcome equa‑
tions. Taking expectations of these normal equations

E [(di − x′
iδ0)xi] = E [νixi] = 0

and

E [(yi − τ0di − x′
iβ0)xi] = E [εixi] = 0

Therefore, we have proved that equation 3 satisfies the Neyman Orthogonality condition.

B Simulation Setup and additional results
Here, we describe the simulation study described in section 3. We use covariates from the LaLonde (1986) experi‑
mental sample (445 observations from the NSW experiment). We assume a constant treatment effect of τ = $1000,
and specify a non‑linear DGP for the outcome

Y = 1000D + 0.1 exp[0.7(log(re74 + 1))] + 0.7 log(re75 +1)+
0.6 exp(log(re74)× hispanic)− 0.01black × log(age + 1) + ϵ

where ϵ ∼ N (0, 10).
The true propensity score DGP is the following function

πi = logit−1(1 + .4µ+ .1age − .3educ − .09re74 − .05re75
+ .2u74 × u75 + .3married × u75 − .2 log(re75)× log(age)2

− .1black × log(age) + .05hispanic × log education
+ .1hispanic × nodegree × u74 − .05black × u74 × u75
− .05married × nodegree × log(re74) + ηi)
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Estimator BIAS MAD RMSE Runtime
Difference in Means ‑8688.830 6701.07 8693.297 0.002
OLS 182.809 170.63 406.217 0.008
double‑LASSO (Double Selection) 138.579 143.19 483.177 5.656
double‑LASSO (Knockoff Selector) ‑118.660 ‑119.02 248.369 5.241
double‑LASSO (Partial Out) ‑209.952 ‑192.02 449.809 5.589
Entropy Balancing ‑0.017 ‑0.02 1.627 0.098
Entropy Balancing (Knockoff selection) ‑0.017 ‑0.02 1.627 0.012
Mahalanobis Distance Matching ‑105.078 ‑106.04 124.366 0.096
Propensity Score + Mahalanobis Distance Matching ‑493.439 ‑496.68 523.188 0.102
Propensity Score Matching ‑2681.354 747.97 3060.527 0.055
Propensity Score Weighting ‑191.590 ‑182.32 293.271 0.007

Table 1. Simulation study results. Bias is computedbyaveraging τ̂−τ estimateminus the true treatment effect of1000, averaged
over simulations,MeanAbsoluteDeviation (MAD)byaveraging |τ̂ − τ |, andRMSEas

√
(τ̂ − τ)2. Runtime (in seconds) is averaged

over all runs. Genetic matching (rgenoud is omitted because of prohibitively long runtimes.)

whereµ is obtained fromregressing the treatment indicatoronage2, educ2, re742, re752,u74, u75, black, hispanic,
married, nodegree. In the monte carlo replications, we use an (incorrect) functional form to estimate the propen‑
sity score by regressing the treatment indicator on all the covariates linearly.
For variable‑selection methods (Double LASSO and Knockoff‑selection), we construct a large set of controls using
the following steps:
• Construct a data matrix with the log, linear, and quadratic terms of all continuous variables, and all binary indica‑
tors.

• Construct all pairwise interactions
• Construct Box‑Cox polynomials (log x, linear, quadratic, and cubic polynomials)
• Drop 0 or near‑0 variables (this addressesmechanically impossible interaction terms like those betweenmutually
exclusive categories)

• Drop highly correlated variables (those with pairwise correlation coefficient above 0.95) to avoidmulticollinearity
We then use the resultant matrixX to estimate treatment effects using LASSO partialling out, double selection, and
entropy balancing.
For each iteration of the simulationwe + simulate treatment status using a Bernoulli drawwith individual‑treatment
probabilitiesπi + generate theoutcomeusing theoutcomeDGP+Estimate treatment effects using all availablemeth‑
ods either using no controls (for RAW), a ‘narrow’ covariate matrix with 10 columns (for MD, PS, PSMD, PSW, EB), or
‘wide’ covariate matrix (for LPO, LDS, LEB).
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