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ABSTRACT. Survey response rates have declined dramatically over the last thirty years. De-
spite innovation in how we can conduct a survey—on WhatsApp, Facebook, MTurk, and
elsewhere —the situation looks dire. One lever with which we can increase response rates
is by increasing monetary incentives. But if we were to maximize the objective function of
increasing response rates with money, we will end up bankrupting ourselves. This paper
casts these as budget constrained online learning problems that are amenable to ‘bandit’-
based sequential learning algorithms. I propose methods to adaptively allocate monetary
incentives and/or recruitment effort to maximise response rates and representativeness in
surveys, and identify the best ‘arm’ under a budget constraint in pilot experiments. I provide
simulation-based evidence that these algorithms improve upon current practice.
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1. Introduction

Data collection is a key step in empirical work across the social sciences. In many obser-
vational settings, this involves surveying individual respondents about their preferences
and circumstances, which, despite the proliferation of survey platforms, has been getting
progressively harder as evidenced by declining survey response rates. This has dire con-5

sequences for policy-making, polling, and research, since non-representative surveys skew
political and policy priorities towards the views expressed by respondents rather than the
electorate. While extensive work has been done on reweighting methods to adjust for non-
response1, less attention has been paid to the design and allocation of survey incentives to in-
crease response rates in the design stage so as to obviate the need for extensive reweighting10

in the analysis stage2. We focus on one specific source of heterogeneity in non-response rates
across groups - differences in monetary willingness-to-accept (WTA) values - which can be
learned using modern adaptive experimentation methods, and propose budget-constrained
multi-armed bandits to learn and use these WTA values to increase response rates subject
to budget-constraints and representativeness considerations. We provide simulation-based15

evidence that these algorithms improve upon current practice, and intend to evaluate their
performance in field experiments in future work.

Bandit algorithms3 are an important part of the extensive literature on sequential decision-
making and Markov Decision Processes (MDPs) going back to foundational literature in
the early-mid 20th century (Thompson, 1933; Wald, 1947; Robbins, 1952). While statisti-20

cal decision theorists have long been interested in these problems (Gittins, 1979; Manski,
2004; Bergemann and Valimaki, 2006; Berry and Fristedt, 1985; Hirano and Porter, 2009;

1for a review of this work, see Caughey et al. (2020) and Hartman, Hazlett, and Sterbenz (2021)
2While monetary incentives have been shown to improve response rates in a variety of survey settings (Singer
and Ye, 2013; Yan, Kalla, and Broockman, 2018; Dutz et al., 2021), the survey literature provides little
practical advice with regard to calibrating these incentives. This calibration should ideally be performed
possibly dynamically, as is proposed in the present paper
3whose colourful name originates from the analogy to an agent choosing among slot-machines (‘one-armed
bandits’) with unknown reward probabilities and seeking to simultaneously learn the best ‘arm’ and pull it as
often as possible to maximise payoffs.
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Stoye, 2009; Hirano and Porter, 2020), bandit algorithms have only recently made inroads
into applied research in the social sciences for their potential use in adaptive experimental
design (Kasy and Sautmann, 2021; Offer-Westort, Coppock, and Green, 2021; Avivi et al.,25

2020; Nie, Brunskill, and Wager, 2020) and policy learning for empirical welfare maximisa-
tion (Kitagawa and Tetenov, 2018; Athey and Wager, 2021)4. These algorithms also under-
pin the burgeoning literature in reinforcement learning (Sutton and Barto, 2018), which
propose methods for a wide class of decision problems ranging from playing board-games
to driving cars. At their core, bandit algorithms aim to optimally combine ‘exploration’30

(learning parameters of the data generating process) and ‘exploitation’ (making the best
possible choice to maximise the payoff stream), and as such are adaptable to a wide range
of applications in social science beyond the specific application developed in the current
paper.

In this paper, we seek to adapt Multi-Armed Bandits (MABs) to the substantive task of35

survey design. We assume that the researcher has can set K different levels (‘arms’) of
survey payments in order to incentivise respondents5.For each respondent t, the researcher
sets a compensation amount a, and observes whether the respondent completed the survey
(rt = 1) or not (rt = 0), which we call the reward. The researcher is therefore inter-
ested in exploration - learning the expected probability of response for each payment arm40

µa, and exploitation - setting the payment arm to maximise the expected reward (total data
collected). So far, this is a conventional MAB problem, and several algorithms exist to adap-
tively pull the right arm (i.e. set the appropriate payment level) to maximise the reward.
The researcher can program a bandit algorithm to adaptively set the compensation amount
to maximise response rates, or to maximise response rates subject to a representativeness45

constraint, and so on.
4Though these advances aren’t without their challenges. Inference, in particular, becomes challenging because
adaptive experiments introduce dependence over time and thus mechanically violate the IID structure that
common inference procedures rely on. Hadad et al. (2021) propose an AIPW-based reweighting approach to
construct valid confidence intervals in such settings.
5throughout, we work with a finite set of arms. While MABs with infinite number of arms are an emerging field
in reinforcement learning and have been studied theoretically, they are far less tractable, and we therefore
leave adaptation of continuous payment schemes to future work
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A simple MAB characterisation abstracts from an important consideration in real-world ap-
plications of MABs, especially in the survey setting, where each arm costs a fixed amount,
and the researcher has a finite budgetB. Standard bandit algorithms seek only to maximise
the expected reward in the long run, and do not account for whether arms have different50

‘prices’. Assuming people prefer more money to less money, it is entirely likely for response
rates to be (weakly) increasing in compensation. In such a setting, bandit-algorithm may
easily provide the trivial answer of ‘pay everyone the largest possible amount’ since the re-
sponse probability is largest for these compensation levels, and consequently gather very
little data before exhausting the budget. To address this problem, we propose budget-55

constrained multi-armed bandits, which add cost-considerations to well known budget-free
bandit algorithms, Thompson sampling and Upper Confidence Bound (UCB), both of which
loosely rely on choosing actions with the largest reward/cost ratio. Using a variety of sim-
ulation studies, we show that these budgeted bandits have greater cumulative reward (i.e.
they collect more survey responses) than best-performing non-budget algorithms. Next, we60

propose adjustments to the budgeted algorithm that permits response-rate maximisation
subject to representativeness concerns, wherein the researcher is interested in conducting
a representative survey with different demographic groups that vary in their response rates
to surveys. This is operationalised by dynamically adjusting arm-specific costs to account
for representativeness gaps. We find that an amended version of Thompson sampling per-65

forms well along both axes - larger sample sizes as well as reasonably high representative-
ness - relative to random and stratified sampling (which target representativeness alone)
and conventional bandit algorithms (which target sample size alone).

Our paper contributes to an emerging literature in the social sciences that seeks to improve
experimental design and data-collection efforts using bandit algorithms (Offer-Westort,70

Coppock, and Green, 2021; Kasy and Sautmann, 2021; Avivi et al., 2020). Most of this
literature has been concerned with adapting bandit algorithms to improve the estimation
of the average treatment effect in experiments with multiple arms, while the latter is in-
terested in a best-arm identification task. To our knowledge, the present paper proposes
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the first bandit algorithm tailor-made to the task of survey-data collection with budget75

constraints and representativeness considerations, which is a standard problem that many
applied researchers face. In doing so, we seek to open a closer dialogue between politi-
cal methodology and the study of sequential decision making (which includes the general
family of methods dealing with Markov decision processes, bandit algorithms, online opti-
misation, and reinforcement learning). Political methodology has historically been in active80

conversation with methods developed in statistics, econometrics, and psychology, but has
thus far neglected to adapt highly practical engineering methods developed for sequential
decision-making such as bandit algorithms. This may be because the broad class of prob-
lems that fall under sequential decision making have been studied across a wide variety of
disciplines including pure and applied mathematics, operations research, economics, statis-85

tics, computer science, engineering, and as such have been discovered and rediscovered by
professions with different preferences and terminology, which makes it challenging for ap-
plied researchers to delve into the technical literature on the abstract motivating problems
in this literature in order to adapt them to their own ends. We hope that our study takes a
first step towards illustrating the utility of these sequential decision-making methods for a90

wide variety of research tasks.

The paper is organised as follows: 2 provides an overview to bandit problems and introduces
the proposed algorithms, 3 reports results from a simulation study, and 4 concludes.

2. Overview of bandit algorithms

2.1. Setup.95

Consider a setting with binary rewards r ∈ {0, 1}, and K arms a ∈ {1, . . . K} =: [K] with
unknown probabilities of success µ1, . . . , µk ∈ [0, 1]. So, each arm a is associated with an
unknown Bernoulli distribution Pa with mean µa, and pulling the ath arm produces IID
rewards ra sampled from corresponding Bernoulli Pa.
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In a MAB problem, the agent’s task is to maximise total reward E
[∑T

t=1 rat

]
. If the agent100

knew µ1, . . . , µK , the optimal action would be to always play the arm with the highest
reward a∗ = argmax[K] µk. However, the agent doesn’t know µs, and therefore must in-
corporate learning µs into the problem. This is the exploration versus exploitation trade-off.
Rewards are stochastic, so the agent focusses on maximising total expected reward.

E [Total Reward] = E

[
T∑
t=1

rat

]
=

T∑
t=1

E [rat] =
T∑
t=1

µxt

where xt ∈ {a1, a2, . . . , aK} , t = 1, 2, . . . , T are the sequence of arm-pulls. Payoff max-105

imisation is equivalent to minimising expected R(t). Lai and Robbins (1985) derive lower
bounds on the regret for any ‘consistent’ algorithm must make on any given instance of the
problem, and find that this is a logarithmic function of the number of pulls. Maximising
total expected reward is equivalent to minimising cumulative expected regret

E [Regret] = E

[
T∑
t=1

ra∗t − rat

]

=
T∑
t=1

E [ra∗t]︸ ︷︷ ︸
Payoff from always playing a∗

−
T∑
t=1

E [rat]

= Tµ∗ −
T∑
t=1

µxt

Almost all MABs the incorporate the empirical mean of the rewards for each arm: Qa :=110

Sum of rewards received from arm a
Number of times arm a was pulled . Qa is unbiased for µa, and as such, is essential in both ‘exploring’

(learning µs) and ‘exploiting’ (pulling the arm with the largest µ) and is a key component
of a bigger class of solution methods known as Q-learning (Sutton and Barto, 2018). We
provide an overview of canonical bandit algorithms in appendix A.1.
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2.2. Budgeted Bandits.115

In the standard analysis of bandit algorithms, the agent’s goal is to maximise the expected
cumulative reward from the sequence of pulls. However, this typically abstracts budget
constraints that MABs may face in real-world applications. Pulling each arms may be as-
sociated with a fixed (Tran-Thanh et al., 2012) or random (Ding et al., 2013) cost, with
the total available budget being set to some value B. Badanidiyuru, Kleinberg, and Slivkins120

(2018) provide a general framework for the analysis of such problems that combines bandit
learning with stochastic integer programming, hence the name bandits with knapsacks.

In our substantive application, the budget constraint is particularly important. Since each
‘arm’ is a monetary reward for survey completion, we necessarily have fixed costs to pulling
each arm, and a finite budget. So, under the reasonable assumption that larger payments125

are more likely to induce responses, we may have µ1 ≤ . . . µK where {1, . . . , K} are or-
dered by the monetary value of the arm. So, a conventional well-performing MAB, such
as Thompson Sampling, might give us a trivial answer, which is to pay everyone the most
(i.e. pull arm K with the maximum value). However, this may result in us receiving far too
few responses.130

2.2.1. Knapsack-UCB. To address problemswith conventionalMABs in budget-constrained
settings, we first propose using the Knapsack-based Upper confidence Bound Exploration and
exploitation (KUBE) algorithm proposed by Tran-Thanh et al. (2012) (henceforth TCRJ).
The authors analyse a budget-limited MAB consisting of a machine with K arms, and a
total budget of B. By pulling arm a, the agent has to pay ca, and gets reward ra. Since B is135

finite, the sequence of pulls is finite.
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TCRJ cast the budgeted bandit an unbounded knapsack problem and propose two algo-
rithms thatO(logB) theoretical upper bound (Tran-Thanh et al., 2012, p1137-38). We con-
centrate on the computationallymore tractable (albeit marginally less performant) fractional-
KUBE algorithm. Fractional KUBE chooses the arm with the highest estimated upper-140

confidence-bound-to-cost ratio. Specifically, this involves pulling the following arm

A = argmax[K]

Qa +
√

2 log t
na

ca
(2.1)

which is the UCB/Cost ratio for each arm, which makes it an intuitive budget-constrained
adaptation of UCB.

Algorithm 1: Fractional KUBE Algorithm (adapted from Tran-Thanh et al. (2012,
p. 1137))
Param: Bt = B Starting Budget
Param: Q Vector of empirical mean of returns for each arm
Param: N Number of times each arm has been pulled
Param: C Vector of costs for each arm
while Bt > min[K] ca: pulling is feasible do

for a = 1, . . . , K do
(UCB/Cost)a := Qa/ca +

(√
2 log t
na

)
/ca ; // Update UCB/Cost ratio

end for
A = argmax[K] (UCB/Cost)a ; // Identify arm with highest UCB/Cost ratio
r = BernoulliReward(A) ; // Pull arm a; Draw reward r ∈ {0, 1}
NA = NA + 1 ; // Update number of pulls
QA = QA + 1

NA
(r −QA) ; // Update Empirical Mean

Bt+1 = Bt − cA ; // Deduct cost of arm from budget
end while

2.2.2. Cost-normalised Thompson sampling. Thompson sampling (TS) Thompson (1933)
is one of the earliest concepts in sequential learning. Interest in it was renewed through145

the analysis of its bounds and empirical results documenting its performance (Scott, 2010;
Chapelle and Li, 2011; Agrawal and Goyal, 2012). Indeed, it has been shown to be asymp-
totically optimal for Bernoulli bandit problems, which is our use case. Thompson sampling
involves specifying a prior distribution on each of the K bandits: π(µ1), . . . , π(µK) =: Π0,
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and updating the posterior Πt sequentially and selecting the arm with the highest posterior150

probability of reward A = argmax[K] π(µa|xa). For Bernoulli outcomes, this is the most
straight-forward, as it involves initialising success and failure counts (α, β), pulling arms,
and updating them, as illustrated in 2.

Conventional Thompson sampling under-performs in budget-constrained settings. We pro-
pose minor adjustments that do not break the Beta-Binomial conjugacy that forms a large155

part of the appeal of TS in Bernoulli settings. Specifically, we propose amending the arm
choice step alone in Thompson sampling from argmax[K] µa to

A = argmax
[K]

µ̂a

c̃a
where c̃a =

ca∑
K ck

where the denominator c̃a is scaled cost that forces it on [0, 1]. This approach is related
to the Budgeted-Thompson sampling algorithm (BTS) proposed by Xia et al. (2015), who
propose pulling the arm with the highest reward/cost ratio when rewards and costs are160

random and distributed on [0, 1]. In our application, cas are not random, but can be scaled
to lie on the unit interval. Nevertheless, the regret bound in Xia et al. (2015) applies; the
budgeted Thompson Sampling algorithm achieves a regret bound of O(lnB)) where B is
the budget.

In simulations, we also implement a version of the algorithm (based on the substantive165

setting of survey design) where incentives are provided conditional on completion of the
survey, which mechanically means that cas are only incurred if the reward r is 1.

2.2.3. Targeting Representativeness. To build representative samples, we propose alter-
ing Budgeted Thompson sampling to dynamically adjust costs to target representativeness.
Intuitively, this permits researchers to dynamically emphasise exploration early on (by170
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Algorithm 2: Budgeted Thompson Sampling for Bernoulli Bandit
Parameter: S, F = 0 Success and failure counters for each arm
Param: C Vector of costs for each arm
while Bt > min[K] ca: (pulling is feasible) do

for a = 1, …, K do
Draw µ̂a ∼ Beta (Sa + 1, Fa + 1) ; // Draw from posterior

end for
c̃at = cat/

∑
K ckt ; // Compute Normalised cost at time t

A = argmax[K] µ̂a/c̃at ; // Identify arm with reward/cost ratio
r = BernoulliReward(A) ; // Pull arm; draw reward r ∈ {0, 1}
SA = SA + r ; // Update Successes
FA = FA + (1− r) ; // Update Failures
Bt+1 = Bt − cA ; // Deduct cost of arm from budget

end while

shrinking all costs towards common values) and target balance/representativeness after-
wards by setting costs to be increasing in over-representation of a given group in the sam-
ple. This makes it more likely that the bandit will choose other arms that now appear
‘cheaper’ because they correspond with groups that are under-represented in the sample.
Specifically, we set the cost vector cgat for stratum g to175

cgat =

1 +

(
B − b

B

)
︸ ︷︷ ︸

Remaining budget share

ψg


γ

ca

where ψg := (xt − x̃) is current over-representation of group g in sample

where x is an indicator for a demographic characteristic g in the sample, x̃ is the target share
of group g in the final sample (for example, the population share of stratum g in the census),
ca is the initial set of costs. These costs are the same across groups initially, and then begin
to grow for groups that are over-represented in the sample (ψg > 0). These departures from
the original costs are scaled by how much of the budget has been exhausted: early in the180

process, when B−b
B

≈ 0, group-specific deviations are approximately 0, while later on, the
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algorithm prioritises representativeness more. γ ≥ 1 is a positive parameter that controls
the degree to which representativeness is prioritised relative to maximising rewards.

There are alternative approaches to incorporate representativeness into the objective func-
tion of the bandit algorithm. An information theoretic objective function extending the185

approach in Russo and Van Roy (2018) may be promising, but requires ex-ante targets on
the precision of group-level means that may be unappealing in practice. Multi-objective
Multi-armed bandits (MOMABs) (Hüyük and Tekin, 2021), where bandits are typically
concerned with multi-valued rewards and may either ‘satisfice’ on one element of the re-
ward or lexicographically order preferences where optimisation on one axis is prioritised190

over the other, may also be promising. However, since the secondary objective of represen-
tativeness is not a reward per se and is a property of the entire sample collected so far, we
are unable to adapt MOMABs for our purposes. Adaptations of the above ideas to the task
at hand is a promising avenue for future research.

3. Simulation Study195

3.1. Survey bandit simulations.

3.1.1. Simulation Setup.

We conduct simulation studies motivated by the survey application. We simulate data with
10 arms where, for each arm

ca ∈ {2, 5, 10, 20} Uniform draw from set of costs (3.1)

µa ∼ Beta
(
α = max

(ca
5
, 1
)
, β = 10/ca

)
(3.2)
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Costs are drawn so that each arm costs between $2 and $20. The corresponding mean200

rewards are simulated from a beta distribution such that the reward probability E [µa] is
increasing in ca, based on our substantive assumption that higher payments are more likely
to elicit responses: for ca = 2,E [µa] =

1
5
, while for ca = 20,E [µa] =

8
9
. The cumulative

reward in this setting is analogous to the total number of survey responses, since we model
reward = 1 as a complete response.205

We also consider a case where costs ca are only paid at the end of the survey (i.e. as a
reward the respondent), which makes the budget last a lot longer, especially in the presence
of multiple low-reward arms.

3.1.2. Budget-Constrained Simulation. In this section, we conduct simulations to mimic
our substantive application of eliciting survey-responses under a budget constraint. We run210

our bandits on the same simulated data as above, but this time introduce a budget constraint
B; each algorithm pulls its best arm until it exhausts the budget. We report the cumulative
reward for three different budget values B ∈ {1000, 10000, 50000} in fig 1a, cumulative
rewards when costs are incurred contingent on response in fig 1b, and corresponding arm-
pull sequences in figs 2a and 2b respectively.215

The results are drastically different from the non-budget-constrained simulation. From fig
1a, we see that the budget-aware algorithms collect roughly twice as much data as the
budget-agnostic ones, and this gap grows to nearly 8-12x more when costs are incurred
conditional on success (1b). The reason for this, as we see in fig 2a, is that budget-agnostic
algorithms (Thompson and ε− first) exhaust their budget well before the budgeted algo-220

rithms by pulling expensive but not cost-efficient arms. Thompson sampling pulls the most
expensive arm (with reward probability of 0.92 but cost of $20) too frequently, while ε−
first mixes inefficiently across arms. In contrast, KUBE and budgeted Thompson (‘thomp-
sonBC’) consistently pull the arm with the highest UCB/Cost ratio and therefore run for
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(A) Cumulative rewards for budgeted bandits. Maximum value of X-axis label indicates
period at which the budget is exhausted by the best-performing bandit.
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(B) Cumulative rewards for budgeted bandits where costs are incurred conditional on
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at which the budget is exhausted by each algorithm.

FIGURE 1. Cumulative rewards for each algorithm in budgeted simulations.
Panels report runs with increasing budgets of $1000, $10000, and $ 50000
respectively.

many more steps before exhausting the budget, and consequently collect a much larger225

cumulative reward.
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FIGURE 2. Cumulative number of pulls of each arm by each algorithm in bud-
geted simulations. The legend labels indicate arm index, followed by reward
probability and cost, with the best arm (by reward probability - cost ratio) in
bold.

3.1.3. Budget-constrained Simulation targeting representativeness. Next, we construct
a simulation study to correspond with the cost-adjustment method for targeting represen-
tativeness outlined in section 2.2.3. We simulate data where there are two strata, E and F,
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and members of group F respond to surveys at a substantially lower rate than E. We target230

equal shares of the two groups in our final sample because they are evenly distributed in
the population.

We work with 5 payment levels $2, 5, 7, 10, 20, which, combined with 2 groups, gives us 10
arms. Reward probabilities are increasing in payment, where µE

a is generated by eqn 3.2,
and µF

a = (0.4, 0.5, 0.6, 0.7, 0.8) ·µE
a , so group F is particularly unlikely to respond for small235

payments, and this gap is decreasing in the magnitude of the payment.

We benchmark the performance of Budgeted Thompson sampling against random sampling
and Thompson Sampling. The former is a ‘pure-exploration’ algorithm that assigns equal
number of draws to each group (which approximates random sampling in surveys). The
latter does not account for costs or representativeness at all. Budgeted Thompson sampling240

with different values of γ prioritises representativeness to varying degrees, with γ = 0

holding costs constant, while large values of γ prioritise representativeness more.

We report simulation results in figures 3, 4, and 5. From fig 3, we see that higher values
of γ penalise over-representation of group E more by raising costs higher. In fig 4, we
see that because group F responds to surveys at lower rates than E, conventional bandit245

algorithms like Thompson sampling or Budgeted-Thompson sampling (with γ = 0, which
doesn’t prioritise exploration at all) collect plenty of data, but the sample ends up with
a almost exclusively group Es. Increasing γ, prioritises representativeness and therefore
yields a sample closer to 50-50. For high values of γ, we get samples that are nearly as
representative as full exploration (random sampling) and have larger sample sizes (based250

on x-axis values). Gains from Thompson are even larger when costs are conditional on
reward in 5, where the total observations collected is significantly larger than with random
sampling.
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FIGURE 3. Costs for group E over time for different values of γ. γ = 0 holds
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sponse to over-representation of Es in the sample, thereby inducing the ban-
dit algorithm to pick arms corresponding with group F .
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FIGURE 4. Shares of group E and F over time for different bandit algorithms,
with the bottom four varying the degree of ‘representativeness prioritisation’
γ in 3.2. The x-axis values indicate the total number of observations collected
by each method. We find that large values of γ produce larger samples than
random sampling and comparable in their representativeness.
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FIGURE 5. Shares of group E and F over time for different bandit algorithms
with costs incurred conditional on reward, with the bottom four varying the
degree of ‘representativeness prioritisation’ γ in 3.2. The x-axis values indi-
cate the total number of observations collected by each method. We find that
large values of γ produce larger samples than random sampling and compa-
rable in their representativeness.
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4. Conclusion

We propose a simple set of bandit algorithms to improve response rates in survey data255

collection more effectively, and demonstrate that these algorithms perform well relative
to budget-less bandits and random sampling in simulation studies. Paying respondents in
order to induce response is likely to improve response rates and representativeness relative
to current practice of providing little to no incentive and relying on stratified sampling and
weights to construct representative measures from highly non-representative and uneven260

response rates from different demographic groups. Simple adjustments to these bandit
algorithms also yield larger and more representative samples than either random sampling
or bandit algorithms.
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Appendix A. Additional Material

A.1. Canonical Bandit Algorithms.

Here, we provide a brief overview of some standard approaches to solving the bandit prob-340

lem. Most Bernoulli bandit algorithms take the form of algorithm 3.

Algorithm 3: General Algorithm for Bernoulli Bandit
Param: Q Vector of empirical mean of returns for each arm
Param: N Number of times each arm has been pulled
Param: S Number successes for each arm
Param: F Number failures for each arm
for t = 1, …, T do

a = PickArm(Q, N, S, F) ; // Most Bandits only use Q,N
r = BernoulliReward(a) ; // Pull arm a; get r ∈ {0, 1}
Na = Na + 1 ; // Update number of pulls
Qa = Qa +

1
Na

(r −Qa) ; // Update Empirical Mean
Sa = Sa + r ; // Update Successes
Fa = Fa + (1− r) ; // Update Failures

end for

A.1.1. Random. The most basic approach is to randomly pick arms in each period, which
is a ‘pure exploration’ approach. This is obviously sub-optimal since we do not learn µs and
adapt our decisions accordingly.

A.1.2. Greedy. At the other extreme end, an ‘exploit-only’ approach is to pull each arm m345

times, and thereafter pull the arm with the highest empirical average A = argmax[K](Qa).
This approach is susceptible to getting stuck on sub-optimal arm thanks to insufficient ex-
ploration.

A.1.3. ε-first. An ε−first approach divides play into an initial explore phase, followed by an
exploit phase. Specifically, it sets aside the firstm rounds to learn the µs, and then pulls the350

best estimated arm A = argmaxa(Qa) repeatedly thereafter. As with greedy selection, this



24 REFERENCES

leaves one open to estimation errors that might lead to one choosing a suboptimal action
ad nauseam.

A.1.4. ε-greedy. An ε− greedy approach is a noisy version of the Greedy approach, wherein
we allow for an ε− probability exploration. So, the arm with the highest empirical average355

is picked with probability 1−ϵ, and a random arm is picked with complementary probability
ϵ.

The probability of selection for each arm a is

P (ai) =

 1− ϵ+ ϵ
K

, if ai = argmax[K](Qa)

ϵ
K

, otherwise

A.1.5. UCB. This strategy is based on the ‘Optimism in the Face of Uncertainty’ principle
and was proposed by Lai and Robbins (1985) and extended by Auer, Cesa-Bianchi, and360

Fischer (2002). We know Qa is an unbiased estimate of µa. After Na pulls of arm a we can
be quantify how close Qa is to µa using Hoeffding’s Inequality, which yields the bound

Pr (|µa −Qa| ≥ ϵ) ≤ 2 exp
(
−2Naϵ

2
)

Using a one sided version of this inequality we get:

Pr (µa ≥ Qa + ϵ) ≤ exp
(
−2Naϵ

2
)

So for arm a, whose average reward is Qa after it has been pulled Na times, µa exceeds the
upper confidence bound(UCB) with probability p = exp (−2Naϵ

2) We want the probability365

that µa exceeds UCB to decrease with t, the number of arm pulls so far. A common choice
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(UCB1) is to use p = t−4, which ensures that we select the optimal action in the limit as
t→∞

ϵ =

√
− log p
2Na

=

√
2 log t
Na

This implies the following arm choice

A = argmax[K]

Qa +

√
2 log t
Na


Intuitively, the second piece of the UCB shrinks as one learns µa more precisely (by pulling370

a more of then so Na→∞).

A.1.6. Thompson Sampling. Thompson sampling (TS) Thompson (1933) is one of the
earliest concepts in sequential learning. Interest in it was renewed through the analysis
of its bounds and empirical results documenting its performance (Scott, 2010; Chapelle
and Li, 2011; Agrawal and Goyal, 2012). Indeed, it has been shown to be asymptotically375

optimal for Bernoulli bandit problems, which is our use case.

Thompson sampling involves specifying a prior distribution on each of the K bandits:
π(µ1), . . . , π(µK), and sequentially selecting the arm with the highest posterior probabil-
ity of reward and updating these posteriors.

A = argmax
[K]

π(µa|xa)

A conventional choice for the Thompson sampling algorithm assumes a prior Beta(1, 1) ≡380

U [0, 1] on µa for each arm. The Beta distribution is the conjugate prior for Bernoulli rewards
because the posterior is also beta-distributed. Priors can be chosen to reflect substantive
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knowledge on the part of the researcher: in the survey setting, since it is ex-ante known
that response probabilities vary by group, priors can be chosen appropriately. The Bernoulli
likelihood given sa observed successes and fa failures is385

p(sa, fa | µa) =

 sa + fa

sa

µsa
a (1− µa)

fa

Then the posterior after observing data D := (sa, fa) is in the same family and can be
written as

π(µa|D) ∝ π(µa)π(D|µa)

∝ µ1−1
a (1− µa)

1−1︸ ︷︷ ︸
Prior

Likelihood︷ ︸︸ ︷
µsa
a (1− µa)

fa

∝ µ1−1+sa
a (1− µa)

1−1+fa

Thus the posterior distribution for µa is µa|D ∼ Beta (1 + sa, 1 + fa). This simply updates
the α parameter in our posterior by the number of successes, and the β parameter by the
number of failures. This algorithm is outlined in algorithm 4.390

Algorithm 4: Thompson Sampling for Bernoulli Bandit
Parameter: S, F = 0 Success and failure counters for each arm)
for t = 1, …, T do

for a = 1, …, K do
Draw µa ∼ Beta (Sa + 1, Fa + 1) ; // Draw from mean posterior

end for
a = argmax[K] µa ; // Pull arm with highest draw for µa

r = BernoulliReward(µa) ; // Draw reward r ∈ {0, 1}
Sa = Sa + r ; // Update Successes
Fa = Fa + (1− r) ; // Update Failures

end for
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This simple setup is well-understood and has good theoretical properties. The beta posterior
becomes more and more concentrated around the empirical mean Sa/(Sa+Fa) for each arm
k as the number of plays increases.

A.2. Additional Figures and tables.

A.2.1. Non-budget constrained simulation. As a warmup, we compute a simple simula-395

tion, wherein we ignore arm-specific costs and consequently the budget constraint, and run
each algorithm for a fixed number of periods. This is a standard MAB simulation where
we use cumulative reward as our performance metric. We report the cumulative reward
for three different horizons T ∈ {1000, 10000, 50000} in figure A1, and the sequence of
arm pulls in appendix figure A2. Consistent with Chapelle and Li (2011) and Russo et al.400

(2018), we find that Thompson-sampling is typically best-performing among the algorithms
under consideration, closely followed by UCB and ε−first. For the longest time horizon (≈
asymptopia), UCB and Thompson have almost identical cumulative rewards, followed by
ε− first.

A.2.1.1. Computation. Computation performed in Hunter (2007) and Van Der Walt, Col-405

bert, and Varoquaux (2011).
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tions. Panels report runs for 1000, 10000, and 50000 run-horizons respec-
tively

0

2500

5000

ε− greedy

0

5000

ε-first

100 101 102 103 104

0

5000

UCB

0 (0.41)

1 (0.89)

2 (0.53)

3 (0.0)

4 (0.21)

5 (0.18)

6 (0.11)

7 (0.43)

8 (0.92)

9 (0.16)

100 101 102 103 104

0

5000

Thompson

FIGURE A2. Cumulative number of pulls of each arm by each algorithm in
budget-less simulations with 10,000 runs. The legend labels indicate arm
index, followed by reward probability and cost, with the best arm (by reward
probability) in bold.



REFERENCES 29

Hunter, John D. (2007). “Matplotlib: A 2D Graphics Environment”. Computing in science &
engineering 9.3, pp. 90–95 (cit. on p. 27).415

Lai, Tze Leung and Herbert Robbins (1985). “Asymptotically efficient adaptive allocation
rules”. Advances in applied mathematics 6.1, pp. 4–22 (cit. on p. 24).

Russo, Daniel et al. (2018). “A Tutorial on Thompson Sampling”. Foundations and Trends®
in Machine Learning 11.1, pp. 1–96 (cit. on p. 27).

Scott, Steven L (Nov. 2010). “A modern Bayesian look at the multi-armed bandit”. en. Ap-420

plied Stochastic Models in Business and Industry 26.6, pp. 639–658 (cit. on p. 25).
Thompson, William R (1933). “On the likelihood that one unknown probability exceeds

another in view of the evidence of two samples”. Biometrika 25.3/4, pp. 285–294 (cit. on
p. 25).

Van Der Walt, Stefan, S Chris Colbert, and Gael Varoquaux (2011). “The NumPy array: a425

structure for efficient numerical computation”. Computing in science & engineering 13.2,
pp. 22–30 (cit. on p. 27).


	1. Introduction
	2. Overview of bandit algorithms
	2.1. Setup
	2.2. Budgeted Bandits

	3. Simulation Study
	3.1. Survey bandit simulations

	4. Conclusion
	References
	Appendix A. Additional Material
	A.1. Canonical Bandit Algorithms
	A.2. Additional Figures and tables

	References

