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Introduction. Survey response rates have declined dramatically over the last thirty years.
Despite innovation in how we can conduct a survey using various online mediums, re-
sponse rates seldom exceed single digits and are particularly low among specific socio-
economic groups, with dire consequences for policymaking, research, and polling. While
extensivework has been done on reweightingmethods to adjust for non-response1, less at-
tention has been paid to the design and allocation of survey incentives to increase response
rates in the design stage so as to obviate the need for extensive reweighting in the analysis
stage2. I focus on one specific source of heterogeneity in non-response rates across groups
- differences in monetary willingness-to-accept (WTA) values - which can be learned us-
ing modern adaptive experimentation methods, and propose budget-constrained multi-
armed bandits to learn and use these WTA values to increase response rates subject to
budget-constraints and representativeness considerations. I provide simulation-based ev-
idence that these algorithms improve upon current practice, and intend to evaluate their
performance in field experiments in future work.

Methods. I assume that the researcher has can set K different levels (‘arms’) of survey
payments in order to incentivise respondents3, or K different experimental treatments
with varying costs (e.g. Get-out-the-Vote treatments, which may vary in cost depend-
ing on the medium). For each respondent t, the researcher sets a compensation amount
a, and observes whether the respondent completed the survey (rt = 1) or not (rt = 0),
which I call the reward. The researcher is therefore interested in exploration - learning the
expected probability of response for each payment arm µa - but only inasmuch as it helps
her in exploitation - setting the payment arm to maximise the expected reward (total data
collected). Unlike with adaptive experiments, researcher isn’t interested in precisely es-
timating the reward probabilities from each incentive level (their treatment effects), as it
is well known that bandit algorithms perform poorly in terms of statistical power (Villar,
Bowden, and Wason 2015), although amendments have been proposed (Kasy and Saut-
mann 2021; Offer-Westort, Coppock, and Green 2021).
A simple MAB characterisation abstracts from an important consideration in survey ap-
plications of MABs, where each arm costs a fixed amount ca, and the researcher has a
finite budget B. Standard bandit algorithms seek only to maximise the expected reward
in the long run and do not account for arm-specific costs. Under the plausible assumption
that response rates are increasing in compensation4, a conventional bandit-algorithm will
therefore provide the trivial answer of ‘pay everyone the largest possible amount’ (pick
arg maxa ca) since the response probability is largest for these compensation levels, and
consequently gather very little data before exhausting the budget. To accommodate the
1for a review of this work, see Caughey et al. (2020) and Hartman, Hazlett, and Sterbenz (2021)
2While monetary incentives have been shown to improve response rates in a variety of survey settings
(Singer and Ye 2013; Yan, Kalla, and Broockman 2018), the survey literature provides little practical ad-
vice with regard to calibrating these incentives, possibly dynamically, as is proposed in the present paper
3Monetary incentives have been shown to improve response rates in a variety of survey settings (Singer and
Ye 2013), and may be preferable to stratified sampling in settings plagued with non-response
4µk ≤ µk+1 where the k arms are increasing in cost ck
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budget constraint, I amendwell-known bandit algorithms - UCB and Thompson sampling
- tomaximise a cost-normalized upper confidence bound and posterior mean respectively,
which results in them choosing actions with the largest reward/cost ratio. For UCB1, this
implies choosing

A = argmax[K]
µ̂a +

√
2 log t

na

ca
where µ̂a is the estimated mean for arm a, t is the total number of rounds played, and na
is the total number of times arm a has been pulled; the maximand is therefore the upper-
confidence bound normalized by cost. This approach was first proposed by Tran-Thanh
et al. (2012), who call this approach the fractional Knapsack-based Upper Confidence Bound
Exploration and Exploitation (KUBE) algorithm, and prove that it achieves logarithmic re-
gret.
For Thompson sampling, I propose choosing the arm that maximises the ratio of the pos-
terior reward probability5 and normalized cost:

A = arg max
[K]

θ̂a

c̃a
where c̃a =

ca

∑K ck

where θk is the posterior mean for the reward probability and c̃a is a normalized cost that
scales all arm costs to lie on the unit interval6. The Thompson sampling approach is par-
ticularly well-suited to this problem because, given uncertain and potentially long gaps
between when surveys are dispatched and responses are received, researchers may use a
‘batched’ approach wherein posteriors distributions are updated at a fixed cadence (say,
on a weekly basis). In simulations, I also implement a version of the algorithm (based
on the substantive setting of survey design) where incentives are provided conditional
on completion of the survey, which mechanically means that cas are only incurred if the
reward r is 1.
Finally, I propose adjustments to the budgeted algorithm that permits response-rate max-
imisation subject to representativeness concerns, wherein the researcher is interested in
conducting a representative survey with different demographic groups that vary in their
response rates to surveys. I propose an amended version of Thompson sampling that dy-
namically adjusts arm-specific costs to account for representativeness gaps. Specifically, I
set the cost vector cg

at to

cg
at =

1 +
(

B − b
B

)
︸ ︷︷ ︸

Remaining budget share

ψg


γ

ca

where ψg := (xt − x̃) is current over-representation of group g in sample

5we use the simple Bernoulli bandit formulation in this setting. The reward is Bernoulli, and I use a beta-
prior αa = 1, βa = 1 for all arms so as to sample from a beta posterior
6this is one ofmanypossible parametrisations of the optimization problem. In currentwork, I amdeveloping
an information-theoretic objective function for the bandit algorithm, as well as a complementary dynamic-
programming based finite sample solution
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where x is an indicator for a demographic characteristic g in the sample, x̃ is the target
share of group g in the final sample (for example, the population share of stratum g in the
census), and ca is the initial set of costs. These costs are the same across groups initially,
and then begin to grow for groups that are over-represented in the sample (ψg > 0). These
departures from the original costs are scaled by how much of the budget has been ex-
hausted: early in the process, when B−b

B ≈ 0, group-specific deviations are approximately
0, while later on, the algorithm prioritises representativeness more. γ ≥ 0 is a choice pa-
rameter that represents the tradeoff between sample-size and representativeness, where
larger values correspond to greater weight on representativeness at the cost of sample size
(reward).

Preliminary Results. I first conduct a simulation study with 10 arms where costs are
drawn uniformly from {2, 5, 10, 20}, and the corresponding means are simulated from
a beta distribution7 such that the reward probability E [µa] is increasing in ca, based on
our substantive assumption that higher payments are more likely to elicit responses8. The
cumulative reward is akin to the total number of survey responses since I model reward
= 1 as a complete response. I let each algorithm run until it exhausts its budget, and
average across 1000 runs. I benchmark the budgeted bandit algorithms against a stan-
dard set of well-known bandit algorithms: greedy, which pulls each arm a set number of
times to learnmeans and then proceeds to pull the armwith the highest mean afterwards;
random, which is a pure exploration algorithm that approximates random sampling in
surveys; ε-greedy, which plays random with probability ε and greedy with complemen-
tary probability; ε−first, which uses the first ε−share of the budget to explore, and sub-
sequently exploits; UCB1, which pulls arg max[K] µ̂a +

√
2 log t/na, and Thompson sam-

pling, which pulls arg max[K] θk. I report the results in figure 1(a), and find that budgeted
bandits (fracKUBE and thompsonBC) have much greater cumulative reward (i.e. they
collect more survey responses) than best-performing non-budget algorithms.
Next, I perform a simulation study with two strata with different response propensities
to evaluate the performance of dynamic cost-adjustment. I simulate data where there are
two strata, E and F, and F responds to surveys at a substantially lower rate than E. I target
equal shares of the two groups in our final sample because they are evenly distributed in
the population. Reward probabilities are increasing in payment, where µE

a is generated by
as before, and µF

a = (0.4, 0.5, 0.6, 0.7, 0.8) ·µE
a , so group F is particularly unlikely to respond

for small payments, and this gap is decreasing in the magnitude of the payment. I report
sample shares and sample sizes in figure 1(b), and find that the dynamic-cost adjustment
approach to representative samples performs well along both axes - we get larger sample
sizes as well as representativeness - relative to random and stratified sampling (which
targets representativeness alone) and simple Thompson sampling (γ = 0, which target
rewards – sample size – alone), which produces a sample comprised entirely of group E,
which is highly unrepresentative. γ > 0 trades off sample size for more representative
samples and, for sufficiently high values of γ, produces more representative samples than
random sampling but with much larger sample sizes.

7Reward are drawn from µa ∼ Beta
(
α = max

( ca
5 , 1

)
, β = 10/ca

)
8For ca = 2, E [µa] =

1
5 , while for ca = 20, E [µa] =

8
9 .
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Conclusion. This project proposes a simple set of bandit algorithms to improve response
rates in survey data collection more effectively, and demonstrate that these algorithms
perform well relative to budget-less bandits and random sampling in simulation studies.
Paying respondents in order to induce response is likely to improve response rates and
representativeness relative to current practice of providing little to no incentive and relying
on stratified sampling and weights to construct representative measures from highly non-
representative and uneven response rates from different demographic groups. Simple
adjustments to these bandit algorithms also yield larger and more representative samples
than either random sampling or bandit algorithms.
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(a) Cumulative rewards (total sample sizes) for budgeted bandits.
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(b) Shares of group E and F over time for different bandit algorithms, with the bot-
tom six varying the degree of ‘representativeness prioritisation’ γ. The x-axis values
indicate the total number of observations collected by each method.


	Introduction
	Methods
	Preliminary Results
	Conclusion
	References

