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Problem Setup

We observe an outcome and set of treatments (Yi,Wi)
N
i=1, and seek to rank these treat-

ments by their treatment effects τ . For example, Wi may consist of different actions
taken by a user on a digital platform, and the platform seeks to promote those actions
that have the largest treatment effects on a north-star metric Yi.

A common approach to this problem is to write a Partially Linear Model of the outcome
as a function of each treatment and pre-treatment covariates Yi = τWi+ g(Xi) + εi and
to run the residuals-on-residuals regression:

Yi − E [Yi | Xi] = τ̃ (Wi − E [Wi | Xi]) + ηi

The treatments are then ranked according to the partially ordered set (τ̃plr,≤).

We show via a simple example and numerical experiments that, when treatment ef-
fects are heterogeneous, τ̃plr does not equal the Average Treatment Effect (ATE) in gen-
eral, and consequently:

(τ̃plr,≤) ̸= (τ̃ATE,≤).

Other estimators like Augmented IPW do not fall prey to this problem and should be
preferred when researchers seek to rank treatments according to their ATEs, as op-
posed to treatment effects on implicit & potentially incomparable populations.

PLM Estimates a Weighted Average Treatment Effect

A well-known result from Angrist (1998) states that, under the linearity of the propen-
sity score and arbitrary treatment effect heterogeneity, linear regression recovers:

plim τ̂ = E [γ(X)τ (X)]

where γ(X) =
V [W | X ]

E [V [W | X ]]
.

When the treatmentW is binary, the weights simplify to

γ(X) =
p(X)(1− p(X))

E [p(X)(1− p(X))]

These weights are strictly positive, and largest for units with propensity scores close
to 0.5.

An immediate implication is that, unless the treatments in Wi are randomized
according to the same mechanism, the regression weights γ(X) will be non-uniform
across treatments, and therefore treatment effects are not comparable across
treatments.
See also Goldsmith-Pinkham et al. (2024) on contamination bias.

A Simple Example

Consider a single binary covariate x distributed uniformly in the population (P (X =
1) = 0.5) and binary treatmentsW1,W2. We seek to rankW1 andW2 according to their
ATEs. The propensity scores are as follows

W1 = 0 W2 = 1
X = 0 0.01 0.5
X = 1 0.5 0.01

The treatment effects for the two treatments for the two strata are
τ1 τ2

X = 0 -3 -2
X = 1 3 3
ATE 0 0.5

Note thatW2 has the larger ATE, but theworse treatment effect for unitswith propen-
sity score P (W2|X = 0) = 0.5. In contrast, W1 has the smaller ATE, but the better
treatment effect for units with propensity score P (W1|X = 1) = 0.5.

The Partially Linear Model (PLM) does not recover the ATEs or the correct ranking:

τ̃1 =
−3 · 0.01 · 0.99 + 3 · 0.5 · 0.5

0.01 · 0.99 + 0.5 · 0.5
= 2.7714

τ̃2 =
−2 · 0.5 · 0.5 + 3 · 0.01 · 0.99

0.01 · 0.99 + 0.5 · 0.5
= −1.8095

Treatment 1 Treatment 2

3

2

1

0

1

2

3

4

Tr
ea

tm
en

t E
ffe

ct

PLMs do not estimate ATEs 
 This is bad for ranking treatments
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Solution: Weight Explicitly Rather Than Implicitly

Rather than implicitly weight by the propensity score, we propose to use estima-
tors that explicitly target the ATE under heterogeneity in assignment mechanisms and
treatment effects, such as the Augmented IPW estimator:

τ̂AIPW =

(
µ̂1(x) +

Wi

π̂(x)
(yi − µ̂1(x))

)
−
(
µ̂0(x) +

1−Wi

1− π̂(x)
(yi − µ̂0(x))

)

Applying AIPW to our example recovers the ATEs, and therefore the correct ranking of
treatments.
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