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Introduction
▶ Scientists, policy-makers, and practitioners care about different kinds of

study validity
▶ Internal validity: findings are informative about the population under study

▶ estimand: Sample Average Treatment Effect (SATE)
▶ External validity: findings are informative about the population of interest

▶ estimand: Target Average Treatment Effect (TATE) ; Population ATE (PATE)
▶ Experiments are a corner solution that prioritizes Internal over External

validity (Egami and Hartman 2022)

▶ Design based solutions: design to balance in target population (Phan et al.
2021) or balanced sampling (Cytrynbaum 2021)
▶ Limited feasibility in regime with many concurrent experiments

▶ This project: Framework and package for model-based solutions to bridging
(generalizing or transporting) causal estimates to new populations
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Data and Estimands
▶ Data: Di = (Xi, Si, SiAi, SiYi)

N
i=1 where

▶ covariatesXi ∈ Rp,
▶ treatmentAi ∈ A := {0, . . . ,K},
▶ outcome Yi ∈ R,
▶ selection indicator Si ∈ {0, 1}

▶ Observe (Xi, Ai, Yi)
N1
i=1 for observations with Si = 1

(henceforth the study sample S1)
▶ Observe (Xi)

N
i=N1+1 for observations with Si = 0

(henceforth the target sample S0).
▶ The overall sample is S := S1 ∪ S0.
▶ Two kinds of missing data

Estimands
Generalizability

E
[
Y a,S=1

]
Transportability

E [Y a|S = 0]

Lets us construct causal
contrasts for any pair
a, a′ ∈ A
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Reasoning about extrapolation bias

▶ LetXb, pb(x), b ∈ {s, t} denote Support and Distribution
of covariates in study and target. Bias from naive
extrapolation is

TATE - SATE =
∑
x∈Xt

pt(x)τt(x)− ps(x)τs(x)

=
∑
x∈Xt

(pt(x)− ps(x)) τ(x)

=
∑
x∈Xt

ps(x)︸ ︷︷ ︸
Strata Size

(
pt(x)

ps(x)
− 1

)
︸ ︷︷ ︸

Imbalance

τ(x)︸︷︷︸
Heterogeneity

Bias contributions
▶ Imbalance in

effect-modifying strata
x s.t. τ(x) > 0

▶ Failure of overlap:
ps(x) = 0 but
ps(x) > 0

▶ Heterogeneity model
instability
τs(x) ̸= τt(x)
DRO problem (Sahoo,
Lei, and Wager 2022;
Jeong and Namkoong
2020)
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Identification Assumptions

1. Consistency / SUTVA : Yi =
∑

a∈A 1Ai=aY
a
i

2. Ignorability of Treatment: Y 0, . . . , Y a ⊥⊥ A|X = x, S = 1

3. Overlap
3.1 Treatment overlap: 0 < Pr (A = a|X = x, S = 1) < 1
3.2 Selection overlap: 0 < Pr (S = 1|X = x) < 1

4. Selection
4.1 Y 0, . . . , Y a ⊥⊥ S|X = x. Ignorability of Selection.
4.2 E [Y |A,X, S = 1] = E [Y |A,X, S = 0]. The outcome model is stable across

S strata.
Under A1,2,3,4.1, the generalization effect is identified. (Dahabreh, Robertson, Tchetgen, et al.
2019; Bia, Huber, and Lafférs 2020)
Under A1,2,3,4.2, the transportation effect is identified. (Dahabreh, Robertson, Steingrimsson,
et al. 2020; Josey et al. 2021)
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Estimator Structure
Augmented Augmented IPW influence function (uncentered)

ψa =

Imputation︷ ︸︸ ︷
µ(a)(Xi)︸ ︷︷ ︸

Outcome Model

+

Reweighted Residuals︷ ︸︸ ︷
γi︸︷︷︸

Si/ρ(Xi)
Sel Wt

ωi︸︷︷︸
1Ai=a/π

a(Xi)
Prop Wt

(
Yi − µ(a)(Xi)

)

▶ Difference between ψa and ψa′ estimates causal contrasts (Robins et al
1994, Newey 1994, Hahn 1998, Cattaneo 2010)

▶ Estimation: put hats on - Nuisance functions estimated by flexible
nonparametric regression (L1/L2 reg, random forest, boosting) using
cross-fitting

▶ Construct observation level influence function (=: doubly robust score)
▶ Average over target sample for point estimate, standard deviation for

confidence interval
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Estimators

Generalization∑
x E [Y |A = a, S = 1,X]P (X)

Transportation∑
x E [Y |A = a, S = 1,X]P (X|S = 0)

OM 1
n

∑
i µ̂

a(Xi)
1

|S0|
∑

i(1− Si)µ̂
a(Xi)

ISW 1
n

∑
i

Si
ρ̂(Xi)

1A=a
π̂a(Xi)

Yi
1
n

∑
i

1

Ê[Si=0]

Si(1−ρ̂(Xi))
ρ̂(Xi)

1A=a
π̂a(Xi)

Yi

AISW 1
n

∑
i µ̂

a(Xi) +
Si

ρ̂(Xi)
1A=a
π̂a(Xi)

(Yi − µ̂a(Xi))
1
n

∑
i

1

Ê[Si=0]

(
(1− Si)µ̂

a(Xi) +
Si(1−ρ̂(Xi))

ρ̂(Xi)
1A=a
π̂a(Xi)

(Yi − µ̂a(Xi))
)

▶ Outcomemodelling (OM), Inverse Selection Weighting (ISW), and Augmented
Inverse Selection Weighting (AISW)

▶ Target population
▶ Implemented in ateGT
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Balancing weights
▶ goal for selection weights: balance

covariates across study and target

▶ Inverse propensity weighting is indirect: fit
Pr (S = 1|X), then invert

▶ This inversion dramatically inflates
errors when selection weights are
small

▶ Requires individual level covariates
Xi for target population

▶ Alternatively calibrate a set of weights that
balances covariate distributions∑

i∈S1

γicij(Xij) ≈
∑

i∈target
cij(Xij)︸ ︷︷ ︸

Target moments

min
γ

=
∑
i∈S1

f(γi) s.t.

Balance
∑
i∈S1

γicij(Xij) =
∑

i∈target
cij(Xij)

Simplex
∑
i∈S1

γi = 1 and γi ≥ 0 ∀ {i : i ∈ S1}

Dual is easy to solve for certain fs (L2,
entropy) as regularized propensity score
(Wang and Zubizarreta 2019). Implemented
in ateCAL
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Incorporating Surrogate Outcomes

▶ Suppose further that we observe a
short-run outcome Zi for both S1,S0, but
outcome of interest Yi only for S1

▶ This could be because units arrive
sequentially and ‘mature’ at some T
period; S1 are early adopters

▶ Intermediate outcome Z is said to be a
‘surrogate’ for the long-term outcome

▶ Literature on estimation of long-term
treatment effects typically relies on
variations of strong surrogacy assumption
Y ⊥⊥ A|Z (Athey et al. 2016; Chen and
Ritzwoller 2021)

▶ Under analogues of A1-4, Kallus and Mao
(2022) derive an influence function for the
generalization effect with surrogates

ψ =µ(a)(Xi)+

γi︸︷︷︸
Si/ρ(Xi)

ωi︸︷︷︸
1Ai=a/π

a(Xi)

(
Yi − µ(a)(Xi)

)
+

ωi

(
ν(a)(Zi,Xi)− µ(a)(Xi)

)
− τ

▶ Second residual is information gained from
incorporating surrogate outcome in
prediction of Y
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Characterizing Sensitivity via OVB

▶ Identification hinges on A4.1 (selection
ignorability).

▶ Motivates our estimation strategy via
reweighting γi

▶ Suppose there is an omitted variable U
that makes A4.1 hold.

▶ True (µ, (π, γ) =: α) and feasible
(µs, (π, γs) =: αs) nuisance functions
(Chernozhukov et al. 2022) where former
includes U as covariate

▶ Omitted Variables Bias = Covariance
between regression error (µ− µs) and
Riesz Representer Error (α− αs)

αs(D) =
Si

ρ(Xi)

(
1A=a

πa(Xi)
− 1A=a′

πa′(Xi)

)
α(D, U) =

Si

ρ(Xi, Ui)

(
1A=a

πa(Xi)
− 1A=a′

πa′(Xi)

)

▶ Squared Bias can be bounded as
B2 = S2C2

Y C
2
A where

▶ S2 := E(Y − µs)
2Eα2

s (identifiable)
▶ C2

Y = R2
Y−µs∼µ−µs

: conjectured proportion of
residual variance in outcome explained by
confounders

▶ C2
A = (1−R2

α∼αs
)/R2

α∼αs
: conjectured

proportion of residual variance in long RR
explained by confounders
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includes U as covariate

▶ Omitted Variables Bias = Covariance
between regression error (µ− µs) and
Riesz Representer Error (α− αs)

αs(D) =
Si

ρ(Xi)

(
1A=a

πa(Xi)
− 1A=a′

πa′(Xi)

)
α(D, U) =

Si

ρ(Xi, Ui)

(
1A=a

πa(Xi)
− 1A=a′

πa′(Xi)

)

▶ Squared Bias can be bounded as
B2 = S2C2

Y C
2
A where

▶ S2 := E(Y − µs)
2Eα2

s (identifiable)
▶ C2

Y = R2
Y−µs∼µ−µs

: conjectured proportion of
residual variance in outcome explained by
confounders

▶ C2
A = (1−R2

α∼αs
)/R2

α∼αs
: conjectured

proportion of residual variance in long RR
explained by confounders
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Simulation Study

▶ CovariatesX1, . . . , X10 ∼ U [−1, 1]

▶ Data Generating Process
▶ Ai ∼ Bernoulli (0.5)
▶ Y ∗

i = Y 0(Xi) +Aiτ(Xi)
▶ Yi = Y ∗

i w.p. ρ(X), else missing
▶ For non-trivial functions ρ(X), there is selection bias and SATE is biased for

E [τ(X)]

▶ Vary functional form of
▶ Y 0(X) (Outcome Model)
▶ ρ(X) (Selection Model)
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Implementation in causalTransportR

▶ Main function: ateGT (ATE
Generalization or
Transportation)

▶ Input vectors y, a, s of
outcome, treatment, and
selection where y, a are
missing for s = 0

▶ Matrix of X of covariates (no
missings)

▶ Additional arguments for
nuisance function estimation
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Conclusion
▶ Proposes a multi-treatment framework for causal generalization and

transportation
▶ provide a performant computational implementation for it in

causalTransportR᭽᮷ateGT
▶ calibrated generalization for when only summary statistics are available for

target (ateCAL)
▶ poststratification weights using fast fixed effects regressions (ateGTreg)

▶ Future work: more work on sensitivity analyses
▶ Partial identification for generalization using marginal sensitivity model (Nie,

Imbens, and Wager 2021) or Proportion with confounding (Kennedy and
Bonvini 2021)

▶ Estimate how different the population needs to be from the experimental
sample to explain away the effect (Devaux and Egami 2022)
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Thanks!

software: https://github.com/apoorvalal/causalTransportR
email: apoorval@stanford.edu
website: apoorvalal.github.io
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