
Political Methodology II
Section: Completely Randomized Experiments

Apoorva Lal
January 13, 2022

Stanford University

1



Roadmap

Understanding Estimands

Identification under random assignment

Estimation under random assignment

Inference in Randomized Experiments

The Neyman Null

The Fisher Null

Covariates in Randomized Experiments

2



Roadmap

Understanding Estimands

Identification under random assignment

Estimation under random assignment

Inference in Randomized Experiments

The Neyman Null

The Fisher Null

Covariates in Randomized Experiments

3



Review of Potential Outcomes Notation

Treatment status: Di = 1 if observation i gets the treatment and Di = 0 if i doesn’t get the
treatment.
Potential outcome with treatment: Y1i, or sometimes Yi(1)
Potential outcome without treatment: Y0i, or sometimes Yi(0).
Individual-level treatment effect: τi = Y1i − Y0i.

Observed outcome: Yi = DiY1i + (1− Di)Y0i, or equivalently:

Yi = Y0i + (Y1i − Y0i)Di
Yi = Y0i + τiDi

The fundamental problem of causal inference is that we can never observe Y1i and Y0i

simultaneously.
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Review of Potential Outcomes Notation

This model of potential outcomes already makes a big assumption. What is it?

Yi = Y0i + (Y1i − Y0i)Di
Yi = Y0i + τiDi

SUTVA. Why?

SUTVA is fundamentally an assumption of how much missing data we have on potential outcomes.
If there are N units in the population, how many possible ways are there to assign a binary
treatment to each unit? 2N. If potential outcomes for unit i are a function of everyone’s treatment
assignment, how many potential outcomes do we have? 2N. If SUTVA holds, then we assume unit
i’s potential outcomes are only a function of its own treatment status, and there are only two
possible ways to assign treatment to unit i.
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The Assignment Mechanism

The Assignment mechanism is the procedure that determines which units are selected to receive
the treatment.

Formally, it is a row-exchangeable function Pr (D|X,Y(0),Y(1)) taking on values values in [0, 1]
[Imbens and Rubin 2015, Chap 2]. Examples include

random assignment
selection on observables
selection on unobservables

Key goal of modern causal inference training is to rewire your brains to think about the assignment
mechanism (instead of focussing on variation in the outcome Y).

Understanding the assignment mechanism is the key pre-requisite for moving from correlation to
causation.
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Understanding estimands: ATE

What is the average treatment effect?

Recall that each individual has an individual-level treatment
effect τi = Y1i − Y0i. The average treatment effect is simply the expected value of the individual
τi’s:

ATE = E[τi]

ATE = E[Y1i − Y0i]

ATE = E[Y1i]− E[Y0i]
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Understanding estimands: ATT and ATC

What are the average treatment effect on the treated (ATT) and the average treatment effect on the
control (ATC)?

ATT is the average treatment effect among those units that actually received the treatment:

E[Y1i − Y0i | Di = 1]

Similarly, ATC is the average treatment effect among those units that did not receive the
treatment:

E[Y1i − Y0i | Di = 0]

What’s notable compared to the ATE is that the ATT and ATC depend on the treatment assignment
in the sample.
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Relationship between ATE, ATT, and ATC

We can decompose ATE into a weighted sum of the ATT and ATC. Use the law of iterated
expectations to rewrite E[Y1i] and E[Y0i]:

E[Y1i] = E
[
E[Y1i | Di]

]
= E[Y1i | Di = 1]P(Di = 1) + E[Y1i | Di = 0]P(Di = 0)

E[Y0i] = E
[
E[Y0i | Di]

]
= E[Y0i | Di = 1]P(Di = 1) + E[Y0i | Di = 0]P(Di = 0)
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Relationship between ATE, ATT, and ATC

Using that notation, we can rewrite the ATE:

ATE = E[Y1i]− E[Y0i]

=
(
E[Y1i | Di = 1]P(Di = 1) + E[Y1i | Di = 0]P(Di = 0)

)
−(

E[Y0i | Di = 1]P(Di = 1) + E[Y0i | Di = 0]P(Di = 0)
)

= P(Di = 1)
(
E[Y1i | Di = 1]− E[Y0i | Di = 1]

)
+

P(Di = 0)
(
E[Y1i | Di = 0]− E[Y0i | Di = 0]

)
= P(Di = 1)

(
E[Y1i − Y0i | Di = 1]

)
+ P(Di = 0)

(
E[Y1i − Y0i | Di = 0]

)
ATE = P(Di = 1)ATT+ P(Di = 0)ATC

So the ATE is a weighted average of the ATT and ATC, with weights given by the proportion of treated units.
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Naive Difference in Means: Decomposition I

Why can’t we simply use the difference in observed outcomes for treated and control units as an
estimate of the ATE? Recall the bias decomposition:

E[Yi | Di = 1]− E[Yi | Di = 0] =

E[Y1i | Di = 1]− E[Y0i | Di = 0] =

E[Y1i | Di = 1] + (E[Y0i | Di = 1]− E[Y0i | Di = 1])− E[Y0i | Di = 0] =

E[Y1i − Y0i|Di = 1]︸ ︷︷ ︸
ATT

+ {E[Y0i|Di = 1]− E[Y0i|Di = 0]}︸ ︷︷ ︸
baseline bias

11



Naive Difference in Means: Decomposition I

Why can’t we simply use the difference in observed outcomes for treated and control units as an
estimate of the ATE? Recall the bias decomposition:

E[Yi | Di = 1]− E[Yi | Di = 0] =

E[Y1i | Di = 1]− E[Y0i | Di = 0] =

E[Y1i | Di = 1] + (E[Y0i | Di = 1]− E[Y0i | Di = 1])− E[Y0i | Di = 0] =

E[Y1i − Y0i|Di = 1]︸ ︷︷ ︸
ATT

+ {E[Y0i|Di = 1]− E[Y0i|Di = 0]}︸ ︷︷ ︸
baseline bias

11



Naive Difference in Means: Decomposition I

Why can’t we simply use the difference in observed outcomes for treated and control units as an
estimate of the ATE? Recall the bias decomposition:

E[Yi | Di = 1]− E[Yi | Di = 0] =

E[Y1i | Di = 1]− E[Y0i | Di = 0] =

E[Y1i | Di = 1] + (E[Y0i | Di = 1]− E[Y0i | Di = 1])− E[Y0i | Di = 0] =

E[Y1i − Y0i|Di = 1]︸ ︷︷ ︸
ATT

+ {E[Y0i|Di = 1]− E[Y0i|Di = 0]}︸ ︷︷ ︸
baseline bias

11



Naive Difference in Means: Decomposition I

Why can’t we simply use the difference in observed outcomes for treated and control units as an
estimate of the ATE? Recall the bias decomposition:

E[Yi | Di = 1]− E[Yi | Di = 0] =

E[Y1i | Di = 1]− E[Y0i | Di = 0] =

E[Y1i | Di = 1] + (E[Y0i | Di = 1]− E[Y0i | Di = 1])− E[Y0i | Di = 0] =

E[Y1i − Y0i|Di = 1]︸ ︷︷ ︸
ATT

+ {E[Y0i|Di = 1]− E[Y0i|Di = 0]}︸ ︷︷ ︸
baseline bias

11



Naive Difference in Means: Decomposition II

We can go even further to get the naive difference in means in terms of the ATE plus two forms of
bias:

E[Yi | Di = 1]− E[Yi | Di = 0] = ATT + baseline bias

= P(Di = 1)ATT + P(Di = 0)ATT + baseline bias

= P(Di = 1)ATT + P(Di = 0)ATT + (P(Di = 0)ATC − P(Di = 0)ATC) + baseline bias

= P(Di = 1)ATT + P(Di = 0)ATC︸ ︷︷ ︸
ATE

+ P(Di = 0)(ATT − ATC)︸ ︷︷ ︸
differential treatment effect bias

+baseline bias

So the naive difference in means will be a biased estimator of the ATE if we have either differential
treatment effect bias or baseline bias.
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Example

Suppose we are interested in the effect of college on an individual’s earnings. We estimate this
effect with a naive difference in average wages between individuals who attended college and
those who did not.

What source of baseline bias might we be worried about?

Individuals who attended college
might have had higher baseline levels of potential earnings to begin with in the absence of going to
college.

What source of differential treatment effect bias might we be worried about? Attending college
may have a greater effect on potential earnings for individuals that selected into attending college
than it would have had for those who did not attend college. This is a difference between the ATC
and ATT.
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Identification: Learning the lingo

What do we mean when we talk about identification?

‘Over two dozen different terms for identification appear in the econometrics literature’; Lewbel,
“The Identification Zoo”, JEL 2020

Informally, it refers to what the data can (even in theory) tell us about a parameter.
If a parameter is (point) identified, it means that if we had infinite data, we could calculate the
true parameter value.
If we couldn’t calculate the parameter even with infinite data, the parameter is unidentified.
This is the problem with the difference in means estimator.
Often we’re interested in a causal parameter like the ATE. Typically we say a parameter is
“causally identified” if we have an unbiased (or consistent) estimator for the causal parameter
of interest under a set of “identifying assumptions.”

15

http://fmwww.bc.edu/EC-P/wp957.pdf
http://fmwww.bc.edu/EC-P/wp957.pdf
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This is the problem with the difference in means estimator.

Often we’re interested in a causal parameter like the ATE. Typically we say a parameter is
“causally identified” if we have an unbiased (or consistent) estimator for the causal parameter
of interest under a set of “identifying assumptions.”
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Identification under random assignment

Random assignment of the treatment breaks the dependence between the potential outcomes and treatment
status that causes bias.

Formally:

Identification Assumption
Treatment Independence Assume that treatment assignment is independent of the potential outcomes,
(Y0i, Y1i)⊥⊥Di.

Note that this assumption is satisfied by design under randomization (though literal randomization is not
strictly necessary for it to hold). When this assumption holds, the difference in means identifies the ATE.

Identification Result (Difference in Means)
Under treatment independence, the difference in mean outcomes between treated and control groups is an
unbiased estimator for the average treatment effect.
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ATE Identification

Let’s look again at the difference in means:

E[Yi | Di = 1]− E[Yi | Di = 0] = E[Y1i − Y0i|Di = 1]︸ ︷︷ ︸
ATT

+ {E[Y0i|Di = 1]− E[Y0i|Di = 0]}︸ ︷︷ ︸
bias

Under random assignment, E[Y1i | Di] = E[Y1i] and E[Y0i | Di] = E[Y0i]. The treatment status doesn’t contain any
information about the value of (Y0i, Y1i), so the Y0i’s and Y1i’s that we actually observe are a random sample of all the Y0i’s
and Y1i’s.

Therefore:

E[Yi | Di = 1]− E[Yi | Di = 0] = E[Y1i | Di = 1]− E[Y0i | Di = 1] + E[Y0i]− E[Y0i]

= E[Y1i]− E[Y0i]

= ATE
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Other Estimands under Random Assignment

Definition (Quantile Function)
Qθ(Y) is the θ−th quantile of the distribution of Y:

Pr (Y ≤ Qθ(Y)) = θ

Since Y0, Y1 ⊥⊥ D, we can write

Y0 ∼ Y0|D = 0 ∼ Y|D = 0
Y1 ∼ Y1|D = 1 ∼ Y|D = 1

where∼means has the same distribution as. So, treatment effect at any quantile Qθ(Y1)− Qθ(Y0) is identified.

Qθ(Y1 − Y0) is not identified, however. Unlike for expectations, the difference of quantiles is not the same as the quantiles
of the difference.
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Estimating the ATE using difference in means

The identification result tells us that E[Yi | Di = 1]− E[Yi | Di = 0] = ATE. We can estimate these
quantities using the sample analogues:

Ê[Yi | Di = 1] = 1
N1

N∑
i:Di=1

Yi

Ê[Yi | Di = 0] = 1
N0

N∑
i:Di=0

Yi

These are unbiased and consistent estimators for the true population quantities, so the difference
in sample means is an unbiased and consistent estimator for the ATE.
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Estimating the ATE using regression

Recall that we can rewrite the potential outcomes model:

Yi = DiY1i + (1 − Di)Y0i

= Y0i + (Y1i − Y0i)Di

= Y0i + Di(Y1i − Y0i) +
(
(Y0i − Y0)Di ·

[
(Y1i − Yi)− (Y0i − Y0)

])
= Y0 + (Y1 − Y0)Di + {(Y0i − Y0) + Di[(Y1i − Y0i)− (Y1 − Y0)]}

= Ȳ0︸︷︷︸
α

+ τATE︸︷︷︸
β

Di + {(Y0i − Ȳ0) + Di(τi − τATE)}︸ ︷︷ ︸
ϵi

= α+ βDi + ϵi

When will the regression estimator β̂ will be unbiased for the ATE? When E[ϵi | Di] = 0. This means:

1 E[Y0i − Ȳ0 | Di = 0] = 0

2 E[Y0i − Ȳ0 | Di = 1] + E[τi − τATE | Di = 1] = 0

Both are satisfied under random assignment, so regression gives us an unbiased estimate of the ATE.
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1 E[Y0i − Ȳ0 | Di = 0] = 0
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Inference in Randomized Experiments

Sources of variability in our estimated treatment effects
1 Sampling variation induced by the procedure that selects units from a population into our sample
2 Variation induced by a particular realization of the treatment vector D, which in turn means we

don’t observe half of all potential outcomes

So, inference on the Population Average Treatment Effect (PATE) is harder than inference on
Sample Average Treatment Effect (SATE)

Need to account for (1, 2) in the former, only (2) in the latter.
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Variance Estimator for Difference in Means

V [τ ]DiM =
S2
0

N0
+

S2
1

N1
−

S2
01
N

where S0, S1 are sample variances of Y0, Y1 respectively, and S01 is the variance of the unit level
treatment effect. This is not identifiable because of the last term. If the treatment effect is
constant in the population, the last term is zero.

A (conservative) variance estimator is given by

V̂(τ̂DiM) =
(
σ̂2
1

N1
+

σ̂2
0

N0

)
Two-sample t-testwith unequal variances
Linear regression with robust standard errors
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Hypothesis Testing

These variance estimates can be used to construct

A test-statistic for H0 : E [Y1] = E [Y0] ≡ τATE = 0

t = τ̂√
V̂(τ̂)

construct 95% confidence intervals

C0.95(τ) = (τ̂ − 1.96
√
V̂, τ̂ + 1.96

√
V̂, )

Test statistic and CI coverage rate justified asymptotically
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Lady Tasting Tea

Figure 1: R.A. Fisher (left), tea kettle (right)
26



Lady Tasting Tea

Dr. Bristol claims she can tell whether milk or tea has been poured first simply by tasting the cup of
tea. Fisher devises a statistical test for whether her ability to do this is better than random
guessing.

Randomly assign four out of eight cups of tea to have milk poured first.
Ask Bristol to determine which ones had the milk poured first, and sum up the number of
correct choices she made.

Sharp null hypothesis: Bristol’s choice would be exactly the same under any ordering of the tea
cups (e.g., she randomly guessed). Turns out she identified all 4 cups with milk poured first
correctly. What’s the probability of this happening by chance?
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Lady Tasting Tea

There are
(8
4
)
= 70 distinct possible orderings of the tea cups. The number of ways to correctly

identify four out of four milk cups is
(4
4
)
= 1 out of 70 total ways to choose 4 cups out of 8. So the

probability she’d identify all four milk cups correctly by chance is only 1/70. Another way to think
about this is that Bristol’s observed choice perfectly matches only one of the possible orderings of
the cups (the one realized in the actual experiment).

In contrast, there are 16 ways she could have gotten 3 out of 4 milk cups right (
(4
3
)(4

1
)
= 16),

which would put the random guess probability at 16/70 for just one wrong guess!
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Randomization inference

Idea is to test the sharp null hypothesis H0 : Y1i = Y0i, ∀i. Under the null hypothesis, we can
impute the full schedule of potential outcomes.

Di Y0 Y1 τi
1 ? −4 ?
1 ? 5 ?
0 1 ? ?
0 −10 ? ?

This allows us to characterize the sampling distribution of any estimator under the sharp null by
re-estimating the statistic under every possible permutation of the treatment assignment vector.
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Randomization inference: the complete science table

Idea is to test the sharp null hypothesis H0 : Y1i = Y0i ; ∀ i. Under the null hypothesis, we can
impute the full schedule of potential outcomes.

Di Y0 Y1 τi
1 −4 −4 0
1 5 5 0
0 1 1 0
0 −10 −10 0

This allows us to characterize the sampling distribution of any estimator under the sharp null by
re-estimating the statistic under every possible permutation of the treatment assignment vector.

This is called the Randomization Distribution
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Randomization inference: Minimal Example

Di Y0 Y1 τi

1 −4 −4 0
1 5 5 0
0 1 1 0
0 −10 −10 0

Fix N1 = 2. There are
(4
2
)
= 6 possible treatment assignment vectors and corresponding ATE estimates:

Assignment vector τ̂ATE

(1, 1, 0, 0) 5
(1, 0, 1, 0) 1
(1, 0, 0, 1) −10
(0, 1, 1, 0) 10
(0, 1, 0, 1) −1
(0, 0, 1, 1) −5

The actual τ̂ATE we observe is 5. Using the exact distribution of the test statistic under the null, we can compute that in 2
out of 6 possible randomizations we observe a statistic at least this large. So we have a p-value of 0.33.
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Randomization inference

When we generate all possible treatment assignment vectors, randomization inference gives
us the exact p-value for our hypothesis test.
In practice, often we just take a random sample of the treatment assignment vectors since
there are too many to compute all of them.

Simulate different assignment vectors using exactly the same assignment mechanism.

Randomization inference doesn’t rely on any asymptotics or assumptions about distributions.
Can be especially useful in small samples.
Note that the Fisher and Neyman Nulls are different.
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Implementation

R code
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Why test for balance?

Recall that identification assumptions in simple randomized experiments:

1 Yi = Yi(Di) (SUTVA / Treatment Consistency)
2 Di ⊥⊥ {Yi(0), Yi(1)} (Random Assignment / Treatment Exogeneity)

Implication of (2) is that treatment is independent of both potential outcomes. Now imagine that
Yi(0) = f(Xi). For example, wages might be a function of individual characteristics. For random
assignment to hold, we need Xi to be balanced in both treatment and control groups in expectation
: fX|D(X|D = 1) =d fX|D(X|D = 0)

Otherwise, we cannot rule out that the difference in means is generated by different distributions
of Xi in the two groups. In a regression

Yi = α+ τ̂regDi + εi︸︷︷︸
β⊤xi+ηi

Cov [Xi,Di] ̸= 0 =⇒ τ̂reg is biased for τ .
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