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Notes from Previous Pset

What is an identification proof?

Estimator︷ ︸︸ ︷
Diff. in means =

Observed︷ ︸︸ ︷
E[Yi|D = 1]−

Observed︷ ︸︸ ︷
E[Yi|D = 0]

= E[Y1i|D = 1]− E[Y0i|D = 0] (1)
= E[Y1i]− E[Y0i] (2)
= E[Y1i − Y0i]︸ ︷︷ ︸

Estimand

In an identification proof you either start with the thing you can measure in your data and
arrive at the quantity of interest (defined by potential outcomes), or the other way around.
Which assumptions correspond to steps (1) and (2) in the proof? (1) SUTVA, (2) Random
assignment: (Y1i,Y0i)⊥⊥Di.
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Idea of Selection on Observables

Causal inference is all about understanding the treatment assignment mechanism.
Selection on observables says that once we condition on some observable covariates,
treatment assignment was as good as random.
Requires substantive justification – if there’s selection on unobservables (particularly
the potential outcomes), matching won’t help.
Estimation methods include subclassification, matching, propensity score methods,
regression, and hybrid approaches.
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Graphs to visualise conditioning

directed acyclic graphs (DAGs) are a popular (complementary/alternative)
framework for causal inference
especially for observational settings, they stipulate specific ’adjustment sets’ to
condition on to justify selection on observables
’Backdoor criterion’: condition on variables that affect both Y and D
See Morgan and Winship and Cunningham for details
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Selection	on	observables
Propensity	score	methods

Matching

Subclassification

Regression
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Commonalities and Differences

Commonalities among these estimation strategies:

They’re ways of imputing the counterfactual potential outcome for treatment units by
adjusting for covariates.
They all impute this counterfactual by using a weighted average of observed outcomes
for other units.
Matching and subclassification are nonparametric estimators of the counterfactual,
while linear regression is a parametric / semi-parametric estimator.

The main difference is that they use different methods of picking the weights – making
different assumptions about the functional form relating the covariates, treatment, and
outcomes. Review paper from syllabus

9

https://www.mitpressjournals.org/doi/pdfplus/10.1162/003465304323023651


Commonalities and Differences

Commonalities among these estimation strategies:

They’re ways of imputing the counterfactual potential outcome for treatment units by
adjusting for covariates.
They all impute this counterfactual by using a weighted average of observed outcomes
for other units.
Matching and subclassification are nonparametric estimators of the counterfactual,
while linear regression is a parametric / semi-parametric estimator.

The main difference is that they use different methods of picking the weights – making
different assumptions about the functional form relating the covariates, treatment, and
outcomes. Review paper from syllabus

9

https://www.mitpressjournals.org/doi/pdfplus/10.1162/003465304323023651


Roadmap

Pset Review

Review of Selection on Observables

Regression Adjustment

Falsification Tests

Falsification Tests: Placebo outcome with zero effect

Multiple Control Groups

Sensitivity Analysis

Difference-in-differences

10



Regression as a type of propensity weighting (Angrist and Pischke, p.83)

Let’s our estimand for the ATE comes from a regression of the form

E[Yi|Di,Xi] = α + XT
i β + δRDi

where Xi is a vector of covariates and Di is the treatment indicator.

Using our partialling
out formula, we can write δR as

δR =
Cov(D̃i,Yi)

Var(D̃i)
=

E[(Di − E[Di|Xi])Yi]

E[(Di − E[Di|Xi])2]
=

E[(Di − E[Di|Xi])Yi]

E[E[(Di − E[Di|Xi])2|Xi]]

=
E[(Di − E[Di|X])Yi]

E[Var[Di|X]]
=

E[(Di − E[Di|X])Yi]

E[E[Di|Xi](1 − E[Di|Xi])]
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Regression as a type of propensity weighting

Now let’s substitute in the definition of the propensity score function, p(Xi) = E[Di|Xi].

δR =
E[(Di − E[Di|X])Yi]

E[E[Di|Xi](1 − E[Di|Xi])]
=

E[(Di − p(Xi))Yi]

E[p(Xi)(1 − p(Xi))]

We can see that this estimand is equal to the weighted propensity score estimand:

δR = E
[ p(Xi)(1 − p(Xi))

E[p(Xi)(1 − p(Xi))]

( YiDi
p(Xi)

− Yi(1 − Di)

1 − p(Xi)

)]
where p(Xi)(1−p(Xi))

E[p(Xi)(1−p(Xi))]
is the weight for observations with covariates Xi. Compare this to

the unweighted propensity score estimand:

δATE = E
[ YiDi

p(Xi)
− Yi(1 − Di)

1 − p(Xi)

]
When will these two coincide? Constant treatment effects across strata of Xi. Otherwise,
OLS does not estimate ATE/ATT.
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OLS with heterogeneous treatment effects

In this case your estimator is picking your estimand. 13



Hybrid Approaches: AIPW Estimator

τ̂DR =
1
N

n
∑
i=1

(
Di(Yi − µ̂1(Xi))

π̂(Xi)
− (1 − Di)(Yi − µ̂0(Xi))

1 − π̂(Xi)
+ {µ̂1(Xi)− µ̂0(Xi)}

)

=
1
n

n
∑
i=1


Regression︷ ︸︸ ︷
µ̂1(Xi) +

IPW︷ ︸︸ ︷
Di(Yi − µ̂1(Xi))

π̂(Xi)︸ ︷︷ ︸
estimator for E[Yi(1)]

− 1
n

n
∑
i=1

[
µ̂0(Xi) +

(1 − Di)(Yi − µ̂0(Xi))

1 − π̂(Xi)

]
︸ ︷︷ ︸

estimator for E[Yi(0)]

Fit µ̂, π̂ using learner of choice.
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Assessing Selection on Observables

The selection on observables assumption implies that the treatment assignment is
“X-adjustable” and therefore rules out the possibility of hidden bias
While this assumption is not directly testable, we can use a variety of falsification tests
and sensitivity analyses to assess its plausibility

Falsification tests:
Estimating a causal effect that is known to equal zero for a placebo treatment or placebo
outcome
If we find that the placebo effect is not zero, then the selection on observables assumption
is considered less plausible
Can leverage multiple control groups to determine plausibility of selection on observables
assumption

Sensitivity Analysis:
How much imbalance in unobservables do we need to eliminate or sufficiently change the
estimated treatment effect?
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Post-Mortem Atlantic Salmon

At the time the study was presented, between 25-40% of studies on fMRI being published were NOT using the corrected comparisons. After this group won the Ignobel, that number
had dropped to 10%.

Link to study: http://prefrontal.org/files/posters/Bennett-Salmon-2009.pdf 17
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Placebo outcome with zero effect

Imagine we have data on a “placebo” outcome that is known to be unaffected by the
treatment

E.g. lags of the outcome variable that are measured before treatment

For example, assume D is realized at t = 0 and is ignorable conditional on a set of T
lags of the outcome Y1,Y0 ⊥⊥ D|Yt=−1,Yt=−2, ...,Yt=−T,X

Given a stability assumption we should have ignorability conditional on all lags but
one:

Yt=−1 ⊥⊥ D|Yt=−2, ...,Yt=−T,X

If we find a non-zero placebo effect for the first lag, then ignorability conditional on
all lags seems not very credible (esp. with many lags).

18



Estimates on Experimental JTPA Data

Earnings75 Outcome
mean se t-stat

Simple Difference 0.27 0.30 0.9
OLS (parallel) 0.15 0.22 0.7
OLS (separate) 0.12 0.22 0.6
Propensity Score Weighting 0.15 0.30 0.5
Propensity Score Blocking 0.10 0.03 3.4
Propensity Score Regression 0.16 0.30 0.5
Propensity Score Matching 0.23 0.37 0.6
Matching 0.14 0.28 0.50
Weighting and Regression 0.15 0.21 0.7
Blocking and Regression 0.09 0.02 3.8
Matching and Regression 0.06 0.28 0.2
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Estimates on CPS Data

Earnings75 Outcome
mean se t-stat

Simple Difference -12 0.68 -18
OLS (parallel) -1.2 0.36 -3
OLS (separate) -1.1 0.36 -3
Propensity Score Weighting -1.2 0.26 -5
Propensity Score Blocking -1.4 0.32 -9
Propensity Score Regression -1.7 0.79 -2
Propensity Score Matching -1.3 0.46 -3
Matching -1.3 0.41 -3
Weighting and Regression -1.2 0.24 -5
Blocking and Regression -1.3 0.25 -5
Matching and Regression -1.3 0.42 -3
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Placebo outcome with zero effect

Similar placebo tests have been successfully used for outcomes that are known to be
unaffected by the treatment

Several studies support Becker and Murphy’s (1988) theory of rational addiction for tobacco and alcohol
consumption. Auld and Grootendorst (2004, JHE) replicate the exact same models with data for milk, eggs, oranges,
and apples.

Krueger (1993) reports that the ability to use computers causes a 15-20% increase in earnings via a regression
analysis of cross-sectional data. Using a similar design, Dinardo and Pischke (1997) report that the use of
calculators, telephones, pens or pencils, and chairs while on the job “cause” a nearly equivalent increase in wages.

Enikolopov, Petrova, and Zhuravskaya (2009, AER) estimate electoral effect of independent media in 1999 Russian
parliamentary election comparing areas with and without access to only independent TV channel (“NTV”). Access
to NTV lowered government vote in 1999, but not in 1995 and 2003, two elections with no significant differences in
political coverage.

Several studies have found significant network effects on outcomes such as obesity, smoking, alcohol use, and
happiness. Cohen-Cole and Fletcher (2008, BMJ) use similar models and data and find similar network effects for
acne, height, and headaches.
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Effect on Naturalization Rate
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Effect on Facilitated Naturalization Rate
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Using Multiple Control Groups

Imagine three groups:

D =


1 Treatment Group
0 Control Group A
−1 Control Group B

E.g. treated, control participants, and eligible non-participants

Assume Y1,Y0 ⊥⊥ D|X,U where U is unobserved

If the two control groups are expected to vary on U, we can bracket the treatment
effect by comparing treated vs. control A and treated vs. control B.
If the effect estimates are similar, we have some evidence that U might be ignorable
and therefore adjusting for X is sufficient since Y1,Y0 ⊥⊥ D|X holds
Can also compare control A to control B and we expect a zero effect. If not, at least
one control group is invalid.
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Formal Sensitivity Tests

How imbalanced and important does an unobserved confounder U have to be to
eliminate or sufficiently change the estimated treatment effect?

Parametric setup in Imbens (2003, AER):
Assume Y1,Y0 ⊥⊥ D|X,U where U ∼ Bernoulli(π = .5) so P(U = 1) = P(U = 0) = .5 and
U and X are independent.

The propensity score is logistic P(D = 1|X,U) =
exp(Xθ+γU)

1+exp(Xθ+γU)
so γ indicates strength of

relationship between U and D|X
Y is conditionally normal with constant treatment effect α so
Y|X,U ∼ N(αD + X + δU, σ2) and δ indicates strength of relationship between U and Y|X
Choose alternative values for (γ, δ) and calculate the MLE for α̂(γ, δ) by maximizing the
Likelihood function ℓ(α, , σ2, θ,γ, δ) for fixed (γ, δ). If γ = δ = 0 we obtain estimate
without any hidden bias.
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Formal Sensitivity Tests

Choose (γ, δ) and calculate the MLE for α̂(γ, δ) by maximizing the Likelihood
function ℓ(α, , σ2, θ,γ, δ) for fixed (γ, δ).

γ and δ are difficult to interpret, we instead use:

R2
Y,par(δ): % residual variation in outcome explained by unobserved covariate U (above

variation explained by X)

R2
D,par(γ): % residual variation in treatment assignment explained by unobserved

covariate U (above variation explained by X)

Try a range of values. Magnitudes should be compared to explanatory power of X for Y
and D respectively.

Example: JTPA: Experimental data and PSID controls
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Results in Experimental Data

Imbens (2003)
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Results with PSID Controls

Imbens (2003) 29



Effect of Abduction on Education

  37

Figure 5: Impact of relaxing the assumption of unconfoundedness 
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Notes: The figure presents the results of the sensitivity analysis following Imbens (2003). Each + represents a pre-war covariate, plotted according to its additional 

explanatory power for treatment assignment (on the horizontal axis) and its explanatory power for the outcome (vertical axis), which in this case is educational at-

tainment. In essence each axis measures the increase (or decrease) in the R2 statistic from adding that covariate to the regression in question. The downward slop-

ing curve represents the locus of points at which any independent binomial covariate (observed or unobserved) would have sufficient association with both treat-

ment and educational outcomes to reduce the ATE on education by half. 

Blattman and Annan (2010, ReStat)
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Alternate Approaches; Active area of research

http://arelbundock.com/posts/robustness_values/
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DiD: Two Groups and Two Periods

Estimand (ATT)
τATT = E[Y1(1)− Y0(1)|D = 1]

Post-Period (T=1) Pre-Period (T=0)

Treated D=1 E[Y1(1)|D = 1] E[Y0(0)|D = 1]

Control D=0 E[Y0(1)|D = 0] E[Y0(0)|D = 0]

Problem
Missing potential outcome: E[Y0(1)|D = 1], ie. what is the average post-period outcome for the
treated in the absence of the treatment?
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Identification with Difference-in-Differences

Identification Assumption (parallel trends)
E[Y0(1)− Y0(0)|D = 1] = E[Y0(1)− Y0(0)|D = 0]

Identification Result
Given parallel trends the ATT is identified as:

E[Y1(1)− Y0(1)|D = 1] =
{

E[Y(1)|D = 1]− E[Y(1)|D = 0]
}

−
{

E[Y(0)|D = 1]− E[Y(0)|D = 0]
}

Implicit functional form assumption: Parallel trends in levels != Parallel trends in logs. (cf
Jensen’s Inequality)
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Identification with Difference-in-Differences

Start with the estimand we want:

τATT = E[Y1(1)|D = 1]− E[Y0(1)|D = 1]

What is the missing data here?

The missing data is E[Y0(1)|D = 1] (the control
counterfactual in the post-period for the treated group). To obtain an estimate of this, we
assume parallel trends:

E[Y0(1)− Y0(0)|D = 1] = E[Y0(1)− Y0(0)|D = 0]
=⇒ E[Y0(1)|D = 1] = E[Y0(0)|D = 1] + E[Y0(1)− Y0(0)|D = 0]

Substitute the assumption in for the missing data and rearrange:
τATT = E[Y1(1)|D = 1]− E[Y0(1)|D = 1]

= E[Y1(1)|D = 1]− (E[Y0(0)|D = 1] + E[Y0(1)|D = 0]− E[Y0(0)|D = 0])

= (E[Y(1)|D = 1]− E[Y(0)|D = 1])− (E[Y(1)|D = 0]− E[Y(0)|D = 0])

This is just the difference of pre-post differences between the treated and control groups.
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Difference-in-Differences

Estimand (Sample Means: Panel){
1

N1
∑

Di=1
Yi(1)−

1
N0

∑
Di=0

Yi(1)
}
−

{
1

N1
∑

Di=1
Yi(0)−

1
N0

∑
Di=0

Yi(0)
}

=

{
1

N1
∑

Di=1
{Yi(1)− Yi(0)} −

1
N0

∑
Di=0

{Yi(1)− Yi(0)}
}
,

where N1 and N0 are the number of treated and control units respectively.
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Regression Estimator

This implies a fully saturated regression model with a two-way interaction:

E[Yigt|g, t] = β0 + β1Treatedg + β2Postt + β3(Treatedg × Postt)

The subscripts are conventions to indicate the level of variation (i = Individual, g = Group,
t = Time).
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Difference-in-Differences estimator

This implies a fully saturated regression model with a two-way interaction:

E[Yigt|g, t] = β0 + β1Treatedg + β2Postt + β3(Treatedg × Postt)

The subscripts are conventions to indicate the level of variation (g = Group, t = Time). This
translates to our two-by-two table as follows:

Post-Period (T=1) Pre-Period (T=0) Pre/Post Diff.

Treated D=1 β0 + β1 + β2 + β3 β0 + β1 β2 + β3

Control D=0 β0 + β2 β0 β2

Treated/Control Diff. β1 + β3 β1 β3

β3 is the diff-in-diff estimate!
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Inference

Standard advice: Cluster at least the unit level. More on this later.
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