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Regression as a type of propensity weighting (Angrist and Pischke, p.83)

Let’s our estimand for the ATE comes from a regression of the form
E[Y;|Di, Xi] = a + X[ B+ 6rD;

where X is a vector of covariates and D; is the treatment indicator.
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Regression as a type of propensity weighting
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Regression as a type of propensity weighting

Now let’s substitute in the definition of the propensity score function, p(X;) = E[D;|X;].
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Regression as a type of propensity weighting

Now let’s substitute in the definition of the propensity score function, p(X;) = E[D;|X;].

Sp = E[(D: —E[D;i|X])Y:] _ E[(Di —p(X,))Yi]
E[E[D;|X:](1 — E[D;|Xz])]  E[p(X;)(1 — p(X:))]

We can see that this estimand is equal to the weighted propensity score estimand:

p(Xi)(1 = p(Xi)) (szDz‘ Yq:(lva:))}

E[p(X;)(1 — p(X))] \p(X;) 1-p(X;)
p(X:)(1—p(Xi))

where X T=p (] is the weight for observations with covariates X;. Compare this to the
unweighted propensity score estimand:

5R:E[

Y;:D; Yi(1-D;)
p(X;)  1-p(X;) }

When will these two coincide? Constant treatment effects across strata of X;. Otherwise, OLS
does not estimate ATE/ATT.

dATE = ]E{




OLS with heterogeneous treatment effects

Always has been

- L

| Il weird weighted averages?

In this case your estimator is picking your estimand. 6



Imputation estimators

TReg = Jbz:(ﬂl(Xi) — f10(X:))

. D;Y; (1- DyY;
Tiew = 57D <%(Xi) 1—7(X;) )

i=1
i Fegsson IPW
egression m—ANa—0un—
R L DY — (X)) |1 2 (1 = Dy)(Yi — (X))
== —_— | - = X
TAIPW = Z ,u1 7(X,) n & o(Xi) + 1—7(X;)
estimator for E[Y; (1)] estimator for E[Y; (0)]

Fit 1z, 7w using learner of choice.



Difference-in-differences



DiD: Two Groups and Two Periods

Denote potential outcomes Y{4)(t) ford € {0,1}, ¢ € {0,1}

Estimand (ATT in the 2nd period) J

Tarr = E[Y1(1) = Yo(1)|D = 1]

Post-Period (T=1) | Pre-Period (T=0)

Treated D=1 | E[Yi(1)[D =1] | E[Y5(0)|D = 1]

Control D=0 | E[Yo(1)|D =0] | E[Ys(0)|D = 0]

Missing potential outcome: E[Y,(1)|D = 1], ie. what is the average post-period outcome for the

Problem
treated in the absence of the treatment? J




Identification with Difference-in-Differences

Identification Assumption (parallel trends) J

E[Yo(1) - Yo(0)|D = 1] = E[Yo(1) - Yo(0)|D = 0]

Identification Result

Given parallel trends the ATT is identified as:

EYi(1) -Yo(1)|D=1] = {E[Y(1)|D =1]-E[Y(1)|D = 0]}
{E 0D =1] - [Y(0)|D=0]}

Implicit functional form assumption: Parallel trends in levels # Parallel trends in logs (growth
rates). (cf Jensen’s Inequality)

10



Non-parametric Identification with Difference-in-Differences

Start with the estimand we want:
Tarr = E[Y1(1)|D = 1] — E[Yo(1)|D = 1]
What is the missing data here?

11
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Non-parametric Identi i ith Difference-in-Differences

Start with the estimand we want:

Tarr = EY1(1)|D = 1] - E[Yo(1)|D =1]
What is the missing data here? The missing data is E[Yp(1)|D = 1] (the control counterfactual in the post-period for the
treated group). To obtain an estimate of this, we assume parallel trends:

E[Yo(1) = Yo(0)|D = 1] = E[Yo(1) — Yo(0)| D = 0]
= E[Yo(1)|D = 1] = E[Yo(0)|D = 1] + E[Yo(1) — Yo(0)| D = 0]

Levelatt = 0 Trend for control group

Substitute the assumption in for the missing data and rearrange:

Tarr = E[Y1(1)|D = 1] — E[Ys(1)|D = 1]
= E[Yi(1)|D = 1] — E[Y5(0)|D = 1] + E[Ys(1)|D = 0] — E[Yo(0)|D = 0]
— (BY(1)|D = 1] - E[Y(0)|D = 1]) - (E[Y(1)|D = 0] — E[¥(0)|D = 0])

Before after for treated Before after for control

This is just the difference of pre-post differences between the treated and control groups. 1



Difference-in-Differences

{Mw Ly } { PORTURR S Tt }

D=1l Di=0

{ 3 ) mo>}—§02{m<1)—m0)}},
D;=0

D;=1

where N7 and Ny are the number of treated and control units respectively.




Regression Estimator

This implies a fully saturated regression model with a two-way interaction:

EYig|g,t] = Bo + p1Treated, + S2Post, + S3(Treated, x Post;)

The subscripts are conventions to indicate the level of variation (: = Individual, g = Group, ¢ = Time).

13



Difference-in-Differences estimator

This implies a fully saturated regression model with a two-way interaction:
EYig|g,t] = Bo + p1Treated, + S2Post, + S3(Treated, x Post;)

The subscripts are conventions to indicate the level of variation (¢ = Group, ¢ = Time). This
translates to our two-by-two table as follows:

Post-Period (T=1) Pre-Period (T=0) | Pre/Post Diff.
Treated D=1 Bo+ B1+ B2+ B3 Bo + B1 B2 + B3
Control D=0 Bo + B2 Bo B2
Treated/Control Diff. B1 + B3 B1 Bs

B3 is the diff-in-diff estimate.

14



HOW MUCH SHOULD WE TRUST
DIFFERENCES-IN-DIFFERENCES ESTIMATES?*

MARIANNE BERTRAND
EstHER DUFLO
SENDHIL MULLAINATHAN

Standard advice: Cluster at least the unit level. More on this later.

15



Lalonde Experimental Sample: 2 time periods

Lalonde: Experimental
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Lalonde Experimental Sample: 3 time periods - Ashenfelter Dip
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Lalonde PSID: 2 time periods

Lalonde: Observational
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General Exam Advice

20



@ Identify the relevant counterfactual

@ What assumptions can we use to impute that counterfactual? Are those assumptions
plausible?

@ When writing identification results:
e Start with observables (i.e., E[Y; | D; = 1], not E[Y1; | D; = 1])
@ Manipulate the expressions to get to causal estimands
o Explicitly note whenever you invoke an assumption. E.g., don’t simply write
E[Yii | Xi, D; = 1] = E[Y1; | X;] without explaining what assumption justifies it.

21



@ Identify the relevant counterfactual

@ What assumptions can we use to impute that counterfactual? Are those assumptions
plausible?

@ When writing identification results:

e Start with observables (i.e., E[Y; | D; = 1], not E[Y1; | D; = 1])

@ Manipulate the expressions to get to causal estimands

o Explicitly note whenever you invoke an assumption. E.g., don’t simply write

E[Yii | Xi, D; = 1] = E[Y1; | X;] without explaining what assumption justifies it.

@ When showing properties of estimators:

o First write down an expression for the estimator

o Then apply expectation, variance, etc.

o Get to some population quantity, then your identification results can kick in

21



@ Power: intuition and calculation
@ SO0 assumptions
@ OLS estimator

@ Sensitivity analysis

22



Generalising to multiple time periods: Fixed Effects

23



Fixed Effects Regressions

@ We often have access to panel data, wherein each individual i € {1,..., N} is observed for
T > 2time periods
@ Stipulate following potential outcomes y;@
o E[Y|ovi,t, Dit] = ai + At
@ «; is a unit fixed-effect: each individual has an intercept «; - absorbs time-invariant unit-specific
confounders

@ )\ is a time fixed-effect: each time period has an intercept \; - absorbs unit-invariant time-specific
confounders

@ Suppose D, is as-good as randomly assigned conditional on «;
e Stipulate constant, additive effect of treatment. Then, E [Y;i| = E [Y;?] + 7

@ This motivates the popular two-way fixed-effects regression

Yie =7D; + oy + v + i

24



@ With large datasets, estimating individual «;s can involve inverting a very large matrix

o With short panels, the estimates of «;s are inconsistent anyway := incidental parameters problem
(Neyman-Scott)

@ Instead, we can use Frisch-Waugh-Lovell (again!) and partial out FEs

@ Calculate individual averages of the 2wFE equation

Yi=a;+A+7D; +¢

25



@ With large datasets, estimating individual «;s can involve inverting a very large matrix

o With short panels, the estimates of «;s are inconsistent anyway := incidental parameters problem
(Neyman-Scott)

@ Instead, we can use Frisch-Waugh-Lovell (again!) and partial out FEs

@ Calculate individual averages of the 2wFE equation

Yi=a;+A+7D; +¢

@ Subtract this from the FE equation

Y—it_?i:)\t_X+T(Dit_ﬁi)+(€it_€)

25



Staggered Adoption, Treatment Reversals, and other complications

@ Recall that we stipulated a constant, additive treatment effect and treatment timing
as-good-as-random (conditional on FEs)

@ Last 5 years of methods literature on panel data studies what happens when we relax these
parametric assumptions

@ Weird weights redux: 2WFE no longer consistent for ATT

What’s Trending in Difference-in-Differences?
. . . Two-Way Fixed Effects and Differences-in-Differences with
A Synthesis of the Recent Econometrics Literature ) )
Heterogeneous Treatment Effects: A Survey™®

Jonathan Roth™  Pedro H. C. Sant’Annal  Alyssa Bilinski’  John Poc®
Clément de Chaisemartin’  Xavier D'Haultfoeuille*

January 3, 2022

@ review paper 1

@ review paper 2

26


https://jonathandroth.github.io/assets/files/DiD_Review_Paper.pdf
https://arxiv.org/pdf/2112.04565.pdf

Synthetic Control Methods

27



Synthetic Control: Motivation

@ \We're sometimes interested in estimating a treatment effect where only a single unit is
treated.

@ Inthese cases, it’s really important to estimate a good counterfactual for that particular unit -
not just on average as in the matching or traditional diff-in-diff cases.

@ The synthetic control method introduced by Abadie, Diamond, and Hainmueller (2010) is
useful when there are many pre-treatment outcome observations, and perhaps relatively few
untreated units.

@ The intuition is to create a “synthetic control” that is a weighted average of control units. We
pick the weights so that the pre-treatment outcome of the synthetic control looks similar to
the pre-treatment outcomes of the treated unit.

28



Smoking Data

ADH (2010) study the effect on smoking rates of an increase in the tobacco tax in California in
1988.

load("synth.rdata")
head(synth.long[c(1:3, 1206:1209), c("statename", "year", "smoking")])

pisid statename year smoking
i1 Alabama 1970  89.8
#t 2 Arkansas 1970  100.3
i3 Colorado 1970  124.8

i 1206 West Virginia 2000 107.9
it 1207 Wisconsin 2000 80.1
it 1208 Wyoming 2008  90.5

29



Smoking Data

Smoking rates, by state
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Potential Strategies

The problem is to impute what California’s level of smoking would have been in the post-treatment
period if Proposition 99 hadn’t been passed.

Potential strategies:
@ Matching on pre-treatment covariates (possibly including lagged outcomes).
@ Difference-in-differences.

@ Regression.
@ Synthetic control.

31



Matching on Pre-Treatment Outcomes

genmatch = GenMatch(synth$statename = "California",
synth[, paste8("smoking_", 1970:1988)])
matched.unit = genmatch$matches[,2]
match.statename = synth[matched.unit, statename]
out = Match(Y = synth$smoking_1996, Tr = synth$statename = "California",
X = synth[, pasted("smoking_", 1970:1988), with=F],
Weight.matrix = genmatch, estimand = "ATT")

32



Matching on Pre-Treatment Outcomes

One-to—One Matching on Pre—Treatment Outcomes
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Difference-in-Differences

synth.long = synth.long #>%

mutate(treatment = statename = 'California' & year = 1989)
did = Im(smoking ~ treatment + statename + factor(year), synth.long)
calif = synth.long[synth.long$statename = 'California', ]
calif$treatment = F
counterfactuals = predict(did, newdata = calif)

34



Difference-in-Differences

Difference—in—-Differences Model
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Synthetic Control Method

Synthetic control setup: suppose unit i = 0 is treated after time 7y, and units ¢ = 1,... ,n are
never treated. We observe outcomes for time periods ¢ = 1 < T, < T'. In potential outcomes
notation, we observe:

Yo’t(O) fort = 1,...,7p—1
Yo(1) fort=Tp,...,T
Y;.(0) fort=1,....,Tandi=1,....,n

We want to estimate Y5 (1) — Y+ (0) for time periods ¢t > Ty, but we can’t observe Y, ;(0) after
To.

36



What We Observe

The matrix we observe is:

obs obs
Yobs _ Ytre?at,pre Ycontrol.pre — Ytreat,pre (0) Ycontrol,pre (0)
YObS S-ﬂjbS Ytreat,post(]-) Ycontrol,post(o)

treat,post control,post

37



What We Observe

The matrix we observe is:

obs obs
Yobs _ Ytreatpre Ycontrol.pre _ Ytreat,pre (0) Ycontrol,pre (0)
= b b =
YO 5 Yo s Ytreat,post(]-) Ycontrol,post(o)

treat,post control,post

To estimate the ATT we need Y¢,cqr post (0). We only observe:

Y(O) = Yt’r‘eat,p're (O) YCOnt’I“Ol,p're (0)
i Ycont’rol,post (0)
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hetic Control Method

The synthetic control estimator imputes Y5 +(0) as a weighted average of the observed outcomes for the
control units (plus possibly an intercept shift):

n
?o,z(o) =pu+ Zini,t
i=1

for some weight vector w = (w1, . .., wn) and intercept . The parameters (i, w) define the “synthetic
control” for the treated unit.
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tic Control Method

The synthetic control estimator imputes Y5 +(0) as a weighted average of the observed outcomes for the
control units (plus possibly an intercept shift):

Yo.:(0) = p + Zwi)/i,f,

for some weight vector w = (w1, . .., wn) and intercept . The parameters (i, w) define the “synthetic
control” for the treated unit.

The parameters are typically picked by minimizing the squared distance between the synthetic control’s
pre-treatment outcomes and the treatment unit’s pret-treatment outcomes:

My=iL

2
w" = argmin Z <Y0,—,u sz 1f>

(yw1,500050n) t=1

The natural method would be to estimate (u, w) using OLS, but if n > Ty — 1 it requires additional
constraints (e.g., weights summing to 1 or regularization).
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Synthetic Control Method: Estimation Using glmnet

library(glmnet)

control.pre = synth[synth$state=3, pasteB("smoking_",1970:1988)] %>%
as.matrix #>% t

control.full = synth[synth$states3, paste@d("smoking.",1970:2000)] %>
as.matrix #>% t

treat.pre = synth[synth$state=3, pasted("smoking_",1970:1988)] *>¥
as.matrix #>4 t

weightsout = cv.glmnet(x = control.pre, y = treat.pre)
predictions = predict(weightsout, newx = control.full, s = "lambda.min")
calif$scm.pred = as.numeric(predictions)
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hetic Control Method: Results

Synthetic Control Method
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Synthetic Control Method: Uncertainty

How to assess uncertainty with synthetic control methods? There’s only one treated unit so
asymptotics are not helpful. Instead, ADH suggest a procedure like Bertrand, Duflo, and
Mullainathan’s placebo laws to assess what the null distribution of the SCM estimator looks like.
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