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Regression as a type of propensity weighting (Angrist and Pischke, p.83)

Let’s our estimand for the ATE comes from a regression of the form

E[Yi|Di, Xi] = α+XT
i β + δRDi

whereXi is a vector of covariates andDi is the treatment indicator.

Using our partialling out
formula, we can write δR as

δR =
Cov(D̃i, Yi)

V ar(D̃i)
=

E[(Di − E[Di|Xi])Yi]

E[(Di − E[Di|Xi])2]
=

E[(Di − E[Di|Xi])Yi]

E[E[(Di − E[Di|Xi])2|Xi]]

=
E[(Di − E[Di|X])Yi]

E[V ar[Di|X]]
=

E[(Di − E[Di|X])Yi]

E[E[Di|Xi](1− E[Di|Xi])]
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Regression as a type of propensity weighting

Now let’s substitute in the definition of the propensity score function, p(Xi) = E[Di|Xi].

δR =
E[(Di − E[Di|X])Yi]

E[E[Di|Xi](1− E[Di|Xi])]
=

E[(Di − p(Xi))Yi]

E[p(Xi)(1− p(Xi))]

We can see that this estimand is equal to the weighted propensity score estimand:

δR = E
[ p(Xi)(1− p(Xi))

E[p(Xi)(1− p(Xi))]

( YiDi

p(Xi)
− Yi(1−Di)

1− p(Xi)

)]
where p(Xi)(1−p(Xi))

E[p(Xi)(1−p(Xi))]
is the weight for observations with covariatesXi. Compare this to the

unweighted propensity score estimand:

δATE = E
[ YiDi

p(Xi)
− Yi(1−Di)

1− p(Xi)

]
When will these two coincide? Constant treatment effects across strata ofXi. Otherwise, OLS
does not estimate ATE/ATT.
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OLS with heterogeneous treatment effects

In this case your estimator is picking your estimand. 6



Imputation estimators

τ̂Reg =
1

N

n∑
i=1

(µ̂1(Xi)− µ̂0(Xi))

τ̂IPW =
1

N

n∑
i=1

(
DiYi

π̂(Xi)

(1−Di)Yi

1− π̂(Xi)

)

τ̂AIPW =
1

n

n∑
i=1


Regression︷ ︸︸ ︷
µ̂1(Xi) +

IPW︷ ︸︸ ︷
Di(Yi − µ̂1(Xi))

π̂(Xi)︸ ︷︷ ︸
estimator for E[Yi(1)]

− 1

n

n∑
i=1

[
µ̂0(Xi) +

(1−Di)(Yi − µ̂0(Xi))

1− π̂(Xi)

]
︸ ︷︷ ︸

estimator for E[Yi(0)]

Fit µ̂, π̂ using learner of choice.
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DiD: Two Groups and Two Periods

Denote potential outcomes Y(d)(t) for d ∈ {0, 1}, t ∈ {0, 1}

Estimand (ATT in the 2nd period)
τATT = E[Y1(1)− Y0(1)|D = 1]

Post-Period (T=1) Pre-Period (T=0)

Treated D=1 E[Y1(1)|D = 1] E[Y0(0)|D = 1]

Control D=0 E[Y0(1)|D = 0] E[Y0(0)|D = 0]

Problem
Missing potential outcome: E[Y0(1)|D = 1], ie. what is the average post-period outcome for the
treated in the absence of the treatment?

9



Identification with Difference-in-Differences

Identification Assumption (parallel trends)
E[Y0(1)− Y0(0)|D = 1] = E[Y0(1)− Y0(0)|D = 0]

Identification Result
Given parallel trends the ATT is identified as:

E[Y1(1)− Y0(1)|D = 1] =
{
E[Y (1)|D = 1]− E[Y (1)|D = 0]

}
−

{
E[Y (0)|D = 1]− E[Y (0)|D = 0]

}
Implicit functional form assumption: Parallel trends in levels ̸= Parallel trends in logs (growth
rates). (cf Jensen’s Inequality)

10



Non-parametric Identification with Difference-in-Differences

Start with the estimand we want:
τATT = E[Y1(1)|D = 1]− E[Y0(1)|D = 1]

What is the missing data here?

The missing data isE[Y0(1)|D = 1] (the control counterfactual in the post-period for the
treated group). To obtain an estimate of this, we assume parallel trends:

E[Y0(1)− Y0(0)|D = 1] = E[Y0(1)− Y0(0)|D = 0]

=⇒ E[Y0(1)|D = 1] = E[Y0(0)|D = 1]︸ ︷︷ ︸
Level at t = 0

+E[Y0(1)− Y0(0)|D = 0]︸ ︷︷ ︸
Trend for control group

Substitute the assumption in for the missing data and rearrange:

τATT = E[Y1(1)|D = 1]− E[Y0(1)|D = 1]

= E[Y1(1)|D = 1]− E[Y0(0)|D = 1] + E[Y0(1)|D = 0]− E[Y0(0)|D = 0]

= (E[Y (1)|D = 1]− E[Y (0)|D = 1])︸ ︷︷ ︸
Before after for treated

− (E[Y (1)|D = 0]− E[Y (0)|D = 0])︸ ︷︷ ︸
Before after for control

This is just the difference of pre-post differences between the treated and control groups.

11
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Difference-in-Differences

Estimand (Sample Means: Panel) 1

N1

∑
Di=1

Yi(1)−
1

N0

∑
Di=0

Yi(1)

−

 1

N1

∑
Di=1

Yi(0)−
1

N0

∑
Di=0

Yi(0)


=

 1

N1

∑
Di=1

{Yi(1)− Yi(0)} −
1

N0

∑
Di=0

{Yi(1)− Yi(0)}

 ,

whereN1 andN0 are the number of treated and control units respectively.
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Regression Estimator

This implies a fully saturated regression model with a two-way interaction:

E[Yigt|g, t] = β0 + β1Treatedg + β2Postt + β3(Treatedg × Postt)

The subscripts are conventions to indicate the level of variation (i = Individual, g = Group, t = Time).

13



Difference-in-Differences estimator

This implies a fully saturated regression model with a two-way interaction:

E[Yigt|g, t] = β0 + β1Treatedg + β2Postt + β3(Treatedg × Postt)

The subscripts are conventions to indicate the level of variation (g = Group, t = Time). This
translates to our two-by-two table as follows:

Post-Period (T=1) Pre-Period (T=0) Pre/Post Diff.

Treated D=1 β0 + β1 + β2 + β3 β0 + β1 β2 + β3

Control D=0 β0 + β2 β0 β2

Treated/Control Diff. β1 + β3 β1 β3

β3 is the diff-in-diff estimate.

14



Inference

Standard advice: Cluster at least the unit level. More on this later.
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Lalonde Experimental Sample: 2 time periods
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Lalonde Experimental Sample: 3 time periods - Ashenfelter Dip
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Lalonde PSID: 2 time periods
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Lalonde PSID: 3 time periods
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Identify the relevant counterfactual
What assumptions can we use to impute that counterfactual? Are those assumptions
plausible?
When writing identification results:

Start with observables (i.e.,E[Yi | Di = 1], notE[Y1i | Di = 1])
Manipulate the expressions to get to causal estimands
Explicitly note whenever you invoke an assumption. E.g., don’t simply write
E[Y1i | Xi, Di = 1] = E[Y1i | Xi] without explaining what assumption justifies it.

When showing properties of estimators:
First write down an expression for the estimator
Then apply expectation, variance, etc.
Get to some population quantity, then your identification results can kick in
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Review Topics

Power: intuition and calculation
SOO assumptions
OLS estimator
Sensitivity analysis

22
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Fixed Effects Regressions

We often have access to panel data, wherein each individual i ∈ {1, . . . , N} is observed for
T ≥ 2 time periods
Stipulate following potential outcomes Y (d)

it

E
[
Y 0
it|αi, t,Dit

]
= αi + λt

αi is a unit fixed-effect: each individual has an intercept αi - absorbs time-invariant unit-specific
confounders
λt is a time fixed-effect: each time period has an intercept λt - absorbs unit-invariant time-specific
confounders

SupposeDit is as-good as randomly assigned conditional on αi

Stipulate constant, additive effect of treatment. Then, E
[
Y 1
it

]
= E

[
Y 0
it

]
+ τ

This motivates the popular two-way fixed-effects regression

Yit = τDi + αi + γt + εit

24



Within Estimator

With large datasets, estimating individual αis can involve inverting a very large matrix
With short panels, the estimates of αis are inconsistent anyway := incidental parameters problem
(Neyman-Scott)

Instead, we can use Frisch-Waugh-Lovell (again!) and partial out FEs
Calculate individual averages of the 2wFE equation

Y i = αi + λ+ τDi + ε

Subtract this from the FE equation

Yit − Y i = λt − λ+ τ(Dit −Di) + (εit − ε)
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Staggered Adoption, Treatment Reversals, and other complications

Recall that we stipulated a constant, additive treatment effect and treatment timing
as-good-as-random (conditional on FEs)
Last 5 years of methods literature on panel data studies what happens when we relax these
parametric assumptions
Weird weights redux: 2WFE no longer consistent for ATT

review paper 1
review paper 2

26
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Synthetic Control: Motivation

We’re sometimes interested in estimating a treatment effect where only a single unit is
treated.
In these cases, it’s really important to estimate a good counterfactual for that particular unit –
not just on average as in the matching or traditional diff-in-diff cases.
The synthetic control method introduced by Abadie, Diamond, and Hainmueller (2010) is
useful when there are many pre-treatment outcome observations, and perhaps relatively few
untreated units.
The intuition is to create a “synthetic control” that is a weighted average of control units. We
pick the weights so that the pre-treatment outcome of the synthetic control looks similar to
the pre-treatment outcomes of the treated unit.

28



Smoking Data

ADH (2010) study the effect on smoking rates of an increase in the tobacco tax in California in
1988.

load("synth.rdata")
head(synth.long[c(1:3, 1206:1209), c("statename", "year", "smoking")])

## statename year smoking
## 1 Alabama 1970 89.8
## 2 Arkansas 1970 100.3
## 3 Colorado 1970 124.8
## 1206 West Virginia 2000 107.9
## 1207 Wisconsin 2000 80.1
## 1208 Wyoming 2000 90.5

29



Smoking Data
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Potential Strategies

The problem is to impute what California’s level of smoking would have been in the post-treatment
period if Proposition 99 hadn’t been passed.

Potential strategies:

Matching on pre-treatment covariates (possibly including lagged outcomes).
Difference-in-differences.
Regression.
Synthetic control.

31



Matching on Pre-Treatment Outcomes

genmatch = GenMatch(synth$statename ఋఌ "California",
synth[, paste0("smoking_", 1970:1988)])

matched.unit = genmatch$matches[,2]
match.statename = synth[matched.unit, statename]
out = Match(Y = synth$smoking_1996, Tr = synth$statename ఋఌ "California",

X = synth[, paste0("smoking_", 1970:1988), with=F],
Weight.matrix = genmatch, estimand = "ATT")
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Matching on Pre-Treatment Outcomes
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Difference-in-Differences

synth.long = synth.long %>%
mutate(treatment = statename ఋఌ 'California' & year ఘగ 1989)

did = lm(smoking ~ treatment + statename + factor(year), synth.long)
calif = synth.long[synth.long$statename ఋఌ 'California', ]
calif$treatment = F
counterfactuals = predict(did, newdata = calif)
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Difference-in-Differences

40

60

80

100

120

1970 1975 1980 1985 1990 1995 2000

Year

P
ac

ks
 p

er
 c

ap
ita

Observed outcome for California

Predicted value without treatment

Difference−in−Differences Model

35



Synthetic Control Method

Synthetic control setup: suppose unit i = 0 is treated after time T0, and units i = 1, . . . , n are
never treated. We observe outcomes for time periods t = 1 < T0 ≤ T . In potential outcomes
notation, we observe:

Y0,t(0) for t = 1, . . . , T0 − 1

Y0,t(1) for t = T0, . . . , T

Yi,t(0) for t = 1, . . . , T and i = 1, . . . , n

We want to estimate Y0,t(1)− Y0,t(0) for time periods t ≥ T0, but we can’t observe Y0,t(0) after
T0.
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What We Observe

The matrix we observe is:

Yobs =

(
Yobs

treat,pre Yobs
control,pre

Yobs
treat,post Yobs

control,post

)
=

(
Ytreat,pre(0) Ycontrol,pre(0)

Ytreat,post(1) Ycontrol,post(0)

)

To estimate the ATT we needYtreat,post(0). We only observe:

Y(0) =

(
Ytreat,pre(0) Ycontrol,pre(0)

? Ycontrol,post(0)

)
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Synthetic Control Method

The synthetic control estimator imputes Y0,t(0) as a weighted average of the observed outcomes for the
control units (plus possibly an intercept shift):

Ŷ0,t(0) = µ+

n∑
i=1

ωiYi,t

for some weight vector ω = (ω1, . . . , ωn) and intercept µ. The parameters (µ, ω) define the “synthetic
control” for the treated unit.

The parameters are typically picked by minimizing the squared distance between the synthetic control’s
pre-treatment outcomes and the treatment unit’s pret-treatment outcomes:

ω∗ = argmin
(µ,ω1,...,ωn)

T0−1∑
t=1

(
Y0,t − µ−

n∑
i=1

ωiYi,t

)2

The natural method would be to estimate (µ, ω) using OLS, but if n > T0 − 1 it requires additional
constraints (e.g., weights summing to 1 or regularization).
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Synthetic Control Method: Estimation Using glmnet

library(glmnet)
control.pre = synth[synth$stateచఌ3, paste0("smoking_",1970:1988)] %>%
as.matrix %>% t

control.full = synth[synth$stateచఌ3, paste0("smoking_",1970:2000)] %>%
as.matrix %>% t

treat.pre = synth[synth$stateఋఌ3, paste0("smoking_",1970:1988)] %>%
as.matrix %>% t

# estimate weights and intercept using LASSO
weightsout = cv.glmnet(x = control.pre, y = treat.pre)
predictions = predict(weightsout, newx = control.full, s = "lambda.min")
calif$scm.pred = as.numeric(predictions)
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Synthetic Control Method: Results
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Synthetic Control Method: Uncertainty

How to assess uncertainty with synthetic control methods? There’s only one treated unit so
asymptotics are not helpful. Instead, ADH suggest a procedure like Bertrand, Duflo, and
Mullainathan’s placebo laws to assess what the null distribution of the SCM estimator looks like.
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