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Big Picture

IV methods can solve the problem of omitted variable bias when trying to isolate a
causal effect using observational data.

The setting is selection on unobservables. Originally developed to address
simultaneity in the 1920s
There are two broad types of IV frameworks: the (older) one that assumes constant
treatment effects, and Potential-outcome-based one that assumes heterogeneous
treatment effects.
The estimators we use in each framework are the same, but the assumptions and
interpretation of the treatment effect are slightly different.
We’ll start with the constant treatment effects framework to motivate the estimators,
and then move on (next week) to the heterogeneous treatment effect framework,
which is more common nowadays
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Setup

Suppose we are interested in the effect of schooling (si) on wages (Yi). Using a
selection-on-observables story with constant treatment effects, we know that conditional
on a vector of control variables for “ability” (Ai), the causal model is

Yi = α + τsi + A′
iγ + vi

If we could observe Ai, we would just estimate this regression and be done. But what if we
can’t observe Ai? If we controlled for nothing, we would estimate

Yi = α + τsi + ei

What are we worried about in the short regression? Correlation between si and ei. We
know from our selection-on-observables story that this correlation is entirely captured by
Ai.
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Omitted Variable Bias

Formally, the naive OLS estimate of τ is:

τ̂ols =
Cov(si,Yi)

Var(si)
=

Cov(si, α + τsi + ei)

Var(si)

=
τCov(si, si) + Cov(si, ei)

Var(si)
= τ +

Cov(si, ei)

Var(si)

= τ +
Cov(si,A′

iγ + vi)

Var(si)

= τ + γ′ Cov(si,Ai)

Var(si)
+

Cov(si, vi)

Var(si)

Our SOO story assumes E[sivi] = 0, so the expected value of τ̂ols is

E[τ̂ols] = τ + γ′E

[
Cov(si,Ai)

Var(si)

]
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Finding an instrument

We can see that the problem with using the schooling variable as measured in the
wild is that it produces a non-zero Cov(si,Ai). But what if we could find another
variable, zi, that is correlated with si but not with Ai or vi? In other words, zi produces
as-if randomized variation in schooling, and is only correlated with wages through
schooling. What could be some possibilities for this kind of instrument?

One example used by Angrist and Krueger (1991) is the variation induced in years of
schooling by the fact that most states require students to start school in the calendar
year that they turn 6 years old. This means that kids born at the beginning of the
calendar year are older when they start school than kids born at the end of the year,
and the two groups will have had different amounts of time in school when they
reach the legal dropout age at 16.
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IV Setup

We suppress controls without loss-of-generality since, by the FWL, one can eliminate
the controls ci in the structural equation by regressing Y,X, and Z on ci and using the
residuals Ỹ, X̃, Z̃ for all subsequent computation.

Structural Equation : Y = α0 + βX + ε

First Stage : X = π0 + πZ + η

Reduced Form : Y = γ0 + γZ + υ

Y = α0 + βX + ε

= α0 + β(π0 + πZ + η) + ε substitute in X from first-stage

= (α0 + βπ0)︸ ︷︷ ︸
γ0

+ (βπ)︸ ︷︷ ︸
γ

Z + (βη + ε) =⇒ γ = βπ → β =
γ

π
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IV Assumptions

Assumption (Exclusion Restriction / Validity)
X: εi ⊥ (Zi, ci)

This requires that Z has no direct effect on Y except through X, where εi is the residual in
the strictural equation. The instrument needs to be uncorrelated with unobservables in the
structural equation, potentially conditional on controls ci.

Assumption (Relevance)
Z affects X, i.e. Cov [Z,X] ̸= 0 or π1 ̸= 0.

Which of these is testable in our sample data?

Non-zero first stage. Can you think of any
critiques of the quarter of birth instrument based on these assumptions?
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Two-stage least squares

The 2SLS coefficient is equivalent to the IV estimator:

β̂ =
Cov(Yi, x̂i)

Var(x̂i)
=

Cov(Yi, π̂0 + π̂zi)

Var(π̂0 + π̂zi)

=
π̂Cov(Yi, zi)

π̂2Var(zi)
=

Cov(Yi, zi)

π̂Var(zi)

=
Cov(Yi, zi)

Cov(xi,zi)
Var(zi)

· Var(zi)
=

Cov(Yi, zi)

Cov(xi, zi)
=

Reduced Form
First Stage

β̂IV =
(
Z′X

)−1 Z′y
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Multiple Instruments

If you have multiple valid instruments (pigs may fly), the matrix analogue is

β2SLS =
(
X′PzX

)−1 X′Pzy

where Pz = Z (Z′Z)−1 Z′ is the hat-maker matrix from the first-stage which projects
the endogenous variables X into the column space of Z
this preserves only the ‘clean’ variation that is uncorrelated with ε.
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BAD IV DAG
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Exclusion Restriction Violations

If instrument is ‘imperfect’ (exclusion restriction violation) : Cov [εi,Zi] ̸= 0
Then Cov [Yi,Zi] = βCov [Xi,Zi] + Cov [εi,Zi].
Then the ratio of RF/FS is

Cov [Yi,Zi]

Cov [Xi,Zi]
= β +

Cov [εi,Zi]

Cov [Xi,Zi]
= β +

Cor(εi,Zi)

Cor(Xi,Zi)

σε

σx︸ ︷︷ ︸
Bias

Bias potentially very large if Cov [Xi,Zi] ≈ 0 =⇒ problems compound each other

To learn more about problems and potential fixes, come to Monday’s departmental
seminar [Lal, Lockhart, Xu, Zu 2021]
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Weak Instruments

If instrument is weak (i.e. Cov [Xi,Zi] ≈ 0), you’re dividing by zero
2SLS is consistent, but is biased in small samples. The bias is worse with a weak instrument
(even worse with multiple weak instruments).

In the worst-case scenario (multiple weak instruments that produce no first stage), 2SLS
sampling distribution is centered on the probability limit of OLS.
The first stage estimates reflect some of the randomness in the endogenous variable. If the
population first stage is 0, then the resulting first stage coefficient just reflect randomness in the
endogenous regressor.

E
[

β̂2SLS − β
]
≈

Bias of OLS︷︸︸︷
σηε

σ2
ε

1
F + 1

where F is the first-stage F statistic. As F→0 (i.e. the instrument is weak), the bias of the IV
tends to the bias of the OLS
Moral of the story: Always check the F-statistic for the instrument in your first stage (bigger
than 10 is considered “safe” - this rule-of-thumb keeps growing; compute ‘Effective F-stat’).
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Standard errors

You can manually construct the 2SLS estimate using lm, but you can’t use the OLS
standard errors from the second stage regression.

This is because the second stage OLS standard errors use the variance of the residuals
against the fitted values from the first stage. What you really want is the variance of
the residuals using the IV coefficients and the original endogenous regressor
Moral of the story: use a canned routine like ivreg or felm to make the adjustment
for you.
Analytic standard errors for IV are generally a mess (Alwyn Young - ‘Consistency
without Inference’ ) - use the bootstrap whenever possible
More on this next week
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