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Experiments with Non-Compliance

Suppose we have a randomized controlled trial with partial non-compliance. For
example, Bloom et al. (1997) evaluated an RCT commissioned by the Dept. of Labor
that randomly assigned sites to participate in a job training program.

Only about two-thirds of the enrollees in the treatment sites actually participated in
the job training programs. Moreover, about 2% of the enrollees at the control sites
participated in the programs anyway.
Non-participation was not random: it was driven by lack of interest among the
participants and failure of program operators to encourage participation.
How can we make sense of the results from the experiment?
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Setup

Let Zi be a binary indicator for whether participant i was randomly assigned to participate
in a job training program. LetDi be a binary indicator for whether participant i was
actually treated by participating the training program.

We can express the actual treatment statusDi in terms of potential treatment statuses
D0i, D1i:

Di = D0i + (D1i −D0i)Zi

whereD0i is your potential treatment status under assignment to the control group, and
D1i is your potential treatment status under assignment to the treatment group. We only
get to observe one of these potential statuses.
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Setup

With the observed values Zi = z andDi = d in hand, we can also make the following 2×
2 table of potential outcomes, Y (d, z):

Di = 0 Di = 1

Zi = 0 Yi(0, 0) Yi(0, 1)

Zi = 1 Yi(0, 1) Yi(1, 1)

Four potential outcomes! Let’s make some simplifying assumptions.
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LATE assumptions

1 Independence: ({Yi(d, z); ∀d, z}, D1i, D0i) ⊥⊥ Zi

2 Exclusion restriction: Yi(d, 0) = Yi(d, 1) for d = 0, 1.
3 Non-zero first stage: E[D1i −D0i] ̸= 0.
4 Monotonicity: D1i −D0i ≥ 0 ∀i.

LATE Theorem: Under assumptions 1-4,

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
= E[Y1i − Y0i|D1i > D0i]

We call this the local average treatment for the compliers. In the context of an RCT, the
numerator is known as the intent-to-treat effect (ITT) or the “reduced form”, and the
denominator is known as the compliance rate.
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Monotonicity

The first three LATE assumptions should look familiar from the constant treatment
effects framework. We know why we need them for IV to work. But what is
monotonicity?

We divide the world up into four groups:
Always takers: People who will always select into the treatment, regardless of their
assignment: D0i = D1i = 1.
Never takers: People who will never select into the treatment, regardless of their
assignment: D0i = D1i = 0.
Compliers: People who will take the treatment only if they are assigned the treatment,
and not take the treatment if they are not assigned: D1i > D0i.
Defiers: People who will not take the treatment only if they are assigned the treatment,
and take the treatment only if they are not assigned: D1i < D0i.

Monotonicity says that the randomized encouragement pushes people’s treatment
statuses in only one direction (D1 ≥ D0). There are no defiers.
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Why we need monotonicity

Using assumptions 1-3, we can write

E[Yi|Zi = 1]− E[Yi|Zi = 0]

= E[Y0i + (Y1i − Y0i)Di|Zi = 1]− E[Y0i + (Y1i − Y0i)Di|Zi = 0]

= E[Y0i + (Y1i − Y0i)D1i]− E[Y0i + (Y1i − Y0i)D0i]

= E[(Y1i − Y0i)(D1i −D0i)]

This can be split up into two expectations, one for compliers and one for defiers.

E[(Y1i − Y0i)(D1i −D0i)] = E[Y1i − Y0i|D1i > D0i]P (D1i > D0i)︸ ︷︷ ︸
Compliers

+ E[Y1i − Y0i|D1i < D0i]P (D1i < D0i)︸ ︷︷ ︸
Defiers

If treatment effects are not constant, the treatment effect for defiers could cancel out the effect for
compliers.

7



Why we need monotonicity

Using assumptions 1-3, we can write

E[Yi|Zi = 1]− E[Yi|Zi = 0]

= E[Y0i + (Y1i − Y0i)Di|Zi = 1]− E[Y0i + (Y1i − Y0i)Di|Zi = 0]

= E[Y0i + (Y1i − Y0i)D1i]− E[Y0i + (Y1i − Y0i)D0i]

= E[(Y1i − Y0i)(D1i −D0i)]

This can be split up into two expectations, one for compliers and one for defiers.

E[(Y1i − Y0i)(D1i −D0i)] = E[Y1i − Y0i|D1i > D0i]P (D1i > D0i)︸ ︷︷ ︸
Compliers

+ E[Y1i − Y0i|D1i < D0i]P (D1i < D0i)︸ ︷︷ ︸
Defiers

If treatment effects are not constant, the treatment effect for defiers could cancel out the effect for
compliers.

7



Relationship between LATE and ATT

We can write the ATT as a weighted average of the causal effects for the compliers and
always takers.

ATT = E[Y1i − Y0i|Di = 1]

= E[Y1i − Y0i|D0i = 1]P (D0i = 1|Di = 1)︸ ︷︷ ︸
Always Takers

+ E[Y1i − Y0i|D1i > D0i]P (D1i > D0i|Di = 1)︸ ︷︷ ︸
Compliers

Similarly, the ATC is a weighted average of the causal effect for the compliers and never
takers, which implies the ATE is a weighted average of the causal effects across all
subgroups.

This means that the LATE is not, in general, equal to the ATT or ATC, except in cases where
(usually by experimental design) there can be no always takers or no never takers.
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Characterizing compliers

Since the compliers drive our causal effect, we often would like to know more about
them. In general, can we tell who individually is a complier?

No, unless we have
one-sided non-compliance.
We can, in general, calculate the size of the complier group under monotonicity and
independence. Let’s look at the JTPA example.

Not Enrolled Enrolled Total
in Training in Training

Assigned to Control 3,663 54 3,717
Assigned to Training 2,683 4,804 7,487

Total 6,346 4,858 11,204
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Counting compliers

First, let’s calculate the probability of participation conditional on assignment.

Not Enrolled Enrolled Total
in Training in Training

Assigned to Control 0.98 0.02 1.00
Assigned to Training 0.36 0.64 1.00

We know by monotonicity that the cells contain the following subgroups.

Not Enrolled Enrolled
in Training in Training

Assigned to Control Compliers + Never Takers Always Takers
Assigned to Training Never Takers Compliers + Always Takers
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Counting compliers

By independence, we can assume that the proportion of any subgroup in the control group
is the same and the proportion of any subgroup in the treatment group. So we can
calculate the proportions of each subgroup as:

P (Always Taker) = P (D = 1|Z = 0) = 0.02

P (Never Taker) = P (D = 0|Z = 1) = 0.36

P (Complier) = P (D = 0|Z = 0)− P (D = 0|Z = 1) = 0.98− 0.36 = 0.62

= P (D = 1|Z = 1)− P (D = 1|Z = 0) = 0.64− 0.02 = 0.62

Sanity Check: P(Complier) + P(Always Taker) + P(Never Taker) = 1 under monotonicity.

Not Enrolled Enrolled Total
in Training in Training

Assigned to Control 0.98 0.02 1.00
Assigned to Training 0.36 0.64 1.00
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Characterizing compliers

With covariates, we can do a bit better than just counting compliers. Let’s start with a
binary covariateXi, such as a dummy variable for people under 30. Suppose we are
interested in how much more likely compliers are to be under 30. Formally:

P (X1i = 1|D1i > D0i)

P (X1i = 1)
=

P (D1i > D0i|X1i = 1)

P (D1i > D0i)

=
E[Di|Zi = 1, X1i = 1]− E[Di|Zi = 0, X1i = 1]

E[Di|Zi = 1]− E[Di|Zi = 0]

The second equality comes from Bayes’ Rule, and the third equality comes from the same
logic we used to count compliers previously.
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Abadie Kappa

Let’s say we have a continuous covariate. How can we estimate the mean for compliers?
Suppose we could find a weighting function that gave us the probability unit i is a
complier, conditional onXi.

P (D1i > D0i|Xi) = 1− P (D1i = D0i = 1|Zi = 0, Xi)︸ ︷︷ ︸
Always Takers

−P (D1i = D0i = 0|Zi = 1, Xi)︸ ︷︷ ︸
Never Takers

= 1− E[Di(1− Zi)|Xi]

1− P (Zi = 1|Xi)
− E[(1−Di)Zi|Xi]

P (Zi = 1|Xi)

= E[κi]

So the weight at the individual level is

κi = 1− Di(1− Zi)

1− P (Zi = 1|Xi)
− (1−Di)Zi

P (Zi = 1|Xi)

How to get it: estimate P (Zi = 1|Xi) using regression (e.g., linear, logit, probit), predict
values for each i for the denominator, and plug in observed values for Zi andDi for the
numerator.

13



Abadie Kappa

Let’s say we have a continuous covariate. How can we estimate the mean for compliers?
Suppose we could find a weighting function that gave us the probability unit i is a
complier, conditional onXi.

P (D1i > D0i|Xi) = 1− P (D1i = D0i = 1|Zi = 0, Xi)︸ ︷︷ ︸
Always Takers

−P (D1i = D0i = 0|Zi = 1, Xi)︸ ︷︷ ︸
Never Takers

= 1− E[Di(1− Zi)|Xi]

1− P (Zi = 1|Xi)
− E[(1−Di)Zi|Xi]

P (Zi = 1|Xi)

= E[κi]

So the weight at the individual level is

κi = 1− Di(1− Zi)

1− P (Zi = 1|Xi)
− (1−Di)Zi

P (Zi = 1|Xi)

How to get it: estimate P (Zi = 1|Xi) using regression (e.g., linear, logit, probit), predict
values for each i for the denominator, and plug in observed values for Zi andDi for the
numerator.

13



Abadie Kappa

Then we can use our weight to estimate

E[Xi|D1i > D0i] =
E[κiXi]

E[κi]

We can also use the kappa to estimate the local average response function (LARF),
provided that the LATE assumptions hold conditional onXi.

E[g(Yi, Di, Xi)|D1i > D0i] =
E[κig(Yi, Di, Xi)]

E[κi]

where g(Yi, Di, Xi) is any measurable function of (Yi, Di, Xi) with a finite expectation.
Special case: WhenP (Zi = 1|Xi) is estimated with linear regression, the kappa-weighted
linear regression forE[Yi|Di, Xi, D1i > D0i] is equal to 2SLS with covariates.
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