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Difference-in-Differences Example
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In Practice

Parallel trends are most easily satisfied when the intervention is truly exogenous
You can try and condition on pre-trends
Our running example so far has been a two-period 2-by-2 DiD

Things becomes more difficult when design becomes complicated
staggered treatment
continuous treatment
treatment reversals
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Motivation

Why do we like panel data?

It allows us to relax some of the assumptions from the selection on observables world.
Specifically, we can account for some specific types of unobservable confounders!
In fixed effects/diff-in-diff: we can account for time-invariant unit fixed effects and for
time-specific shocks that affect all units equally (as well as some more complicated trends).
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Accounting for Time-invariant Unobserved Effects

Imagine that the data are actually generated according to the model
yit = xitβ + ci + εit, i = 1, . . . , N ; t = 1, . . . , T.

How should we interpret each component?

yit: outcome variable for unit i in time t.
xit: 1× k vector of covariates for unit i in year t.
β: k × 1 vector of marginal effects.
ci: unit-specific effect; all of the unobserved features affecting yit equally in every time
period.
ϵit: time-varying unobserved factors affecting yit; idiosyncratic errors.

What happens if we regress yit on xit?
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Pooled OLS

If we regress yit on xit, we are estimating an equation of the form:

yit = xitβ + vit, t = 1, . . . , T

with the composite error vit ≡ ci + ϵit. When is the OLS estimator of this equation β̂ unbiased for β?

We know from last quarter that OLS is unbiased when the errors are uncorrelated with the regressors, so
we need

E[vit | xi1,xi2, . . . ,xiT ] = E[vit | xit] = 0

=⇒E[ci + ϵit | xit] = E[ci | xit] = E[ϵit | xit] = 0

We need the composite error to be mean-independent from the covariates, but this often isn’t a
reasonable assumption: the value of unit fixed effects ci by definition varied by unit.
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Example: Determining the Effect of a Law

Say we want to know the effect of a new public financing law on election competitiveness.
Suppose we code a variable lawit = 1 if state i had the law in year t and 0 otherwise. What
happens if we regress yit on lawit?

Both the law and the outcome are likely to be correlated with an unobserved factor ci.
We might think that some unobserved state-specific factors (say, proportion of people who
don’t like corporate money in politics) might affect both the introduction of public financing
law and the competitiveness of elections.
The result: β̂ is not consistent for the true effect of the law.
Also likely another violation of the standard OLS framework: vit ≡ ci + ϵit are serially
correlated, making the standard errors invalid.

9



Example: Determining the Effect of a Law

Say we want to know the effect of a new public financing law on election competitiveness.
Suppose we code a variable lawit = 1 if state i had the law in year t and 0 otherwise. What
happens if we regress yit on lawit?

Both the law and the outcome are likely to be correlated with an unobserved factor ci.
We might think that some unobserved state-specific factors (say, proportion of people who
don’t like corporate money in politics) might affect both the introduction of public financing
law and the competitiveness of elections.
The result: β̂ is not consistent for the true effect of the law.
Also likely another violation of the standard OLS framework: vit ≡ ci + ϵit are serially
correlated, making the standard errors invalid.

9



Fixed Effects Regression

How might we solve this problem? Estimate a model with a separate intercept for each unit. Recall
the model yit = xitβ + ci + ϵit. We can estimate the ci’s in the model as unit-specific intercepts.
Then:

(β̂, ĉ1, . . . , ĉN ) = argmin
β,c1,...,cN

N∑
i=1

T∑
t=1

(yit − xitβ − ci)
2 (1)

Solving this minimization problem yields the estimator

β̂ =

(
N∑
i=1

T∑
t=1

(xit − x̄i)
′(xit − x̄i)

)−1( N∑
i=1

T∑
t=1

(xit − x̄i)
′(yit − ȳi)

)
(2)

This is the same as regressing a demeaned ỹit ≡ yit − ȳi on a demeaned x̃it ≡ xit − x̄i.

10



Two-Way Fixed Effects Regression: Motivation

We often have access to panel data, wherein each individual i ∈ {1, . . . , N} is observed for
T ≥ 2 time periods
Stipulate following potential outcomes Y (d)

it

E
[
Y 0
it|αi, t,Dit

]
= αi + λt

αi is a unit fixed-effect: each individual has an intercept αi - absorbs time-invariant unit-specific
confounders
λt is a time fixed-effect: each time period has an intercept λt - absorbs unit-invariant time-specific
confounders

SupposeDit is as-good as randomly assigned conditional on αi

Stipulate constant, additive effect of treatment. Then, E
[
Y 1
it

]
= E

[
Y 0
it

]
+ τ

This motivates the popular two-way fixed-effects regression

Yit = τDi + αi + γt + εit
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Within Estimator

With large datasets, estimating individual αis can involve inverting a very large matrix
With short panels, the estimates of αis are inconsistent anyway := incidental parameters problem
(Neyman-Scott)

Instead, we can use Frisch-Waugh-Lovell (again!) and partial out FEs
Calculate individual averages of the 2wFE equation

Y i = αi + λ+ τDi + ε

Subtract this from the FE equation

Yit − Y i = λt − λ+ τ(Dit −Di) + (εit − ε)
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Staggered Adoption, Treatment Reversals, and other complications

Recall that we stipulated a constant, additive treatment effect and treatment timing
as-good-as-random (conditional on FEs)
Last 5 years of methods literature on panel data studies what happens when we relax these
parametric assumptions
Weird weights redux: 2WFE no longer consistent for ATT

review paper 1
review paper 2
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Introducing Heterogeneity
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Introducing Heterogeneity II
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Synth Setup: Doudchenko and Imbens (2016)

Panel methods can be characterised into 3 broad groups (as of 2016):
Difference-in-differences : ∆Y post −∆Y pre

Matching: on both pre-treatment outcomes and other covariates
Synthetic Control: For each treated unit, a ‘synthetic control’ is constructed as a weighted average
of control units s.t. the weighted average matches pre-treatment outcomes and covariates

This paper: framework to nest existing approaches + estimator that relaxes some
assumptions.

Main contribution: framework to clarify assumptions
Resting WP; Cannibalised by later papers (esp. Arkhangelsky et al 2020)?
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Notation

N + 1 units observed for T periods, with a subset of treated units (for simplicity - unit 0)
treated from T0 onwards

Treatment : Di,t = 1i=0 ∧ t∈T0+1,...,T

Potential outcomes for unit 0 define the treatment effect: τ0,t := Y0,t(1)− Y0,t(0) for
t = T0 + 1, . . . , T

Observed outcome: Y obs
i,t = Yi,t(Di,t)

Time-invariant characteristicsXi := (Xi,1, . . . , Xi,M )⊤ for each unit, which may include
lagged outcomes Y obs

i,t for t ≤ T0

Xc isN ×M matrix that stacksXs for control units
Xt isM− row vector of covariates for control
stack them to getX
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Outcome Matrices

Yobs =

[
Yobs

t, post Yobs
c, post

Yobs
t, pre Yobs

c, pre

]
=

[
Yt, post(1) Yc, post(0)

Yt, pre(0) Yc, pre(0)

]
T × (N + 1)

Y(0) =

[
? Yc, post(0)

Yt, pre(0) Yc, pre(0)

]
=

[
? Yc, post(0)

Yt, pre(0) Yc, pre(0)

]

relative magnitudes of T andN might dictate whether we impute the missing potential
outcome ? using this or this comparison

Many Units and Multiple Periods: N >> T0,Y(0) is ‘fat’, and red comparison becomes
challenging relative to blue. So matching methods are attractive.

T0 >> N ,Y(0) is ‘tall’, and matching becomes infeasible. So it might be easier to estimate blue
dependence structure.
Finally, if T0 ≈ N , regularization strategy for limiting the number of control units that enter into
the estimation of Y0,T0+1(0)may be important
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Common Structure: 4 assumptions

Focus on last period for now: τ0,T = Y0,T (1)− Y0,T (0) = Y obs
0,T − Y0,T (0)

Many estimators impute Y0,T (0) with the linear structure Ŷ0,T (0) = µ+
∑n

i=1 ωi · Y obs
i,T

Methods differ in how µ and ω are chosen as a function ofYobs
c, post,Y

obs
t, pre,Y

obs
c, pre

Impose four constraints

1 No Intercept: µ = 0. Stronger than Parallel trends in DiD.
2 Adding up :

∑n
i=1 ωi = 1. Common to DiD, SC.

3 Non-negativity: ωi ≥ 0 ∀ i. Ensures uniqueness via ‘coarse’ regularisation + precision control.
Negative weights may improve out-of-sample prediction.

4 Constant Weights: ωi = ω ∀ i

DiD imposes 2-4.
ADH(2010, 2014) impose 1-3

1 + 2 imply ‘No Extrapolation’.
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∑n

i=1 ωi · Y obs
i,T

Methods differ in how µ and ω are chosen as a function ofYobs
c, post,Y

obs
t, pre,Y

obs
c, pre

Impose four constraints

1 No Intercept: µ = 0. Stronger than Parallel trends in DiD.
2 Adding up :

∑n
i=1 ωi = 1. Common to DiD, SC.

3 Non-negativity: ωi ≥ 0 ∀ i. Ensures uniqueness via ‘coarse’ regularisation + precision control.
Negative weights may improve out-of-sample prediction.

4 Constant Weights: ωi = ω ∀ i

DiD imposes 2-4.
ADH(2010, 2014) impose 1-3

1 + 2 imply ‘No Extrapolation’.

20



Common Structure: 4 assumptions

Focus on last period for now: τ0,T = Y0,T (1)− Y0,T (0) = Y obs
0,T − Y0,T (0)

Many estimators impute Y0,T (0) with the linear structure Ŷ0,T (0) = µ+
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i=1 ωi = 1. Common to DiD, SC.

3 Non-negativity: ωi ≥ 0 ∀ i. Ensures uniqueness via ‘coarse’ regularisation + precision control.
Negative weights may improve out-of-sample prediction.

4 Constant Weights: ωi = ω ∀ i

DiD imposes 2-4.

ADH(2010, 2014) impose 1-3

1 + 2 imply ‘No Extrapolation’.
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Relaxing the assumptions

Negative weights
If treated units are outliers on important covariates, negative weights might improve fit
Bias reduction - negative weights increase bias-reduction rate

WhenN >> T0, (1-3) alone might not result in a unique solution. Choose by
Matching on pre-treatment outcomes : one good control unit is better than synthetic one
comprised of disparate units
Constant weights - implicit in DiD

Given many pairs of (µ, ω)
prefer values s.t. synthetic control unit is similar to treated units in terms of lagged outcomes
low dispersion of weights
few control units with non-zero weights

21



Case for nonconvex or negative Weights : Hollingworth andWing (2021)
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The optimisation problem: general case

Ingredients of objective function

Balance: difference between pre-treatment outcomes for treated and linear-combination of
pre-treatment outcomes for control∥∥Yt, pre − µ− ω⊤Yc, pre

∥∥2

2
= (Yt, pre − µ− ω⊤Yc, pre)

⊤(Yt, pre − µ− ω⊤Yc, pre)

Sparse and small weights:
sparsity : ∥ω∥1
magnitude: ∥ω∥2

(µ̂en(λ, α), ω̂en(λ, α)) = argmin
µ,ω

Q(µ, ω|Yt, pre,Yc, pre;λ, α)

where Q(µ, ω|Yt, pre,Yc, pre;λ, α) =
∥∥Yt, pre − µ− ω⊤Yc, pre

∥∥2
2

+ λ

(
1− α

2
∥ω∥22 + α ∥ω∥1

)
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Choosing α, λ: Tailored regularisation

don’t want to scale covariatesYc, pre to preserve interpretability of weights
Instead, treat each control unit as a ‘pseudo-treated’ unit and compute
Ŷj,T (0) = µ̂en(j;α, λ) +

∑
i ̸=j ω̂i(j;α, λ) · Y obs

i,T where

(µ̂en(j;λ, α), ω̂en(j;λ, α)) = argmin
µ,ω

T0∑
t=1

Yj,t − µ−
∑
i ̸=0,j

ωiYi,t

2

+

λ

(
1− α

2
∥ω∥22 + α ∥ω∥1

)
pick the value of the tuning parameters (αen

opt, λ
en
opt) that minimises

CV en(α, λ) =
1

N

N∑
j=1

(Yj,T −

Ŷj,T (0)︷ ︸︸ ︷
µ̂en(j;α, λ)−

∑
i ̸=0,j

ω̂en
i (j;α, λ) · Yi,T )

24



Re-expressing Standard Methods

Difference in Differences
assume (2-4)

No unique µ, ω solution for T = 2, so fix ω = 1
N

ωdid
i =

1

N
∀i ∈ {1, . . . N}

µ̂did =
1

T0

T0∑
s=1

Y0,s −
1

NT0

T0∑
s=1

N∑
i=1

Yi,s

Best Subset; One-to-one Matching
(µ̂S , ω̂S) = argminµ,ω Q(·;λ = 0, α) with∑N

i=1 1ωi ̸=0 ≤ k (=1 for OtO)

Synthetic Control
assume (1-3) (i.e. µ = 0)

ForM ×M PSD diagonal matrixV

(ω̂(V), µ̂(V)) = argmin
ω,µ

{(Xt − µ− ω⊤X)⊤V

(Xt − µ− ω⊤X)}

V̂ = argmin
V=diag(v1,...,vM )

{(Yt, pre − ω̂(V)⊤Yc, pre)
⊤

(Yt, pre − ω̂(V)⊤Yc, pre)}

Constrained regression: WhenXi = Yi,t; 1 ≤ t ≤ T0

(Lagged Outcomes only)V = IN and λ = 0
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Revisiting ADH California smoking example

Model
∑

i ωi µ τ̂ s.e.
Original Synth 1 0 -22.1 16.1
Constrained 1 0 -22.9 12.8
Elastic Net .55 18.5 -26.9 16.8
Best Subset .32 37.6 -31.9 20.3
Diff-in-Diff 1 -14.4 -32.4 18.9
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Roadmap

Panel data with multiple time periods

Synthetic Control Methods

Instrumental Variables I
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Big Picture

IV methods can solve the problem of omitted variable bias when trying to isolate a causal
effect using observational data.

The setting is selection on unobservables. Originally developed to address simultaneity in the
1920s
There are two broad types of IV frameworks: the (older) one that assumes constant treatment
effects, and Potential-outcome-based one that assumes heterogeneous treatment effects.
The estimators we use in each framework are the same, but the assumptions and
interpretation of the treatment effect are slightly different.
We’ll start with the constant treatment effects framework to motivate the estimators, and
then move on (next week) to the heterogeneous treatment effect framework, which is more
common nowadays
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Setup

Suppose we are interested in the effect of schooling (si) on wages (Yi). Using a
selection-on-observables story with constant treatment effects, we know that conditional on a
vector of control variables for “ability” (Ai), the causal model is

Yi = α+ τsi +A′
iγ + vi

If we could observeAi, we would just estimate this regression and be done. But what if we can’t
observeAi? If we controlled for nothing, we would estimate

Yi = α+ τsi + ei

What are we worried about in the short regression? Correlation between si and ei. We know from
our selection-on-observables story that this correlation is entirely captured byAi.

29



Setup

Suppose we are interested in the effect of schooling (si) on wages (Yi). Using a
selection-on-observables story with constant treatment effects, we know that conditional on a
vector of control variables for “ability” (Ai), the causal model is

Yi = α+ τsi +A′
iγ + vi

If we could observeAi, we would just estimate this regression and be done. But what if we can’t
observeAi? If we controlled for nothing, we would estimate

Yi = α+ τsi + ei

What are we worried about in the short regression?

Correlation between si and ei. We know from
our selection-on-observables story that this correlation is entirely captured byAi.

29



Setup

Suppose we are interested in the effect of schooling (si) on wages (Yi). Using a
selection-on-observables story with constant treatment effects, we know that conditional on a
vector of control variables for “ability” (Ai), the causal model is

Yi = α+ τsi +A′
iγ + vi

If we could observeAi, we would just estimate this regression and be done. But what if we can’t
observeAi? If we controlled for nothing, we would estimate

Yi = α+ τsi + ei

What are we worried about in the short regression? Correlation between si and ei. We know from
our selection-on-observables story that this correlation is entirely captured byAi.

29



Omitted Variable Bias

Formally, the naive OLS estimate of τ is:

τ̂ols =
Cov(si, Yi)

V ar(si)
=

Cov(si, α+ τsi + ei)

V ar(si)

=
τCov(si, si) + Cov(si, ei)

V ar(si)
= τ +

Cov(si, ei)

V ar(si)

= τ +
Cov(si, A

′
iγ + vi)

V ar(si)

= τ + γ′Cov(si, Ai)

V ar(si)
+

Cov(si, vi)

V ar(si)

Our SOO story assumes E[sivi] = 0, so the expected value of τ̂ols is

E[τ̂ols] = τ + γ′E
[
Cov(si, Ai)

V ar(si)

]
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Finding an instrument

We can see that the problem with using the schooling variable as measured in the wild is that
it produces a non-zeroCov(si, Ai). But what if we could find another variable, zi, that is
correlated with si but not withAi or vi? In other words, zi produces as-if randomized
variation in schooling, and is only correlated with wages through schooling. What could be
some possibilities for this kind of instrument?

One example used by Angrist and Krueger (1991) is the variation induced in years of schooling
by the fact that most states require students to start school in the calendar year that they turn
6 years old. This means that kids born at the beginning of the calendar year are older when
they start school than kids born at the end of the year, and the two groups will have had
different amounts of time in school when they reach the legal dropout age at 16.
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IV DAG
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IV Setup

We suppress controls without loss-of-generality since, by the FWL, one can eliminate the
controls ci in the structural equation by regressing Y,X, and Z on ci and using the residuals
Ỹ , X̃, Z̃ for all subsequent computation.

Structural Equation : Y = α0 + βX + ε

First Stage : X = π0 + πZ + η

Reduced Form : Y = γ0 + γZ + υ

Y = α0 + βX + ε

= α0 + β(π0 + πZ + η) + ε substitute in X from first-stage

= (α0 + βπ0)︸ ︷︷ ︸
γ0

+(βπ)︸︷︷︸
γ

Z + (βη + ε) =⇒ γ = βπ → β =
γ

π
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IV Assumptions

Assumption (Exclusion Restriction / Validity)
X : εi ⊥ (Zi, ci)

This requires that Z has no direct effect on Y except throughX , where εi is the residual in the
strictural equation. The instrument needs to be uncorrelated with unobservables in the structural
equation, potentially conditional on controls ci.

Assumption (Relevance)
Z affectsX , i.e. Cov [Z,X] ̸= 0 or π1 ̸= 0.

Which of these is testable in our sample data?

Non-zero first stage. Can you think of any critiques
of the quarter of birth instrument based on these assumptions?
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Two-stage least squares

The 2SLS coefficient is equivalent to the IV estimator:

β̂ =
Cov(Yi, x̂i)

Var(x̂i)
=

Cov(Yi, π̂0 + π̂zi)

Var(π̂0 + π̂zi)

=
π̂Cov(Yi, zi)

π̂2Var(zi)
=

Cov(Yi, zi)

π̂Var(zi)

=
Cov(Yi, zi)

Cov(xi,zi)
Var(zi) · Var(zi)

=
Cov(Yi, zi)

Cov(xi, zi)
=

Reduced Form
First Stage

β̂IV = (Z′X)
−1

Z′y
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Multiple Instruments

If you have multiple valid instruments (pigs may fly), the matrix analogue is

β2SLS = (X′PzX)
−1

X′Pzy

wherePz = Z (Z′Z)
−1

Z′ is the hat-maker matrix from the first-stage which projects the
endogenous variablesX into the column space of Z
this preserves only the ‘clean’ variation that is uncorrelated with ε.
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BAD IV DAG
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Exclusion Restriction Violations

If instrument is ‘imperfect’ (exclusion restriction violation) : Cov [εi, Zi] ̸= 0

Then Cov [Yi, Zi] = βCov [Xi, Zi] + Cov [εi, Zi].
Then the ratio of RF/FS is

Cov [Yi, Zi]

Cov [Xi, Zi]
= β +

Cov [εi, Zi]

Cov [Xi, Zi]
= β +

Cor(εi, Zi)

Cor(Xi, Zi)

σε

σx︸ ︷︷ ︸
Bias

Bias potentially very large if Cov [Xi, Zi] ≈ 0 =⇒ problems compound each other

To learn more about problems and potential fixes, come to Monday’s departmental seminar
[Lal, Lockhart, Xu, Zu 2021]
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Weak Instruments

If instrument is weak (i.e. Cov [Xi, Zi] ≈ 0), you’re dividing by zero
2SLS is consistent, but is biased in small samples. The bias is worse with a weak instrument (even worse
with multiple weak instruments).

In the worst-case scenario (multiple weak instruments that produce no first stage), 2SLS sampling
distribution is centered on the probability limit of OLS.
The first stage estimates reflect some of the randomness in the endogenous variable. If the population
first stage is 0, then the resulting first stage coefficient just reflect randomness in the endogenous
regressor.

E
[
β̂2SLS − β

]
≈

Bias of OLS︷︸︸︷
σηε

σ2
ε

1

F + 1

where F is the first-stage F statistic. As F→0 (i.e. the instrument is weak), the bias of the IV tends to
the bias of the OLS
Moral of the story: Always check the F-statistic for the instrument in your first stage (bigger than 10 is
considered “safe” - this rule-of-thumb keeps growing; compute ‘Effective F-stat’).
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Standard errors

You can manually construct the 2SLS estimate using lm, but you can’t use the OLS standard
errors from the second stage regression.

This is because the second stage OLS standard errors use the variance of the residuals against
the fitted values from the first stage. What you really want is the variance of the residuals
using the IV coefficients and the original endogenous regressor
Moral of the story: use a canned routine like ivreg or felm to make the adjustment for you.
Analytic standard errors for IV are generally a mess (Alwyn Young - ‘Consistency without
Inference’ ) - use the bootstrap whenever possible
More on this next week

40



Standard errors

You can manually construct the 2SLS estimate using lm, but you can’t use the OLS standard
errors from the second stage regression.
This is because the second stage OLS standard errors use the variance of the residuals against
the fitted values from the first stage. What you really want is the variance of the residuals
using the IV coefficients and the original endogenous regressor

Moral of the story: use a canned routine like ivreg or felm to make the adjustment for you.
Analytic standard errors for IV are generally a mess (Alwyn Young - ‘Consistency without
Inference’ ) - use the bootstrap whenever possible
More on this next week

40



Standard errors

You can manually construct the 2SLS estimate using lm, but you can’t use the OLS standard
errors from the second stage regression.
This is because the second stage OLS standard errors use the variance of the residuals against
the fitted values from the first stage. What you really want is the variance of the residuals
using the IV coefficients and the original endogenous regressor
Moral of the story: use a canned routine like ivreg or felm to make the adjustment for you.

Analytic standard errors for IV are generally a mess (Alwyn Young - ‘Consistency without
Inference’ ) - use the bootstrap whenever possible
More on this next week

40



Standard errors

You can manually construct the 2SLS estimate using lm, but you can’t use the OLS standard
errors from the second stage regression.
This is because the second stage OLS standard errors use the variance of the residuals against
the fitted values from the first stage. What you really want is the variance of the residuals
using the IV coefficients and the original endogenous regressor
Moral of the story: use a canned routine like ivreg or felm to make the adjustment for you.
Analytic standard errors for IV are generally a mess (Alwyn Young - ‘Consistency without
Inference’ ) - use the bootstrap whenever possible

More on this next week

40



Standard errors

You can manually construct the 2SLS estimate using lm, but you can’t use the OLS standard
errors from the second stage regression.
This is because the second stage OLS standard errors use the variance of the residuals against
the fitted values from the first stage. What you really want is the variance of the residuals
using the IV coefficients and the original endogenous regressor
Moral of the story: use a canned routine like ivreg or felm to make the adjustment for you.
Analytic standard errors for IV are generally a mess (Alwyn Young - ‘Consistency without
Inference’ ) - use the bootstrap whenever possible
More on this next week

40


	Panel data with multiple time periods
	Synthetic Control Methods
	Instrumental Variables I

