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Binary Goodness of Fit
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Binary Goodness of Fit
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Calibration

data(lalonde.psid)
calib_curve = function(true, fitted){

plot(smooth.spline(x = pscore, y = lalonde.psid[[w]], df = 4),
xlab = ”Propensity Score”, ylab = ”Prob. Treated (W)”)

abline(0, 1, lty=”dashed”)
}
y = 're78'; w = 'treat'; x = setdiff(names(lalonde.psid), c(y, w))
pscore = glm(formula_stitcher(w, x), lalonde.psid,

family = binomial())$fitted.values
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Calibration Figure
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ROC

roc(lalonde.psid[[w]], pscore) |> plot()
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Cross Validation

8



A toy nonlinear model

y =

 x < 0 cos(2x)

x ≥ 0 1 − sin(3x)
+ ε ; ε ∼ N (0, 1)
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Population Regression Function
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Overfit
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Underfit
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Bias Variance Tradeoff : MSE (test-train split)
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MSE: K-fold cross validation
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Fit (just right)
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PCA: Math
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Scatterplot Matrices can get unwieldy

Source:Claus Wilke’s data-viz course
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https://wilkelab.org/SDS375/


Big Picture: Unsupervised Learning

• Difference between supervised and unsupervised learning
• supervised: predict y using x

• regression
• random forests
• LASSO
• support vector machines
• neural networks

• unsupervised: characterise X
• no response/label y; only have a big data matrix X

• categorise and cluster data (based on substantive knowledge)
• principal components analysis
• factor analysis - link
• k-means clustering
• scaling
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http://bactra.org/notebooks/factor-models.html


PCA: Intuition

• Introductory unsupervised technique for Dimension reduction

• Examples
• How can we order Democratic congressmen from most liberal to most conservative?
• How can we rank vice-presidential candidates on different dimensions?
• How can we classify speeches or votes?

• We don’t have ys to construct a regression model.

• Need to infer latent structure
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PCA

• Suppose we have the following cloud, and want to reduce it to one dimension:
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PCA: Intuition (cont’d)

• The core idea behind PCA is to pick the vector through the dimensions along which most the
variance in the data is represented

• This amounts to fitting a hyperplane that minimises distance to each point
• That way, we retain as much information as possible
• Conversely, we minimise the reconstruction error – because we maximise the amount of

information that we retain.
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Basic Exercise Visualised

Source: Fundamentals of Data Visualisation
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https://clauswilke.com/dataviz/


Difference between OLS and PCA

23



PCA: Mechanics and Implementation
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PCA: Mechanics

• Matrix X with dimensions n × p.
• Objective is to reduce matrix to K dimensions
• PCA dimensions denoted by wk

• Each data point reconstructed by observation-specific weight (score) zik on dimensions wk .

x̃i =
K∑

k=1
zikwk

• Objective Function
• Pick θ := wk, zik as to minimise avg. reconstruction error:

min
w,zik

1
N

N∑
i=1

||xi −
K∑

k=1
zikwk||2
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PCA: Mechanics (cont’d)

• Taking the FOC and simplifying yields the solution wT
k Σwk .

• where Σ is the empirical covariance matrix 1
nX⊤X

• Minimising reconstruction error ≡ Maximising variance of projected data [Slide 18]

wT
k Σwk = λk

• w∗
k is equal to the k th eigenvector of Σ, and z∗

ik = wT
k xi.

• Remember that Aw = λw.

• The eigenvector w points out the vector in multidimensional space along which most of the
variance-covariance matrix ( Σ ) can be captured.

• we’re rotating the coordinate system as to remove the correlation between the covariates.
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PCA: Mechanics (cont’d)

• Taking the FOC and simplifying yields the solution wT
k Σwk .

• where Σ is the empirical covariance matrix 1
nX⊤X

• Minimising reconstruction error ≡ Maximising variance of projected data [Slide 18]

wT
k Σwk = λk

• w∗
k is equal to the k th eigenvector of Σ, and z∗

ik = wT
k xi.

• Remember that Aw = λw.
• The eigenvector w points out the vector in multidimensional space along which most of the

variance-covariance matrix ( Σ ) can be captured.
• we’re rotating the coordinate system as to remove the correlation between the covariates.

26



Singular Value Decomposition (SVD)

• Every matrix X can be written as

X = UΣV⊤

where U ∈ Rn×n, Σ ∈ Rn×p, V ∈ Rp×p.

• U⊤U = In are left singular vectors

• V⊤V = Ip are right singular vectors

• Σ = diag(σ1, . . . , σmin{n,p}), where σi > σi+1

• Note: computers often store only min{n, p} dimensions

• Principal components of X = UΣ
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• case for SVD
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https://twitter.com/WomenInStat/status/1285611042446413824


PCA: Viz with simulated data
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PCA: Implementation on Voting data

load(”house_113.RData”)
votes <- rc$votes[-1, ] %>% as_tibble() # removes Obama
votes <- votes %>% mutate_all(~ case_when(. %in% 1:3 ~ 1, TRUE ~ 0))
house <- rc$legis.data[-1,] %>% as_tibble()
pca <- prcomp(votes)
pca %>% glimpse

## List of 5
## $ sdev : num [1:444] 12.52 3.31 2.34 2.09 1.74 ...
## $ rotation: num [1:1202, 1:444] -0.0367 -0.0374 -0.0379 0.0371 -0.038 ...
## ..- attr(*, ”dimnames”)=List of 2
## .. ..$ : chr [1:1202] ”Vote 1” ”Vote 2” ”Vote 3” ”Vote 4” ...
## .. ..$ : chr [1:444] ”PC1” ”PC2” ”PC3” ”PC4” ...
## $ center : Named num [1:1202] 0.495 0.505 0.511 0.437 0.514 ...
## ..- attr(*, ”names”)= chr [1:1202] ”Vote 1” ”Vote 2” ”Vote 3” ”Vote 4” ...
## $ scale : logi FALSE
## $ x : num [1:444, 1:444] -0.984 -3.705 -11.935 -12.019 -10.986 ...
## ..- attr(*, ”dimnames”)=List of 2
## .. ..$ : NULL
## .. ..$ : chr [1:444] ”PC1” ”PC2” ”PC3” ”PC4” ...
## - attr(*, ”class”)= chr ”prcomp”
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Visualising Model Fit
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Generating PCs for units

house <- house %>% mutate(PC1 = pca$x[,1])
house %>% arrange(PC1) %>% head(n = 5)

state icpsrState cd icpsrLegis party partyCode PC1

OH 24 1 29550 R 200 -13.24
TX 49 19 20353 R 200 -13.21
NC 47 13 21349 R 200 -13.17
OH 24 5 20755 R 200 -13.13
MO 34 7 21150 R 200 -13.10
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Latent Dimensions
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Example 2: Analysing Brexit

• Roll-call example: We know that legislators in parliamentary systems predominantly vote along
party lines

• But 2017-2019 UK Parliament was unusual: many, many rebellions with respect to Brexit
• Have a n × p votes matrix with n MPs and p divisions.
• Code an Aye vote as 1, a No vote as -1, and an abstention as 0.
• Use PCA to reduce dimensionality
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PCA: Implementation (cont’d)
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Sparse Matrices

• For many text/ml applications, data is very large and very sparse
• Netflix problem

• Use irlba in such settings

36

https://bwlewis.github.io/irlba/


Summary

• PCA is a dimension reduction technique

• Convenient, but often not ideal:
• Interpretation of principal components? Typically ad-hoc
• Information loss
• No easy way for categorical classification

• Next couple of weeks: more classification methods
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