450c - Binary Goodness of Fit, Principal Components Analysis

Apoorva Lal April 14, 2022

Stanford

Binary Goodness of Fit

Cross Validation

PCA: Math

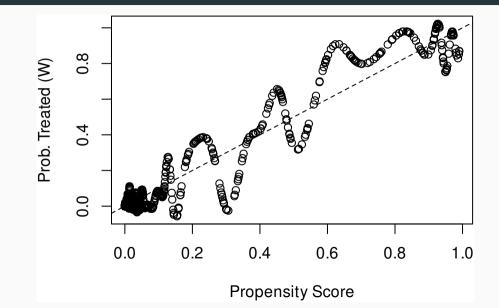
PCA: Mechanics and Implementation

Binary Goodness of Fit

		True cond				
	Total population	Condition positive	Condition negative	$= \frac{\frac{\Gamma \text{ evalence}}{\Sigma \text{ Condition positive}}}{\Sigma \text{ Total population}}$	Σ True posit	<mark>iracy</mark> (ACC) = i <u>ve + Σ True negative</u> al population
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	$\frac{\text{False discovery rate (FDR)}}{\Sigma \text{ False positive}}$ $\Sigma \text{ Predicted condition positive}$	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
		$\begin{array}{l} \mbox{True positive rate (TPR), Recall,} \\ \mbox{Sensitivity, probability of detection,} \\ \mbox{Power} = \frac{\Sigma \mbox{True positive}}{\Sigma \mbox{Condition positive}} \end{array}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma False positive}{\Sigma Condition negative}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio	F ₁ score =
		False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$	$(DOR) = \frac{LR+}{LR-}$	2 · <u>Precision · Recall</u> Precision + Recall

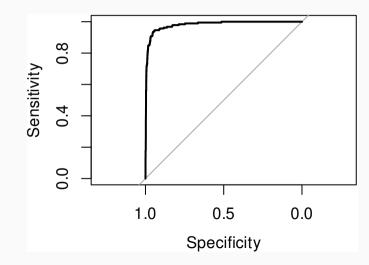
```
data(lalonde.psid)
calib curve = function(true. fitted){
  plot(smooth.spline(x = pscore, y = lalonde.psid[[w]], df = 4).
        xlab = "Propensity Score". ylab = "Prob. Treated (W)")
  abline(0. 1. ltv="dashed")
}
y = 're78'; w = 'treat'; x = setdiff(names(lalonde.psid), c(v, w))
pscore = glm(formula stitcher(w, x), lalonde.psid.
  family = binomial())$fitted.values
```

Calibration Figure



6

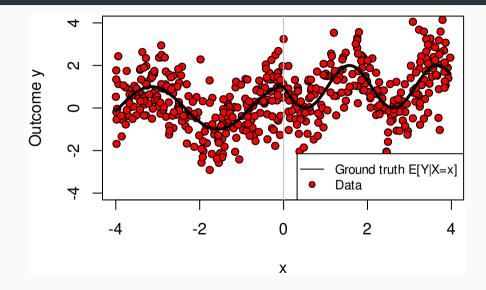
roc(lalonde.psid[[w]], pscore) |> plot()



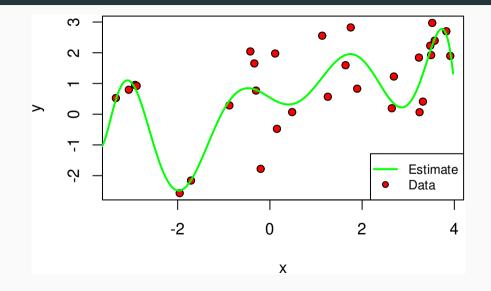
Cross Validation

$$y = \begin{cases} x < 0 & \cos(2x) \\ x \ge 0 & 1 - \sin(3x) \end{cases} + \varepsilon ; \varepsilon \sim \mathcal{N}(0, 1)$$

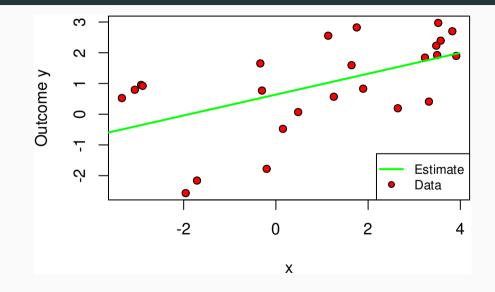
Population Regression Function



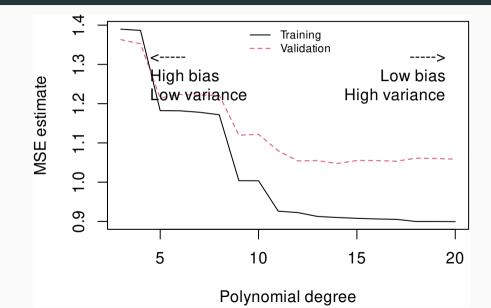
Overfit



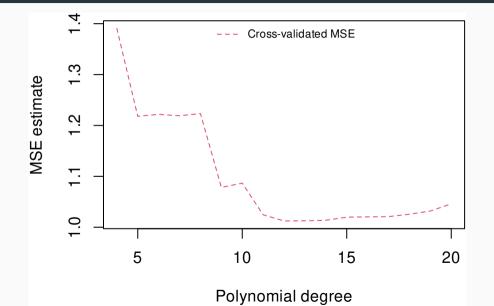
Underfit



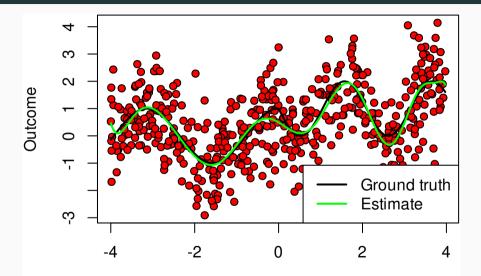
Bias Variance Tradeoff : MSE (test-train split)



MSE: K-fold cross validation



Fit (just right)

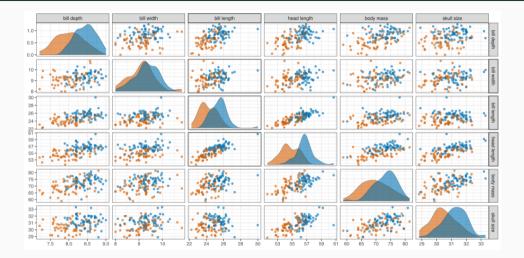


Х

15

PCA: Math

Scatterplot Matrices can get unwieldy



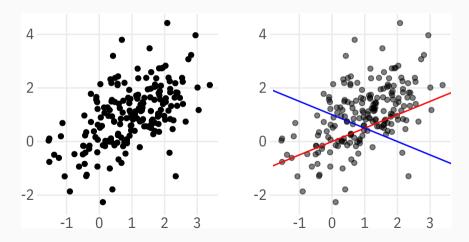
Source:Claus Wilke's data-viz course

Big Picture: Unsupervised Learning

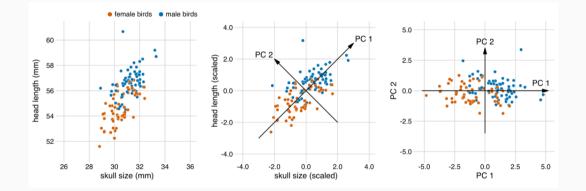
- · Difference between supervised and unsupervised learning
- **supervised**: predict y using \mathbf{x}
 - regression
 - random forests
 - LASSO
 - support vector machines
 - neural networks
- **unsupervised**: characterise \mathbf{X}
 - no response/label y; only have a big data matrix ${f X}$
 - categorise and cluster data (based on substantive knowledge)
 - principal components analysis
 - factor analysis link
 - k-means clustering
 - scaling

- Introductory unsupervised technique for Dimension reduction
- Examples
 - How can we order Democratic congressmen from most liberal to most conservative?
 - How can we rank vice-presidential candidates on different dimensions?
 - How can we classify speeches or votes?
- We don't have ys to construct a regression model.
- Need to infer latent structure

• Suppose we have the following cloud, and want to reduce it to one dimension:



- The core idea behind PCA is to pick the vector through the dimensions along which most the variance in the data is represented
- This amounts to fitting a hyperplane that minimises distance to each point
- That way, we retain as much information as possible
- Conversely, we minimise the reconstruction error because we maximise the amount of information that we retain.



Source: Fundamentals of Data Visualisation

Theory and Practice REVISED EDITION

David A. Freedman

PCA: Mechanics and Implementation

PCA: Mechanics

- Matrix ${\bf X}$ with dimensions $n \times p.$
- Objective is to reduce matrix to ${\boldsymbol{K}}$ dimensions
- PCA dimensions denoted by \mathbf{w}_k
- Each data point reconstructed by observation-specific weight (score) z_{ik} on dimensions w_k .

$$\tilde{\mathbf{x}}_i = \sum_{k=1}^K z_{ik} \mathbf{w}_k$$

PCA: Mechanics

- Matrix ${\bf X}$ with dimensions $n \times p.$
- Objective is to reduce matrix to ${\boldsymbol{K}}$ dimensions
- PCA dimensions denoted by \mathbf{w}_k
- Each data point reconstructed by observation-specific weight (score) z_{ik} on dimensions w_k .

$$ilde{\mathbf{x}}_i = \sum_{k=1}^K z_{ik} \mathbf{w}_k$$

- Objective Function
 - Pick $oldsymbol{ heta} \mathrel{\mathop:}= \mathbf{w}_k, z_{ik}$ as to minimise avg. reconstruction error:

$$\min_{\mathbf{w}, z_{ik}} \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{x}_i - \sum_{k=1}^{K} z_{ik} \mathbf{w}_k||^2$$

- Taking the FOC and simplifying yields the solution $\mathbf{w}_k^T \Sigma \mathbf{w}_k$.
- where ${f \Sigma}$ is the empirical covariance matrix $rac{1}{n}{f X}^{ op}{f X}$
- Minimising reconstruction error \equiv Maximising variance of projected data [Slide 18]

$$\mathbf{w}_k^T \mathbf{\Sigma} \mathbf{w}_k = \lambda_k$$

• \mathbf{w}_k^* is equal to the k th eigenvector of Σ , and $z_{ik}^* = \mathbf{w}_k^T \mathbf{x}_i$.

- Taking the FOC and simplifying yields the solution $\mathbf{w}_k^T \Sigma \mathbf{w}_k$.
- where ${f \Sigma}$ is the empirical covariance matrix $rac{1}{n}{f X}^{ op}{f X}$
- Minimising reconstruction error \equiv Maximising variance of projected data [Slide 18]

$$\mathbf{w}_k^T \mathbf{\Sigma} \mathbf{w}_k = \lambda_k$$

- \mathbf{w}_k^* is equal to the k th eigenvector of Σ , and $z_{ik}^* = \mathbf{w}_k^T \mathbf{x}_i$.
- Remember that $\mathbf{A}\mathbf{w} = \lambda \mathbf{w}$.

- Taking the FOC and simplifying yields the solution $\mathbf{w}_k^T \mathbf{\Sigma} \mathbf{w}_k$.
- where ${f \Sigma}$ is the empirical covariance matrix $rac{1}{n}{f X}^{ op}{f X}$
- Minimising reconstruction error \equiv Maximising variance of projected data [Slide 18]

$$\mathbf{w}_k^T \mathbf{\Sigma} \mathbf{w}_k = \lambda_k$$

- \mathbf{w}_k^* is equal to the k th eigenvector of Σ , and $z_{ik}^* = \mathbf{w}_k^T \mathbf{x}_i$.
- Remember that $\mathbf{A}\mathbf{w} = \lambda\mathbf{w}$.
 - The eigenvector \mathbf{w} points out the vector in multidimensional space along which most of the variance-covariance matrix (Σ) can be captured.

- Taking the FOC and simplifying yields the solution $\mathbf{w}_k^T \mathbf{\Sigma} \mathbf{w}_k$.
- where ${f \Sigma}$ is the empirical covariance matrix $rac{1}{n}{f X}^{ op}{f X}$
- Minimising reconstruction error \equiv Maximising variance of projected data [Slide 18]

$$\mathbf{w}_k^T \mathbf{\Sigma} \mathbf{w}_k = \lambda_k$$

- \mathbf{w}_k^* is equal to the k th eigenvector of Σ , and $z_{ik}^* = \mathbf{w}_k^T \mathbf{x}_i$.
- Remember that $\mathbf{A}\mathbf{w} = \lambda\mathbf{w}$.
 - The eigenvector w points out the vector in multidimensional space along which most of the variance-covariance matrix (Σ) can be captured.
 - we're rotating the coordinate system as to remove the correlation between the covariates.

Singular Value Decomposition (SVD)

- Every matrix ${\bf X}$ can be written as

 $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{ op}$

where $\mathbf{U} \in \mathbb{R}^{n \times n}$, $\mathbf{\Sigma} \in \mathbb{R}^{n \times p}$, $\mathbf{V} \in \mathbb{R}^{p \times p}$.

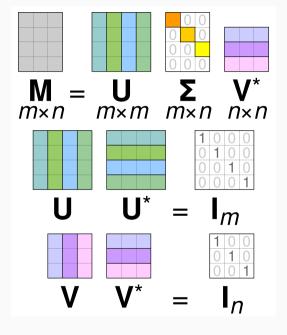
Singular Value Decomposition (SVD)

- Every matrix ${f X}$ can be written as

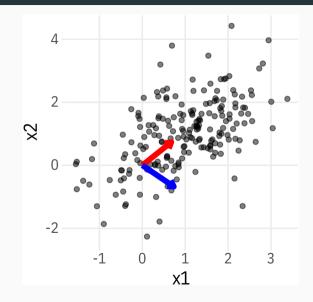
 $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{ op}$

where $\mathbf{U} \in \mathbb{R}^{n imes n}$, $\mathbf{\Sigma} \in \mathbb{R}^{n imes p}$, $\mathbf{V} \in \mathbb{R}^{p imes p}$.

- + $\mathbf{U}^{ op}\mathbf{U} = \mathbf{I}_n$ are left singular vectors
- $\mathbf{V}^{ op}\mathbf{V}=\mathbf{I}_p$ are right singular vectors
- $\mathbf{\Sigma} = \mathsf{diag}(\sigma_1, \dots, \sigma_{\min\{n,p\}})$, where $\sigma_i > \sigma_{i+1}$
- Note: computers often store only $\min\{n,p\}$ dimensions
- Principal components of $\mathbf{X} = \mathbf{U} \mathbf{\Sigma}$



PCA: Viz with simulated data

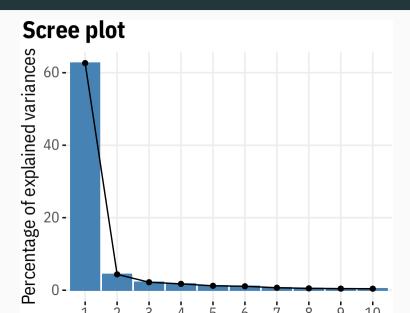


PCA: Implementation on Voting data

```
load("house_113.RData")
votes <- rc$votes[-1, ] %>% as_tibble() # removes Obama
votes <- votes %>% mutate_all(~ case_when(. %in% 1:3 ~ 1, TRUE ~ 0))
house <- rc$legis.data[-1,] %>% as_tibble()
pca <- prcomp(votes)
pca %>% glimpse
```

List of 5
\$ sdev : num [1:444] 12.52 3.31 2.34 2.09 1.74 ...
\$ rotation: num [1:1202, 1:444] -0.0367 -0.0374 -0.0379 0.0371 -0.038 ...
\$ rotation: num [1:1202] "Vote 1" "Vote 2" "Vote 3" "Vote 4" ...
...\$: chr [1:1444] "PC1" "PC2" "PC3" "PC4" ...
\$ center : Named num [1:1202] 0.495 0.505 0.511 0.437 0.514 ...
... attr(*, "names")= chr [1:1202] "Vote 1" "Vote 2" "Vote 3" "Vote 4" ...
\$ sale : logi FALSE
\$ x : num [1:444, 1:444] -0.984 -3.705 -11.935 -12.019 -10.986 ...
... \$: chr [1:444] "PC1" "PC2" "PC3" "PC4" ...
... attr(*, "dimnames")=List of 2
... \$: chr [1:444] "PC1" "PC2" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC2" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC3" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC4" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC4" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC4" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC4" "PC4" ...
... \$: chr [1:444] "PC1" "PC1" "PC4" "PC4" ...
... \$: chr [1:444] "PC1" "PC4" "PC4" ...
... \$: chr [Prcomp"

Visualising Model Fit

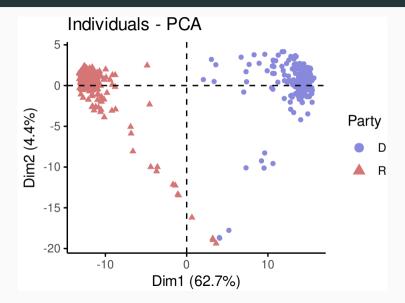


31

house <- house %>% mutate(PC1 = pca\$x[,1])
house %>% arrange(PC1) %>% head(n = 5)

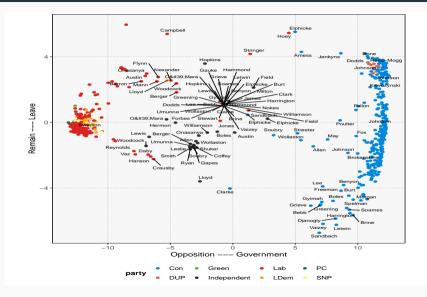
state	icpsrState	cd	icpsrLegis	party	partyCode	PC1
ОН	24	1	29550	R	200	-13.24
ТΧ	49	19	20353	R	200	-13.21
NC	47	13	21349	R	200	-13.17
ОН	24	5	20755	R	200	-13.13
MO	34	7	21150	R	200	-13.10

Latent Dimensions



- Roll-call example: We know that legislators in parliamentary systems predominantly vote along party lines
- But 2017-2019 UK Parliament was unusual: many, many rebellions with respect to Brexit
- Have a $n \times p$ votes matrix with n MPs and p divisions.
- Code an Aye vote as 1, a No vote as -1, and an abstention as 0.
- Use PCA to reduce dimensionality

PCA: Implementation (cont'd)



- For many text/ml applications, data is very large and very sparse
 - Netflix problem
- Use irlba in such settings

- PCA is a dimension reduction technique
- Convenient, but often not ideal:
 - Interpretation of principal components? Typically ad-hoc
 - Information loss
 - No easy way for categorical classification
- · Next couple of weeks: more classification methods