Heterogeneous Treatment Effects, Causal Inference with Text

Apoorva Lal

May 26, 2022

Stanford

Heterogeneous Treatment Effects

Heterogeneous Treatment Effects - Setup

- For i.i.d. observations $i \in \{1,..,N\}$, we observe $\{Y_i,X_i,T_i\}_i^N$ where:
 - Y_i is the outcome
 - $X_i \in \mathbb{R}^k$ is the feature vector
 - W_i is the treatment assignment
- We posit the existence of **potential outcomes** $\boldsymbol{Y_i^{(1)}}$ and $\boldsymbol{Y_i^{(0)}}$
- Under Causal Consistency, Unconfoundedness, and Overlap, we can estimate treatment effects
- We are interested in the Conditional Average Treatment Effect (CATE):
 - CATE $_X = \tau(X) = E[Y^{(1)} Y^{(0)}|X]$

Heterogeneous Treatment Effects - Setup

- For i.i.d. observations $i \in \{1,..,N\}$, we observe $\{Y_i,X_i,T_i\}_i^N$ where:
 - Y_i is the outcome
 - $X_i \in \mathbb{R}^k$ is the feature vector
 - W_i is the treatment assignment
- We posit the existence of **potential outcomes** $\boldsymbol{Y_i^{(1)}}$ and $\boldsymbol{Y_i^{(0)}}$
- Under Causal Consistency, Unconfoundedness, and Overlap, we can estimate treatment effects
- We are interested in the Conditional Average Treatment Effect (CATE):
 - CATE $_X = \tau(X) = E[Y^{(1)} Y^{(0)}|X]$
- Plug-in principle: fit the two conditional expectations using flexible learners

Heterogeneous Treatment Effects - Setup

- For i.i.d. observations $i \in \{1,..,N\}$, we observe $\{Y_i,X_i,T_i\}_i^N$ where:
 - Y_i is the outcome
 - $X_i \in \mathbb{R}^k$ is the feature vector
 - W_i is the treatment assignment
- We posit the existence of **potential outcomes** $\boldsymbol{Y_i^{(1)}}$ and $\boldsymbol{Y_i^{(0)}}$
- Under Causal Consistency, Unconfoundedness, and Overlap, we can estimate treatment effects
- We are interested in the Conditional Average Treatment Effect (CATE):
 - CATE $_X = \tau(X) = E[Y^{(1)} Y^{(0)}|X]$
- Plug-in principle: fit the two conditional expectations using flexible learners
 - · Problems?

Early Ideas

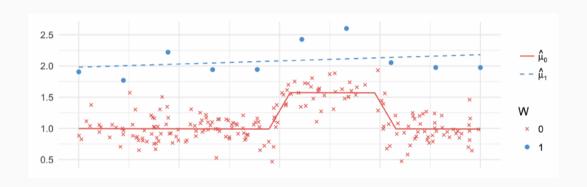
T-Learner

- fits separate models on the treated and controls.
- Learn $\hat{\mu}_{(0)}(x)$ by predicting Y_i from X_i on the subset of observations with $T_i=0$.
- Learn $\hat{\mu}_{(1)}(x)$ by predicting Y_i from X_i on the subset of observations with $T_i=1$.
- Report $\hat{\tau}(x) = \hat{\mu}_{(1)}(x) \hat{\mu}_{(0)}(x)$.

S-Learner

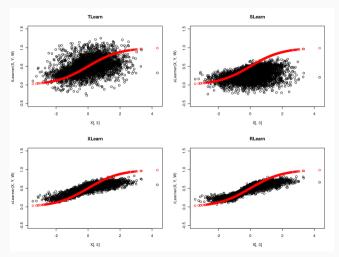
- fits a single model to all the data.
- Learn $\hat{\mu}(z)$ by predicting Y_i from $Z_i:=(X_i,T_i)$ on all the data.
- Report $\hat{\tau}(x) = \hat{\mu}((x,1)) \hat{\mu}((x,0))$.

Δ

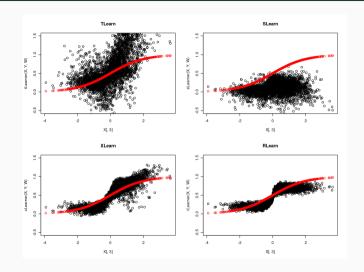


In action: RCT

• Simulation + Implementation



In action: Confounding



Empirical Example

American Political Science Review (2019) 113, 4, 1078-1084

doi:10.1017/S0003055419000443

© American Political Science Association 2019

Letter

Concentrated Burdens: How Self-Interest and Partisanship Shape Opinion on Opioid Treatment Policy

JUSTIN DE BENEDICTIS-KESSNER Boston University MICHAEL HANKINSON Baruch College

Figure 1: Paper for Today

Data for Today

- Research Question: Do people support an opioid addiction treatment clinic
- being established when it is near them?
- Design:: Survey experiment asking:
 - "Do you support the establishment of an opioid addiction treatment clinic [near/far from] you?"

- N=2008, but im going to split the data into 10 random samples of roughly
- · 200 observations

```
foldMake = function (d, nf = 10) {
    n = nrow(d);
    foldid = rep.int(1:nf, times = ceiling(n/nf))[sample.int(n)]
    split(1:n, foldid)
}
foldAssignments = foldMake(df)
```

450B solution: Estimate OLS with interactions

•
$$Y_i = \beta_0 + \beta_1 T_i + \beta_2 X_i + \beta_3 T_i \times X_i + \epsilon_i$$

•
$$\widehat{\mathrm{CATE}}_X = \hat{\beta_1} + \hat{\beta_3} X_i$$

• Why do we need machine learning / regularization to do this?

450B solution: Estimate OLS with interactions

- $Y_i = \beta_0 + \beta_1 T_i + \beta_2 X_i + \beta_3 T_i \times X_i + \epsilon_i$
- $\widehat{\text{CATE}}_X = \hat{\beta_1} + \hat{\beta_3} X_i$
- Why do we need machine learning / regularization to do this?
- Overfitting: We know that in general, when $k \approx N$, traditional OLS methods will badly overfit
- Unknown Functional Form: The analyst does not know what the underlying heterogeneity looks like
- fishing: Many methods provide a way to report HTE of varying functional form in an automated way (to avoid fishing) but also avoiding a pre-analysis plan

ATE using OLS

· Lets estimate OLS on the first dataset

```
mod <- lm(support~near, data = df[foldAssignments[[1]], ])</pre>
summary(mod)
##
## Call:
## lm(formula = support ~ near, data = df[foldAssignments[[1]].
   1)
##
##
## Residuals:
    Min
           1Q Median 3Q
                            Max
## -0.564 -0.411 -0.411 0.436 0.589
##
## Coefficients:
            Estimate Std. Error t value
                                     Pr(>|t|)
-0.1525 0.0706 -2.16
## near
                                              0.032 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.497 on 198 degrees of freedom
    (1 observation deleted due to missingness)
## Multiple R-squared: 0.023, Adjusted R-squared: 0.0181
## F-statistic: 4.67 on 1 and 198 DF, p-value: 0.0319
```

 Suppose now we posit that the treatment will be the strongest for homeowners and non-college educated respondents

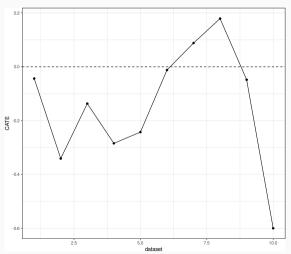
```
df = df %>% mutate(own2 = scale(own, scale = F), college2 = scale(college, scale = F))
mod <- lm(support ~ near * own2 * college2 , data = df[foldAssignments[[1]], ])
tidy(mod) %>% filter(str_detect(term, "near.*"))
```

term	estimate	std.error	statistic	p.value
near	-0.1597	0.0736	-2.1684	0.0314
near:own2	0.1028	0.1566	0.6566	0.5123
near:college2	0.1161	0.1473	0.7880	0.4317
near:own2:college2	-0.1084	0.3135	-0.3459	0.7298

- There is a temptation to stop here and report a heterogenous treatment effect
- "We find, perhaps surprisingly, that among college educated renters, a closer clinic is preferred to a far away one."
- "We find suggestive evidence for what we term a opioid clinic affinity among college educated renters. [Footnote: The effect is statistically significant at the 20 percent level.]"
- "Although we lack the power to make a strong causal claim, the positive coefficient is consistent with a model of...."

Lets investigate how robust this is across the 10 datasets

• Lets investigate how robust this is across the 10 datasets



• Why is this the CATE so variable?

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##
## non-college+homeowner
                                  64
                                            68
                                                 65
                                                      58
                                                           58
                                                                68
                                                                     58
                             62
                                                                          58
## non-college+non-homeowner 37
                                                 46
                                                      31
                                                                32
                                                                          37
## college+non-homeowner
                                                 26
                                                                          20
## college+homeowner
                             73
                                            75
                                                 57
                                                      78
                                                           75
                                                                59
                                                                     71
                                                                          81
```

- Why is this the CATE so variable?
- Only 27 people in the {college + non-homeowner} bin!

Causal Forest

estimate std.err ## -0.14760 0.02217

```
yn = 'support'; wn = 'near'; xn = c("own", "college")
df2 = df[, c(yn, wn, xn)] \%\% na.omit()
y = df2[[yn]]; w = df2[[wn]]
X = df2[, xn] \%\% as.matrix()
cf = causal_forest(X, y, w)
average treatment effect(cf)
```

Heterogeneous effects

```
##
## Best linear fit using forest predictions (on held-out data)
## as well as the mean forest prediction as regressors, along
## with one-sided heteroskedasticity-robust (HC3) SEs:
##
                                                                   Pr(>
##
                                Estimate Std. Error t value
## mean.forest.prediction
                                   0.984
                                             0.147 6.67 0.0000000000
## differential.forest.prediction
                                 -0.650
                                             0.702 - 0.93
                                                                     0.
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Linear Approximation of Heterogeneous Effects

```
tau.hat = predict(cf)
d2 = data.frame(X, tauhat = tau.hat[, 1])
lm_robust(tauhat ~ own * college, d2) %>% tidy() %>%
    select(term, estimate, `std.error`)
```

term	estimate	std.error
(Intercept)	-0.1069	0.0002
own	-0.0728	0.0002
college	0.0032	0.0003
own:college	0.0130	0.0003

Causal Inference with Text

Text as Treatment (Fong and Grimmer (2016, 2021))

- · Goal: discover treatments and estimate their effects
 - CS version: Fong and Grimmer 2016 identify treatments and estimate their Average Marginal Component specific Effect (AMCE)
 - PS version: Fong and Grimmer 2021
- Text \mathbf{T}_i , potential outcome $Y_i(\mathbf{T}_i)$
- Measured treatment $g(\mathbf{T}_i) =: Z_i$
- Unmeasured treatment $h(\mathbf{T}_i) =: B_i$

Text as Treatment (Fong and Grimmer (2016, 2021))

- · Goal: discover treatments and estimate their effects
 - CS version: Fong and Grimmer 2016 identify treatments and estimate their Average Marginal Component specific Effect (AMCE)
 - PS version: Fong and Grimmer 2021
- Text \mathbf{T}_i , potential outcome $Y_i(\mathbf{T}_i)$
- Measured treatment $g(\mathbf{T}_i) =: Z_i$
- Unmeasured treatment $h(\mathbf{T}_i) =: B_i$
- 1. SUTVA
- 2. Random Assignment of Texts
- 3. Measured and Unmeasured representation
- 4. One of two
- Measured and unmeasured latent treatments independent
- · Unmeasured treatments unrelated to outcome

Estimand and Estimator

$$\mathsf{ATE} = \sum_{b \in B} \left(\mathbb{E}\left[Y_i(Z_i = 1, \mathbf{B}_i = b) \right] - \mathbb{E}\left[Y_i(Z_i = 0, \mathbf{B}_i = \mathbf{b}) \right] \right) \mathbf{Pr}\left(B_i = b \right)$$

$$\widehat{\mathsf{ATE}} = \mathbb{E}\left[Y_i(\mathbf{T}_i|g(\mathbf{T}_i=1))\right] - \mathbb{E}\left[Y_i(\mathbf{T}_i|g(\mathbf{T}_i=0))\right]$$

Trump tweets experiment (Section 5.2)

```
library(tidytext); library(texteffect); library(textdata)
dat <- read.csv("trumpdt.csv")</pre>
Y \leftarrow dat[,1]; G \leftarrow dat[,2:4]; X \leftarrow dat[,5:ncol(dat)]
rm(dat)
## Sample Splitting
set.seed(12082017)
training.tweets \leftarrow sample(1:(nrow(X)/3), nrow(X)/3*.5)
train.ind <- c()
for (i in 1:length(training.tweets)){
  train.ind <- c(train.ind, 3*(training.tweets[i]-1)+(1:3))</pre>
```

Supervised Indian Buffet Process (Implementation)

Infer Treatments

Identified Latent Treatments

[7.] "korea"

[8.] "pence"

[9,] "flotus"

[10,] "north"

"cuts"

"stock"

"tax"

"insurance"

"north"

"china"

"wrong"

"abc"

```
load("sibp_search.rds")
# evaluate coherence
# sibp rank runs(sibp.search, X, 10)
sibp.fit = sibp.search[["3"]][["1"]][[1]]
sibp_top_words(sibp.fit, colnames(X))
         [,1]
##
                      [,2]
                                [.3]
                                            Γ.47
                                                       [,5]
    [1,] "minister"
                      "nytimes" "obamacare" "stock"
                                                       "hunt"
    [2,] "prime"
                      "failing" "repeal"
                                            "cnn"
                                                       "witch"
    [3,] "states"
                      "alabama" "replace"
                                            "market"
                                                      "insurance"
    [4.] "united"
                      "luther" "pass"
                                                       "players"
                                            "nbc"
    [5,] "responders" "strange" "dead"
                                            "abc"
                                                       "companies"
    [6.] "behalf"
                      "korea"
                                "premiums"
                                            "travel"
                                                       "total"
```

"players" "nfl"

"flag"

"dems"

"anthem"

"han"

"fake"

"nfl"

Effect estimates by group

	Model 1	Model 2	Model 3
(Intercept)	-82.943	-1.355	95.551
	(1.703)	(1.297)	(1.023)
Z1	26.931	16.575	5.363
	(7.714)	(5.876)	(4.634)
Z2	-29.423	-28.136	-16.620
	(8.098)	(6.168)	(4.865)
Z3	-19.581	-15.622	-0.192
	(6.413)	(4.885)	(3.853)
Z4	4.762	5.640	6.685
	(9.498)	(7.235)	(5.706)
Z5	-29.515	-15.210	2.028
	(11.556)	(8.803)	(6.942)
Num.Obs.	752	752	752
R2	0.054	0.055	0.017
		0.040	0.040

Workflow

Workflow

- Learn to use the command line for large/long-running jobs
 - Farmshare / Sherlock access
- Spatial data