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)
Student’s t
R Student(ν) Ix

(
ν

2
,
ν

2

) Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 +
x2

ν

)−(ν+1)/2

0 ν > 1


ν

ν − 2
ν > 2

∞ 1 < ν ≤ 2

Sampling dist of
pivotal q√
n(X̄n − µ)/σx)

X ∼ N (0, 1) , Y ∼ χ2
ν

=⇒ X/
√
Y/ν ∼ t(ν)

Chi-square
(0,∞)

χ
2
k

1

Γ(k/2)
γ

(
k

2
,
x

2

)
1

2k/2Γ(k/2)
x
k/2−1

e
−x/2

k 2k
Sampling dist of
sample variance;
SSQ of IID Normal

X ∼ N (0, 1) =⇒
X2 ∼ χ2

1

F
(0,∞)

F(d1, d2) I d1x
d1x+d2

(
d1

2
,
d2

2

)
√

(d1x)
d1d

d2
2

(d1x+d2)d1+d2

xB
(
d1
2 ,

d1
2

) d2

d2 − 2

2d22(d1 + d2 − 2)

d1(d2 − 2)2(d2 − 4)

Ratio of
Sum of Squares

X ∼ χ2
µ, Y ∼ χ

2
ν

=⇒ (X/µ)/(Y/ν) ∼ F(µ, ν)

Exponential
(0,∞)

Exp (λ) 1− e−xλ λe
−xλ 1

λ

1

λ2

wait time of
poisson process Exp (λ) = Gamma (1, λ)

Gamma
(0,∞)

Gamma (α, λ)
γ(α, βx)

Γ(α)

λα

Γ (α)
x
α−1

e
−λx α

λ

α

λ2

Sum of IID
exponential rvs

Normal Approx: α large
N
(
α/λ, α/λ2

)
Beta
(0, 1)

Beta (α, β) Ix(α, β)
Γ (α+ β)

Γ (α) Γ (β)
x
α−1

(1− x)β−1 α

α+ β

αβ

(α+ β)2(α+ β + 1)

Ratio of
gamma rvs U [0, 1] = Beta (1, 1)

Dirichlet
Unit Simplex Dir (α)

Γ
(∑k

i=1 αi
)

∏k
i=1 Γ (αi)

k∏
i=1

x
αi−1

i

αi∑k
i=1 αi

EXi(1− EXi)∑k
i=1 αi + 1

Multivariate analogue
of Beta Marginals are Beta

Weibull
[0,∞)

Weibull(λ, k) 1− e−(x/λ)k k

λ

(
x

λ

)k−1

e
−(x/λ)k

λΓ

(
1 +

1

k

)
λ
2
Γ

(
1 +

2

k

)
− µ2 failure rates

Pareto Pareto(xm, α) 1−
(
xm

x

)α
x ≥ xm α

xαm
xα+1

x ≥ xm
αxm

α− 1
α > 1

x2
mα

(α− 1)2(α− 2)
α > 2 Long tail -income
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2 Probability and Mathematical Statistics
2.1 Basic Concepts and Distribution Theory
Defn 2.1 (Probability).
Given a measurable space (Ω,F), if P [Ω] = 1, P [] is called a probability measure
and so (Ω,F , P ) is a probability space. Sets f ∈ F are called events, points ω ∈ Ω
are called outcomes, and P (f) is called the probability of f.

Defn 2.2 (Kolmogorov Axioms).
The triple (Ω,S, P ) is a probability space if it satisfies the following

• Unitarity: Pr (Ω) = 1

• Non Negativity: ∀s ∈ S,Pr (a) ≥ 0 Pr (a) ∈ R ∧Pr (a) <∞

• Countable Additivity: If A1, A2, . . . ,∈ S are pairwise disjoint[i.e. ∀i 6= j, Ai ∩
Aj = ∅], Then

P
( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai)

Other properties for any event A,B

• A ⊂ B =⇒ Pr (A) ≤ Pr (B)

• Pr (A) ≤ 1

• Pr (A) = 1−Pr (Ac)

• Pr (∅) = 0

Fact 2.1 (Properties of Probability).
For events A,B ∈ E ,

1. 0 ≤ Pr (A) ≤ 1: Events range from never happening to always happening

2. Pr (E) = 1: Something must happen

3. Pr (∅) = 0: Nothing never happens

4. Pr (A) +Pr (Ac) = 1: A must either happen or not happen

Defn 2.3 (Random Variable).
X : Ω→R s.t. ∀x ∈ R, {ω : X(ω) ≤ x} ∈ F , where Ω is the sample space and F is
the event space.
i.e. a RV is amapping/function from the sample space (or per some authors, event
space) to the real line.

Example 2.2 (Continuous Random Variable).

• Sample space is R

• Event space is B(R): the Borel σ-algebra on the real line

• Px defined so that ∀A ∈ B(R),

Px(A) = Pω(ω ∈ Ω : x(ω) ∈ A) =: Pω(x
−1(A))

Defn 2.4 (Demorgan’s Laws, Conditional Probability).

• DM: (A ∩B) = (AC ∪BC)C ; (A ∪B) = (AC ∩BC)C

• Inclusion-Exclusion Rule: (A∪B) = (AC∩BC)C = P (A)+P (B)−P (A∩B)

• Conditional Probability: P (A|B) = P (A ∩B)/P (B)

Theorem 2.3 (Bayes Rule).

P (A|B) =
P (B|A)P (A)

P (B)

Equivalently,

f(θ|x) = f(x|θ)f(θ)∫
θ′∈Θ f(x|θ′)f(θ′)dθ′

=

f(x|θ)︸ ︷︷ ︸
likelihood

f(θ)︸︷︷︸
prior

f(x)︸︷︷︸
data

Defn 2.5 (Statistical Independence).
A ⊥⊥ B ⇔ P (A ∩B) = P (A)P (B), P (A|B) = P (A)

2.2 Densities and Distributions
Defn 2.6 ((Cumulative) Distribution Function).
F : R→[0, 1]

F(x) = Pr (X ≤ x) =
∫ x

−∞
p(x)dx

Similarly, F(x−) := Pr (X < x), so Pr (X = x) = F(x)− F(x−).
Properties of CDFs:
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1. Bounded on [0, 1]: limx→∞ F(x) = 1; limx→−∞ = 0

2. Nondecreasing: if x1 < x2, then F(x1) ≤ F(x2)

3. Right Continuous: limh→0+ F(x+ h) = F(x)

4. limh→0+ F(x− h) = F(x−) = F(x)−Pr (X = x) = Pr (X < x)

Suppose F′(x) exists ∀x ∈ R and∫ ∞
−∞

F′(x)dx <∞

then F is absolutely continuous with density function F′ = f (·)
The sample analogue of theCDF is theEmpiricalCDF (ECDF).AnECDF forX1, . . . , Xn ∈
R is

F̂(x) ≡ Fn(x) =
1

n

n∑
i=1

1Xi≤x

for −∞ < x <∞.

Defn 2.7 (Probability Density / mass Function).
A density is f : R→R such that

F(x) =
∫ x

−∞
p(t)dt ,−∞ < x <∞

which defines the density / PMF

f (x) := F′(x)︸ ︷︷ ︸
Continuous Version

≡ Pr (X = x)︸ ︷︷ ︸
Discrete version

wherever F′(·) exists.
Since F is nondecreasing, f is nonnegative and must have∫ ∞

−∞
f(x)dx = 1

Fact 2.4 (Integration w.r.t. a distribution function).
SupposeX is a random-variable with distribution function F. Then we expect that
for any set A ⊂ R

Pr (X ∈ A) =
∫
A
dF(x)

This is a Lebesgue-Stieltjes integral of X(ω) with respect to measure P .

IfX has an absolutely continuous distribution, this integral simplifies to the famil-
iar form of a Riemann-Stieltjes integral

F(x) =
∫ x

−∞
dF(t) =

∫ x

−∞
f(t)dt

and more generally ∫ ∞
−∞

g(x)dF(x) =
∫ ∞
−∞

g(x)f (x) dx

Defn 2.8 (Quantile Function / Inverse-CDF).
Since real valued R.V. can be characterised by its F s.t. F (x) := Pr (X ≤ x), we can
invert it. In other words, we can ask for the point xp s.t. Pr (X ≤ xp) = τ for any
τ ∈ [0, 1]. This defines the quantile function
Q : (0, 1)→R where

Qx(τ) ≡ F−1(τ) := inf {x : F (x) ≥ τ}

is called the τ th quantile of F . The associated loss-function is the check function

ρτ (u) = u(τ − 1u≤0) = 1u>0τ |u|+ 1u≤0(1− τ) |u|

If the distribution of Y is continuous, one can show that the τ−th quantile of the
distribution of Yi =: Qτ minimises the distance between Yi and y ∈ R, where the
distance is defined as the check function.

Properties of quantile functions

1. Q(F(x)) ≤ x ,−∞ < x <∞

2. F(Q(t)) ≥ t , 0 < t < 1

3. Q(t) ≤ x⇔ F(x) ≥ t

4. If F−1 exists, then Q(t) = F−1(t)

5. if t1 < t2,Q(t1) ≤ Q(t2)

Fact 2.5 (Equivariance of quantiles under monotone transformations).
Let g(.) be a nondecreasing function. Then, for a r.v. Y ,

Qτ [g(Y )] = g[Qτ (Y )]

i.e. the quantiles of g(Y ) coincide with transformed quantiles of Y .
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Figure 1: CDF and Quantile function. Rotate and flip CDF to get QF

Fact 2.6 (Lorenz Curve).
let Y be a positive random variable (e.g. income) with distribution function FY
and mean µ <∞; then the Lorenz curve mayb be written in terms of the quantile
function QY (τ)

λ(t) = µ−1
∫ t

0

QY (τ)dτ

which describes the proportion of total wealth owned by the poorest t proportion
of the population. Gini’s mean difference (‘gini coefficient’) can be expressed as

γ = 1− 2

∫ 1

0

λ(t)dt

which is twice the area between the 45◦ line and the Lorenz curve.

2.2.1 Multivariate Distributions

Defn 2.9 (Random Vectors).
A p−random vector is a map X : Ω→Rp, X(ω) := (X1(ω), . . . , Xp(ω))

′ such that
each Xi is a random variable.
Joint CDF of X is

F(x) := P [X ≤ x] := P [X1 ≤ x1, . . . , Xp ≤ xp]

If X is continuous, the joint pdf is

f (x) =
∂p

∂x1 . . . ∂xp
F(X)

The marginals of F and f are

FXi (xi) := P [Xi ≤ xi] = F(∞, . . . ,∞, xi,∞, . . . ,∞)

fXi (xi) :=
∂

∂xi
FXi (xi) =

∫
Rp−1

f(x)dx−i

The conditional CDF and PDF of X1|(X2, . . . , Xp) are defined as

FX1|X−1
(x1) := P [X1 ≤ x1|X−1 = x−1]

fX1|X−1=x−1
(x1) :=

f(x)

fX−1
(x−1)

Defn 2.10 (Marginalization of f(x, y)).

fx(x) =

∫ ∞
−∞

f(x, y)dy

Defn 2.11 (Conditional Distribution).

f(y|x) = f(x, y)

fx(x)

To get marginal for x, we can integrate out y.

fx(x) =

∫
fx|y(x|y)fy(y)dy

Defn 2.12 (Independent Random Variables).
two r.v.s X and Y are said to be independent if

• Joint density can be factored into marginals: fX,Y (X,Y ) = fx(X)fy(Y )

• Cov [X,Y ] = 0

• ρ(X,Y ) = 0

• V [X + Y ] = V [X] + V [Y ]
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2.3 Moments
For a random variable x with support [x, x̄]

Defn 2.13 (N-th rawmoment).
µj =:= Exn

Defn 2.14 (N-th central moment).
µj := E

[
(X − E [X])j

]
Defn 2.15 (Expectation and Variance).
The expectation is the Lebesgue-Stieltjes integral of r.v. X(ω) with respect to mea-
sure P.
Common notation for expectation includes

• E [X]

• EX

•
∫
Ω
X(ω)dP(ω)

•
∫
Ω
X(ω)dP(dω)

•
∫
XdP

E [X] :=

∫ x̄

x

xdF(x) ≡︸︷︷︸
If Absolute Continuity holds

∫ x̄

x

xf (x) dx

V [X] :=

∫ x̄

x

(X − E(X))2dx

= E[(X − EX)2] = E(X2)− (EX)2

Defn 2.16 (Variance Covariance Matrix).
For vector-valued RVs, this translates to

V [X] = E(XX′)− E(X)E(X)′

Cov [X,Y] = E[(X− EX)(Y − EY)′] = E [XY]− E [X]E [Y]

Defn 2.17 (Skewness and Kurtosis).

Skewness ≡ γ :=
E
[
(X − µ)3

]
σ3

Kurtosis ≡ κ :=
E
[
(X − µ)4

]
σ4

− 3

Fact 2.7 (Linear functions of a vector valued RV).
For any (well-behaved) vector rv x, Cov [Ax+ b] = AΣA′ where Σ is the covari-
ance matrix of the random vector x.
For Normal quantities whereX ∼ N (µ,Σ),

Ax+ y ∼ N (Aµ+ y,AΣA′)

Σ−1/2 ∼ N (0, I)

(x− µ)′Σ−1(x− µ) ∼ χ2
n

Theorem 2.8 (Law of the Uncoscious Statistician (LOTUS)).
let Y = r(X) is a transformation of a random variable X . Then,

E [Y ] = E [r(X)] =

∫
r(x)dF (x) =

∫
r(x)f(x)dx

Example 2.9 (Properties of combinations of RV).

• E [aX + bY ] = aE [X] + bE [y] ; Expectation is a linear operator

– E [(
∑
i aiXi)] =

∑
i aiE [Xi]

– E [(
∏
iXi)] =

∏
i E [Xi]

– For p−random vector X, E [AX+ b] = AE [X] + b for q × p matrix A
and b ∈ Rq

• Variance

– V [aX] = a2V [X]

– V [aX + bY ] = a2V [X] + b2V [Y ] + 2abCov [X,Y ]

– Cov [X,X] = V [X]

– ∀a, b, c, d ∈ R, Cov [aX + c, bY + d] = abCov [X,Y ]

– Cov [X +W,Y + Z] = Cov [X,Y ]+Cov [X,Z]+Cov [W,Y ]+Cov [W,Z]
– For random vectorX, V [AX+ b] = AV [X]A⊤ for q× pmatrixA and
b ∈ Rq
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Defn 2.18 (Moment Generating Function).
IfX is nonnegative, we know E [exp(tX)] <∞∀t ≤ 0. Then, we define the Laplace
Transform

L(t) = E [exp(−tX)] ; t ≥ t

Since this is limited to nonnegative RVs, one generalises them to Moment Gener-
ating Functions

MX(t) = E [exp(tX)]

e.g. Standard Normal MGF et2/2
For a given r.v. with MGFMx(t), |t| < δ for some δ > 0, E [Xn] exists and is finite
∀n = 1, 2, . . . and

Mx(t) =

∞∑
j=0

tj
E
[
Xj
]

j!

and E [Xn] =M
(n)
x (0).

Moments from MGF The kth derivative of the m.g.f. evaluated at t = 0 is the kth
(uncentered) moment of X .

∂kMx

∂tk
|t=0 = E

[
Xk
]

Defn 2.19 (Cumulant + Cumulant Generating Function).
LetX be a real-valued scalar rv andMx(t) be its moment generating function. The
cumulant-generating function of X is defined as

KX(t) = logMx(t), |t| < δ

the CGF may be expanded to the form

Kx(t) =

∞∑
j=1

κj
j!
tj , |t| < δ

where κ1, κ2, . . . are constants that depend on the distribution ofX and are called
Cumulants. Cumulants can be obtained by differentiating the CGF

κj =
∂j

∂tj
Kx(t)

∣∣∣∣
t=0

; j = 1, 2, . . .

Defn 2.20 (Characteristic Function).
The characteristic function of a random variable X is the function

ϕ(t) := E [exp(itX)] ,−∞ < t <∞ , i =
√
−1

ϕ(t) = E [cos(tX)] + iE [sin(tX)]

IfX has a moment generating functionM , then it can be shown thatM(it) = ϕ(t).
ϕ, unlike the MGF, is always well defined, and shares properties of the MGF.

Defn 2.21 (Order Statistics).
X1, . . . , Xn ∼iid fx (x) with FX (x). X(k) is the k−th order statistic (in ascending
order)

fX(k)
(x) =

n!

(k − 1)!(n− k)!
FX (x)

k−1
(1− FX (x))n−kf (x)

Defn 2.22 (Correlation Coefficient).

ρ[X,Y ] =
Cov [X,Y ]

σxσy
∈ [−1, 1] by Cauchy Schwarz

• ρ[X,Y ] = 1⇔ ∃a, b ∈ R with b > 0 s.t. Y = a+ bX

• ρ[X,Y ] = −1⇔ ∃a, b ∈ R with b > 0 s.t. Y = a− bX

Defn 2.23 (Entropy).
Cover (1999, Chap 2-4)
For a (discrete) random variable X with pmf f (xi), the entropyH(X) is

H(X) := −
∑
x∈X

p(x) logb (p(x))

where pi isPr (X = x) ∀i ∈ Supp [X]. By convention, the log is taken with base 2.
Properties:

• H(X) ≥ 0

• Hb(X) = logb aHa(X)

• Conditioning reduces entropy: H(X|Y ) ≤ H(X); with equality IFF X ⊥⊥ Y

– generalisation : H(X1, . . . , Xn) ≤
∑n
i=1H(Xi) with equality IFF Xis

are independent

• H(X) ≤ log |X | with equality IFF X is uniformly distributed in X
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• H(p) is concave in p

Defn 2.24 (Relative Entropy / Kullback-Leibler Distance).
Relative entropy of pmf p w.r.t. pmf q

D(p||q) :=
∑
x

p(x) log
p(x)

q(x)

This is not a conventional metric because it is not symmetric.

Defn 2.25 (Mutual Information).

I(X;Y ) :=
∑
x∈X

∑
y∈Y

p(x, y)︸ ︷︷ ︸
joint

log

joint︷ ︸︸ ︷
p(x, y)

p(x)p(y)︸ ︷︷ ︸
product of marginals

H(X) = Ep
[
log

1

p(X)

]
H(X,Y ) = Ep

[
log

1

p(X,Y )

]
H(X|Y ) = Ep

[
log

1

p(X|Y )

]
I(X;Y ) = Ep

[
log

p(X,Y )

p(X)p(Y )

]
D(p||q) = Ep

[
log

p(X)

q(X)

]
This is the KL divergence between the joint and product of marginals.
Properties

• I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X,Y )

• Chain rules

– H(X1, X2, . . . Xn) =
∑n
i=1H(Xi, Xi−1, . . . X1)

– I(X1, . . . , Xn;Y ) =
∑n
i=1 I(Xi;Y |X1, . . . , Xi−1)

Defn 2.26 (Copula).
For a pair of r.v.s X,Y with joint distribution G(x, y) and marginal distribution
functions F (x) and H(y), a copula function

C : [0, 1]2→[0, 1]; C(u, v) = G(F−1(u),H−1(v))

where C has the following properties

1. C(u, 0) = C(0, v) = 0 ∀u, v ∈ [0, 1]

2. C(u, 1) = C(1, v) = 1 ∀u, v ∈ [0, 1]

3. ∀ u1 < u2 ∧ v1 < v2 ∈ [0, 1],C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0

Defn 2.27 (Frechet Bounds).

max {F (x) ,H(y)− 1, 0} ≤ G(x, y) ≤ min {F (x) ,H(y)}

Important in partial identification lit. The upper bound his occurs when X and
Y are comonotonic, that is, when Y can be expressed as a deterministic, non-
decreasing function of X . The lower bound is achieved when X and Y are coun-
termonotonic, so Y is a deterministic, non-increasing function of X . These two
very special cases correspond to the situations in which all of the mass of the cop-
ula function is concentrated on a curve connecting opposite corners of the unit
square. These special cases correspond to rank correlation of +1 and −1 respec-
tively. The other important special case is independentX and Y , which obviously
corresponds to C(u, v) = uv.

2.4 Transformations of Random Variables
2.4.1 Useful Inequalities
Basic question : given a random variableX with expectation E [X], how likely isX
to be close to its expectation, and how close is it likely to be? This implies putting
bounds on quantities of the form Pr (X ≥ E [X]± t) t ≥ 0.

Theorem 2.10 (Cauchy Schwartz Inequality).
For random n-vectors a,b, ∥∥a⊤b∥∥ ≤ ‖a‖ ‖b‖
for RVs X,Y with E

[
X2
]
<∞∧ E

[
Y 2
]
<∞

E [|XY |] ≤
√
E [X2]E [Y 2]

Cov [X,Y ]
2 ≤ σxσy
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Theorem 2.11 (Jensen’s Inequality).
Let Y be a random function and g(·) be a concave function. If E [Y ] and E [g(Y )]
exist, then E [g(Y )] ≤ g(E [Y ]).
Similarly, if f : R→R is convex, E [f(X)] ≥ f(E [X]).

Theorem 2.12 (Markov’s Inequality).

Pr (|X| ≥ t) ≤ E [X]

t
∀t > 0 Equivalent

Pr (ψ(X) ≥ t) ≤ E [ψ(X)]

t

Where ψ(.) is a nonnegative, nondecreasing function; in the basic form ψ = I .
Equivalently, for ϵ, r ≥ 1

P [|X| > ϵ] ≤ E [|X|r]
ϵr

Theorem 2.13 (Chebychev’s Inequality).
Special case of Markov’s inequality.
Let X be any r.v. w E [X] = µ <∞ and V [X] = σ2 <∞. Then, ∀ϵ > 0

Pr (|X − µ| > ϵ) ≤ V [X]

ϵ2
=
σ2

ϵ2

This implies that averages of random variables with finite variance converge to
their mean.

Theorem 2.14 (Kolmogorov Inequality).
LetXi, i = 1, . . . , n be independent random variables with E [Xi] = 0 having finite
second-order moments. Then, for ε > 0,

Pr

(
max
1≤j≤n

Xi ≥ ε
)
≤
∑
j E [Xj ]

2

ε2

Theorem 2.15 (Chernoff Inequality).
X ∼ N (0, 1) Let g(X) be an absolutely continuous function of X having finite
variance. Then

E
[
[g′(X)2]

]
≥ V [g(X)]

equality IFF g(X) is linear in X .

Theorem 2.16 (Holder’s Inequality).
Let X be a r.v. with range X and let g1, g2 denote real valued functions on X . Let
p, q > 1 s.t. 1

p +
1
q = 1. Then

E [|g1(X)g2(X)|] ≤ E [|g1(X)|p]1/p E [|g2(X)|q]1/q

Theorem 2.17 (Chernoff Bounds).
Let Z be any random variable. Then, ∀t ≥ 0,

Pr (Z ≥ E [Z] + t) = min
λ≥0

E
[
eλ(Z−E[Z])

]
e−λt = min

λ≥0
MZ−E[Z](λ)e

−λt

WhereM is the MGF of Z.

Theorem 2.18 (Hoeffding’s Inequality).
Let X be a random variable with a ≥ X ≥ b. Then, ∀s ∈ R,

logE
[
esX

]
≤ sE [X] +

s2(b− a)2

8

2.5 Transformations and Conditional Distributions
Y = g(X) in terms of fx and Fx.

Defn 2.28 (CDF of transformation).

FY (y) = Pr (Y ≤ y) = Pr (g(X) ≤ y) = Pr
(
X ≤ g−1(y)

)
= FX

(
g−1(y)

)
Defn 2.29 (Change of Variables technique for PDF of transformation).
Density of a transformation y = g(X) of a random variable x:

fY (y) = fx(g
−1(y))

∣∣∣∣ ddy g−1(y)
∣∣∣∣

If X ∈ Rn,

fy (y) = fx
(
g−1(y)

) ∣∣detJg−1(y)
∣∣ = fx

(
g−1(y)

) ∣∣detJg(g−1(y))∣∣−1
Example 2.19 (finding pdf of transformation).
Let X have f (x) = 3x2, and we want to find Y = X2.
Then, g−1(y) = y1/2, and ∂g−1(y)

∂y = (1/2)y−1/2

Plugging into the expression above, we get
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fY (y) = fx(g
−1(y))

∣∣∣∣ ddy g−1(y)
∣∣∣∣

= 3(y1/2)2
∣∣∣∣12y−1/2

∣∣∣∣ = 3

2
y × y−1/2 =

3

2
y1/2

Defn 2.30 (Conditional Expectations).
For jointly continuous X,Y with joint pdf f , the conditional expectation of Y given
X = x is a function

E [Y |X = x] =

∫
ydFY |x (y|X) =

∫
y fY |X(y|x) dy

Conditional Expectation of function h of random variables is

E [h(X,Y )|X = x] =

∫ ∞
−∞

h(x, y) fY |X(y|x) dy ∀x ∈ Supp[X]

Defn 2.31 (Conditional Variance).
For r.v.s X,Y , conditional variance V [Y |X = x] is

V [Y |X] = E
[
(Y − E [Y |X])2|X

]
= E

[
Y 2|X

]
− [E [Y |X]]

2

Theorem 2.20 (Law of Iterated Expectations/ Adam’s Law).

E [Y ] = E [E [Y |X]]

Theorem 2.21 (Law of Total Variance / ANOVA Theorem / Eve’s Law).

V [Y ] = E [V [Y |X]] + V [E [Y |X]]

2.5.1 Distributions facts and links between them

Fact 2.22 (Normal Distribution Facts).
Let X ∼ N

(
µx, σ

2
x

)
and Y ∼ N

(
µy, σ

2
y

)
• ∀a, b ∈ R a 6= 0,W = aX + b =⇒ W ∼ N

(
aµx + b, a2σ2

X)
)

• If X ⊥⊥ Y and Z = X + Y , then Z = N
(
µx + µy, σ

2
x + σ2

y

)
Fact 2.23 (Multivariate Normal).
Np (µ,Σ)with µ a p−vector ofmeans andΣ a p×p symmetric and positive definite
matrix.

PDF of Np (µ,Σ) is

ϕΣ =
1

(2π)p/2 |Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
It also inherits the linearity property of the form

ANp (µ,Σ) = Nq
(
Aµ+ b,AΣA⊤

)
where A is q × p

Fact 2.24 (Special Cases of RVs). • t : let x ∼ χ2
n, Y = z/

√
x/n→ y ∼ tn

• F : let x1 ∼ χ2
n1, and x2 ∼ χ2

n2; y = x1/n1

x2/n2
→ Y ∼ Fn1, n2

• let x ∼ N (0, I) and A is symmetric, then

p(x′Ax) ∼ χ2(K) whereK := tr(A)

• Bin(1, p) ∼ Bern(p)

• Beta(1, 1) ∼ Unif(0,1)

• Gamma(1, λ) ∼ Expo(λ)

• χ2
n ∼ Gamma(n/2, 1/2)

• NBin(1, p) ∼ Geom(p)

Fact 2.25 (Misc Distribution Facts).

• Exponential distribution is

– memoryless: Pr (X > s+ t|X > s) = Pr (X > t)

– Gaps between Poisson realisations is exponential
– Scales (Y ∼ Expo(λ) =⇒ λY = Expo(1))
– Order statistics (min, max) of expos are also expo

• ifX ∼ Gamma(a, λ), it is the distribution of thewait time for the a realisations
of a Expo(λ) process

• Discrete distributions: If X ∼

– Bernoilli, coin flip,
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– Binomial: n coin flips,
– Geometric: number of tails before first head when success probability is
p

– Negative binomial: the number of tails until rth head
– Poisson: if rare events occur at rate λ per unit time, the number events

that occur in a unit or space of time is X
– Multinomial: n items that can fall into k buckets independently w.p. p =
(p1, . . . , pk).

Defn 2.32 (Exchangeability).
Real-valued r.v.s X1, . . . , Xn are said to have an exchangeable distribution if the
distribution of X1, . . . , Xn) is the same as the distribution of Xi1 , . . . , Xin for any
permutation i1, . . . , in of 1, . . . , n.
Defn 2.33 (Martingales).
Consider a sequence of random variables {X1, X2, . . .} s.t. E [|Xn|] < ∞ ∀ n = 1.
The sequence {X1, X2, . . .} is said to be martingale if

∀n,E [Xn+1|X1, . . . , Xn] = Xn

2.6 Statistical Decision Theory
Define a statistical decision problem as a game involving ‘nature’ and ‘decisionmaker’(DM).
In the first stage (data-generation), nature selects a parameter θ ∈ Θ and uses it
to generate data according to the distribution Pθ. In the second stage (decision
making), the DM observes the data but not θ, but knows the statistical model used
by nature. Based on realised data, the DM would like to take an action a ∈ A
whose payoff depends on the parameter drawn by nature , which can be modeled
by endowing DM with a state-contingent utility u(a, θ) or loss L(a, θ). The DM’s
decision problem is the selection of an action depending on the realisation of the
data.
Defn 2.34 (Statistical Problem).
is a tuple

(Θ,A, u(.), {Pθ})

containing a parameter space, action space, utility function, and statistical model.
A decision rule d is a function d : X→A.
Example 2.26 (Estimation Problem).
The action space A = Θ. The DM needs to decide what is the parameter θ that
generated the data. The decision rule for this problem is called an estimator. A
typical loss function is quadratic loss := L(a, θ) = (a− θ)2.

Example 2.27 (Testing Problem).
Partition the parameter space into Θ0 [Null hypothesis] and Θ1 [Alternative hy-
pothesis]. Action space A = {a0, a1} defined as choosing null or alternative. De-
cision rules are called a test. Loss function is typically zero-one loss L(a1, θ0) =
L(a0, θ1) = 1; 0 otherwise.
Example 2.28 (Inference Problem).
A ⊆ Rwhere each action a[] is an interval containing the best candidate values for
θ. Decision rules here are confidence sets.
Defn 2.35 (Risk Function).
of decision rule d is

R(θ; d) = EPθ [L(d(X), θ)]

A decision rule d is dominated by d′ if R(θ; d′) ≤ R(θ; d). Decision rules that are
not dominated are called admissable.
Example 2.29 (James-Stein Estimator).
Given (possibly correlated) jointly normal r.v’s Y1, . . . , Yn with yi ∼ N (µi, 1), and
would like to estimate the n− vector µ under squared loss

L(µ̂, µ) =
n∑
i=1

(µ̂i − µ)2 = ‖µ̂− µ‖2

The MLE for each µ is just the (unbiased) vector Y itself, but the estimator

µ̂i =

(
1− n− 2∑

i Y
2
i

)
Yi

has better L than the MLE whenever n ≥ 3.
Defn 2.36 (Bayes Risk).
given probability distribution π onΘ (defined as a prior), we define the Bayes risk
of a decision rule d as

r(π, d) =

∫
Θ

R(θ, d)dπ(θ) = Eπ [R(θ;R)]

A decision rule d∗ is said to be Bayes Rulew.r.t. prior π and class of decision rules
D if r(π, d∗) = infd r(π, d) [i.e. it minimises Bayes Risk].
Defn 2.37 (Minimax).
a decision rule d0 is said to be minimax (relative to a class D of decisions) if

sup
θ∈Θ

R(θ, d0) = inf
d∈D

sup
θ∈Θ

R(θ, d)
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minimax rule protects DM against worst-case situations.

2.7 Estimation
Defn 2.38 (Sample Statistic).
For iid random variables X1, X2, . . . , Xn, a sample statistic is a function

T(n) = h(n)(X1, X2, . . . , Xn)

where h(n) : Rn→R ∀n ∈ N

Defn 2.39 (Unbiasedness).
An estimator θ̂ is unbiased if E

[
θ̂
]
= θ

Defn 2.40 (Consistency).
An estimator θ̂ is consistent if θ̂ p→ θ.

Defn 2.41 (Asymptotic Normality).
An estimator θ̂ is asymptotically normal iff

√
n(θ̂(X)− θ) d→N

(
0,V

[
θ̂
])

where V
[
θ̂
]−1

is called the asymptotic efficiency.

Defn 2.42 (Sampling Variance of an Estimator).
For an estimator θ̂, the sampling variance is V

[
θ̂
]
.

Defn 2.43 (Mean Squared Error(MSE) of an estimator).
For an estimator θ̂, the MSE in estimating θ is

MSE = E
[
(θ̂ − θ)2

]
=
[
E
[
θ̂
]
− θ
]2

︸ ︷︷ ︸
Bias

+ V
[
θ̂
]

︸ ︷︷ ︸
Variance

argmin
c∈R

E
[
(X − c)2

]
= E [X]

Fact 2.30 (Properties of Mean and Variance).

• X̄ = 1
n

∑n
i=1Xi and S2

X = 1
n−1

∑n
i=1(Xi − X̄)2 are unbiased estimators of

E [X] and V [X] respectively.

• Both are asymptotically normal

• If Xi ∼ N
(
µ, σ2

)
– X̄ ∼ N

(
µ, σ

2

n

)
– n−1

σ2 S
2
X ∼ χ2

n−1

– X̄ and S2
X are independent

–
X̄ − µ√
S2
X/n

∼ tn−1

2.8 Hypothesis Testing
Defn 2.44 (Test statistic).
A test statistic, similar to an estimator, is a real valued functionSn := T (X1, . . . , Xn)
of the data sample. It is a random variable. A test t : Domain(Tn)→{0, 1}.
standard normal test statistic:

s =

∣∣∣∣∣ θ̂ − θ0ω

∣∣∣∣∣ ≤ z(1−α/2)
where ω =

√
σ2/n = 1

n−k
∑
ûi

2

• Null H0 : θ ∈ Θ0 is held as true unless data provides sufficient evidence
against it. typically θ = 0 (’simple’ hypothesis)

• Alternative H1 : θ ∈ Θ1. Held to be true IFF null is found false.

Θ0,Θ1 chosen by the econometrician.
Let S ∈ S be a test statistic and its support. A decision rule is a partition of S in to
acceptance and rejection regions such that S = A ∪R.

Null is
True False

Reject α
Type 1 error Power

¬ Reject 1− α 1 - Power
Type 2 Error

Defn 2.45 (Power).
Pr(reject H0 | H1 is true) : π(θ) = Pθ(S ∈ R).
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Defn 2.46 (Size of Test).
is the largest probability of type-1 error.

sup
θ∈Θ0

(θ) = sup
θ∈Θ0

Pθ(S ∈ R)

Defn 2.47 (Two-sided Normal Approximation-Based Confidence interval).

CI1−α(β) := {β̂ ∈ Rk : Pr (β ∈ CI1−α) = 1− α}

=

[
θ̂ − z(1−α/2)

√
V̂ [θ̂], θ̂ + z(1−α/2)

√
V̂ [θ̂]

]

where zc denotes the cth quantile of the standard normal Φ s.t. Φ(zc) = c ∀c ∈
(0, 1).

Defn 2.48 (Asymptotically valid two-tailed P-value).
P-value = 2[1−Φ(|s|)]; in words - smallest critical value under whichH0 would be
rejected

Defn 2.49 (Asymptotically valid one-tailed P-value).
One sided P-value = 1− Φ(s) or Φ(s)

2.9 Convergence Concepts
We estimate θ̂ from data, and hope that it is close to true parameter θ0. How close
is θ̂ to θ0? Basic idea of asymptotics is to take the taylor expansions and show
asymptotic normality: which is that the distribution of √n(θ̂ − θ0)→N (0, 1) as
n→∞.

Defn 2.50 (Modes of Convergence: Probability, Mean Squared, Distribution).
Amemiya (1985, Chapter 3)
A sequence of r.v.s {Xn}, n = 1, 2, . . . is said to

• Xn →p X - converge in probability if
∀ϵ, δ > 0, ∃N s.t. ∀n > N,Pr (|Xn −X| < ϵ) < 1 − δ. Equivalent notation:
plim (Xn) = X

• Xn →M X - converge in mean square if limn→∞ E [Xn −X]
2
= 0.

• Xn →d X - converge in distribution if Fn ofXn converges to the distribution
function F ofX at every continuity point of F. We call F the limit distribution
of {Xn}.

Relations between convergence concepts: M → P → D

• E [Xn]
2→0 =⇒ Xn

p→ 0

• Xn
p→ X =⇒ Xn

d→X

• Xn
a.s.→ X =⇒ Xn

p→ X

• Xn
d→α =⇒ Xn

p→ α (α constant)

2.9.1 Laws of Large Numbers
Basic form

1

n

n∑
i=1

(zi − E [z]i)
p→ 0

Theorem 2.31 (Chebyshev Law of Large Numbers).
X1, . . . , Xn are IID random variables such that E [X1] = µ, σ2 := V [X1] < ∞.
Then,

1

n

n∑
i=1

Xi
p→ E [X]1

Theorem 2.32 (Strong Law of large Numbers).
For IID {Xi}with finite variance σ2

i

X
a.s.→ µ ≡ X − µ a.s.→ 0

Theorem 2.33 (Glivenko-Cantelli).
Let Xi, i = 1, . . . , n be an iid sequence with distribution F on R. The empirical
distribution function is the function of x defined by

F̂n(x) =
1

n

n∑
i=1

1Xi≤x

for a given x ∈ R, apply the SLLN to the sequence 1Xi≤x to assert

F̂n(x)
a.s.→ F (x)

Similarly, G.C. asserts

sup
x∈R

∣∣∣F̂n(x)− F (x)
∣∣∣ a.s.→ 0
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In words, for random samples from a continuous distribution F, the empirical dis-
tribution F̂ is consistent. By extension, so are the sample quantiles F̂−1(τ). This is
important for inference in quantile regression.

2.9.2 Central Limit Theorem

Theorem 2.34 ((Lindberg-Levy) Central Limit Theorem).
X1, . . . , Xn are IID with E [Xi] = µ,V [Xi] = σ2 , for a general class of Xn,

√
n(Xn − µ)

d→N
(
0, σ2

)
Equivalently,

Xn − µ
σ/
√
n

d→N (0, 1)

Anotherway to state this is to defineZn := Xn−µ
σ/
√
n
, z := y−µ

σ/
√
n
, andFZn := Pr (Zn ≤ z).

Then,

∀z ∈ R, |FZn(z)− Φ(z)|→ 0 as n→∞
Informally, for large n, Y n is approximately normally distributed with mean µ
and variance σ2

n .

Example 2.35 (CLT + Slutzky for asymptotic distribution of test statistic).
Z test: Under the null that E [x] = θ0,

Zn(θ0) :=

√
n(µ̂n − θ0)

sn

d→N (0, 1)

because s2n
p→ V [X]. Reject if Zn(θ0) 6∈

(
zα/2, z1−α/2

)
.

2.9.3 Tools for transformations

Theorem 2.36 (Continuous Mapping Theorem I).
Xn →d X;h(.) is continuous. Then, h(Xn)

d→h(x)

Theorem 2.37 (Continuous Mapping Theorem II).
Xn →p X;h(.) is continuous. Then, h(Xn)

p→ h(x)

Theorem 2.38 (Slutsky’s Theorem).
LetXn, Yn be sequences of scalar/vector random elements. IfXn

d→X and Y p→ c,
then

• Xn + Yn
d→X + c

• XnYn
d→Xc

• Xn/Yn
d→X/c given c 6= 0

Theorem 2.39 (Delta Method).
Let g : Rk→R, let θ be a point in the domain of g, and let {θ̂n} be a sequence of
random vectors in Rk. If

• √n(θ̂n − θ) d→N (0,Σ)

• g is continuously differentiable, i.e. ∇g(θ) exists and is continuous

where ∇g(θ) := ∂
∂θg(·) =

g
′
n(θ)1
...

g′n(θ)n


Then we have

√
n(g(θ̂)− g(θ)) d→N

(
0,∇g(θ)Ω∇g(θ)⊤

)
Scalar version

√
n{g(tn)− g(θ)}

d→N
(
0, g′(θ)2σ2

)
Equivalently,

√
n(g(µ̂n)− g(µ))
|g′(µ)|

√
V [X]

d→N (0, 1)

Defn 2.51 (Orders of Magnitude).

For functions u(x), v(x),

• u(x) = O (v(x)) , x→L denotes |u(x)/v(x)| remains bounded as x→L.

• u(x) = o (v(x)) , x→L denotes limx→L u(x)/v(x) = 0

• u(x) ∼ v(x), x→L denotes limx→L u(x)/v(x) = 1

A function f(n) is of constant order or of order 1 if ∃ c > 0 s.t. f(n)c →1 as n→∞.
Equivalently, if f(n)→c as n→∞. We can then write f(n) = O (1) (read of the same
order as).
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Defn 2.52.
Stochastic Orders of Magnitude
White (2014) definition using sequences.
For deterministic sequences {an} , {bn},

1. ∃∆ <∞ s.t. an/bn→0 for sufficiently large n, we say an = o (bn) [tending to
zero in probability; an is smaller than bn asymptotically]

an = o (bn) :⇔ lim
n→∞

an
bn

= 0

2. ∃∆ <∞ s.t. an/bn ≤ ∆ for sufficiently large n, we say an = O (bn) [bounded
inprobability, not larger than bn asymptotically; an does not decrease slower
than bn]

an = O (bn) :⇔ lim
n→∞

an
bn
≤ C for C > 0

• A sequence {an} is O
(
nλ
)
( read - at most of order nλ), if n−λan is bounded.

Zn = Op(n
λ)⇔ ∀δ, ∃∆(δ) <∞∧ n∗(δ) s.t. Pr

(∣∣Zn
nλ

∣∣ > ∆
)
< δ ∀ ≥ n∗(δ)

When λ = 0, {an} is bounded and we write an = O (1).

– If wN = Op(1), {wN} is stochastically bounded, i.e. not explosive as
N→∞. Formally, for any constant ϵ > 0, ∃δϵ s.t.

sup
N

P [|wN | > δϵ] < ϵ

– Any random sequence converging in distribution is Op(1), which im-
plies N−1/2

∑n
i=1 {zi − E [z]} = Op(1).

– For an estimator aN for a parameter α, in most cases, we have
√
N(aN −

α) = Op(1) : aN is
√
N -consistent. The convergence rate is therefore

N−1/2.

• A sequence {an} is o
(
nλ
)
( read - of order smaller than nλ) if n−λan→0. bn =

o
(
nλ
)

=⇒ bn = O
(
nλ
)

– In other words, whenwN
p→ 0, it is also denoted aswN = op(1). For zN ,

by LLN we thus have zN − E [z] = op(1).

Sums and Products

• op(1) + op(1) = op(1);Op(1) +Op(1) = Op(1)

• op(1)× op(1) = op(1);Op(1)×Op(1) = Op(1);

• op(1) +Op(1) = Op(1); op(1)×Op(1) = op(1)

Example 2.40 (Consistency of MM Estimator).

β̂ = β +
1

n

n∑
i=1

xix
′
i︸ ︷︷ ︸

p→ (Q)−1

1

n

n∑
i=1

x′iui︸ ︷︷ ︸
p→ 0

= β +Op(1)× op(1)︸ ︷︷ ︸
op(1)

p→ β

2.10 Parametric Models
Defn 2.53 (Parametric Model).
For r.vY and randomvectorX of lengthK, a parametricmodel is a set of functions:
P : RK+1→R indexed by a parameter vector θ of length τ

P = {P (y,x;θ) : θ ∈ Θ}

where Θ ⊂ Rτ is called the parameter space [this guarantees existence as long as Θ
is a compact set]. The model is said to be true if ∃θ ∈ Θ s.t.

fY |X(y|X) = g(y,X;θ)

A parametrisation is identifiable if there is a unique θ ∈ Θ that corresponds with
each P ∈ P . Equivalently, θ1 6= θ2 =⇒ P (·,θ1) 6= P (·,θ2)

Defn 2.54 (Regression Model).
Consider a parametric model where Y ⊂ Rd andP := {P (·, λ) : λ ∈ Λ}. Y1, . . . , Yn
are independent such that ∀j = 1, . . . , n, the distribution of Yj ∈ P corresponding
with parameter λj (i.e. independent but not identically distributed).
x1,x2, . . . ,xn is a known sequence of nonrandom vectors such that ∀j = 1, . . . , n,
∃h(·) s.t. λj = h(xj , θ) for some θ ∈ Θ. Thus, the distribution of Yj depends on the
value of xj , θ, and the function h.
In a regression, h is known/assumed, while θ is an unknown parameter.

Example 2.41 (Classical Linear Model).
the parametric setup is

g(y,X, (β, σ)) = ϕ(y; (Xβ, σ2))

and the parameter space Θ =
{
(β, σ) ∈ RK+2 : σ ≥ 0

}
Example 2.42.
For a binary choice model where y ∈ {0, 1}, the parametric model is
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g(y,X;β) =

{
1− h(Xβ) if y = 0

h(Xβ) if y = 1

and the mean function h : R→[0, 1] is known. Common choices of h are logit
(h(Xβ) = exp(Xβ)/(1 + exp(Xβ))) or normal CDF Φ.

Theorem 2.43 (Sufficient Statistic / Fisher-Neyman Theorem).
Let X have pdf p(x, θ). Then, the statistics ϕ(x) are sufficient for θ IFF the density
can be written as

p(x|θ) = h(x)gθ(ϕ (x))

where h(x) is a distribution independent of θ and gθ captures all the dependence
on θ via sufficient statistics ϕ(x). Equivalently, the bayesian interpretation is that
ϕ(x) is sufficient if the posterior p(θ|x) = p(θ|ϕ(x)).

2.11 Robustness
Write estimators as θ̂ = θn(Fn) where Fn(y) = 1

n

∑n
i=1 1yi≤y is the empirical dis-

tribution fn.
In this setup,

• Mean: θn =
∫
ydFn(y)

• Median: θn = F−1n ( 12 )

• Trimmed Mean =
θn =

1

1− 2α

∫ 1−α

α

F−1n (u)du

The mapping θn(·) induces a probability distribution for the estimator θ̂n under F
which we denote LF(θn). Fn→F ∧ θ̂n→θ∞(F)

Defn 2.55 (Prokhorov Distance).
Metric on the collection of probability measures on a given metric space.
Let A denote the Borel sets on R ∀A ∈ A and Aε :=

{
x ∈ R| infy∈A|x−y|≤ε

}
The prokhorov distance between F and G distributions is given by

π(F,G) = inf {ε|F[A] ≤ G[Aε] + ε ∀A ∈ A}

Defn 2.56 (Hampel Robustness).
The sequence of estimators {θn} is robust at F iff ∀ ε > 0 ∃δ > 0 s.t. ∀n,

π(F,G) < δ =⇒ π(LF(θn), LG(θn)) < ϵ

This is a continuity requirement on the mapping θ(.). An estimator is robust at F if
small departures from F induce small departures in the distribution of θ̂measured
by the Prokhorov distance.

Defn 2.57 (Influence function).
also called the Frechet derivative of the functional θn.

IFθn,F(x) := lim
ε→0

θn(Fε)− θn(F)
ε

where Fε = (1− ε)F+ εδx.

Example 2.44 (Nonrobustness of mean and variance).
Mean: T (F ) =

∫
xdF (x), T (Fε) = (1− ε)µ(F ) + εδx, so IF(F )(x) = x− µ(F )

Variance T (F ) =
∫
(x− µ)2dF (x).

IFT,F (x) = lim
t→0

(1− ε)σ2(F )t(x− µ)2σ2(F )

ε
= (x− µ)2 − σ2

Since IF(x)→∞ as x→∞, ε contamination noises things up enormously.

2.12 Identification
A data generating process(DGP) is a complete specification of the stochastic process
generating the observed data. Knowledge of the DGP allows one to compute the
likelihood of any realisation of the data but is conceptually distinct since it provides
a description of the structure (/ mechanism) that gives rise to the distribution.
A ModelM is a family of theoretically possible DGPs. A model can be

1. fully parametric: indexed by a finite number of parameters

2. non-parametric: indexed by an infinite dimensional parameter (ie anunknown
function)

3. semi-parametric: indexed by a finite-dimensional vector of parameters and an
infinite-dimensional nuisance function

Example 2.45 (OLS as a semiparametric model).
The simplest semiparametric model is

yi = x
′
iβ + εi

E [εi|xi] = 0

β ∈ Rk
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This model is deemed ‘semi-parametric’ because it contains a finite dimensional
parameterβ and an infinite dimensional joint distribution for εi,xi left unspecified
other than for the conditional mean assumption E [εi|xi] = 0.

Example 2.46 (Index Models - Canonical semi-parametric models).

yi = g(x′iβ) + εi

E [εi|xi] = 0

β ∈ Rk

g(.) : R→R is monotone increasing

where we are interested in β. Functions
{
g(.),Fε|X(.),FX

}
are nuisance

Example 2.47 (Generic Non-parametric model).

Yi = g(xi, εi)

xi ⊥ εi
g(., .) : R2→[0, 1] is monotone increasing in both arguments

Unrestrictedmarginals of εi,xi. Interested in function g(., .) such ash(x) = Eε [g(xi, εi)]

Most models can be written in the form

Yi = g(Ui), Ui
iid∼ FU (u)

where Yi is a vector of observables, Ui is a vector of unobserved r.v.s, with dis-
tribution function FU (u) and g(.) is a vector-valued function. We call the pair of
functions

θ := (g(.),FU (·))
the structure. There is a 1:1 mapping between a particular DGP and a particular
choice of structure. A model spaceM can be represented in terms of a familyΘ of
structures.

Defn 2.58 (Identification).
While structure θ uniquely identifies the distribution of observed variables, the
reverse isn’t necessarily true. Identification is the study of which structures are con-
sistent with the joint distribution of observed variables. Let Fy(y) denote the dis-
tribution function governing the observed variables and Fθ(y) denote the distri-
bution function implied by a particular structure θ. The identified set of structures
is

Ω(FY ,Θ) = {θ ∈ Θ : Fθ(.) = Fy(.)}

The structure is point identified if Ω(FY ,Θ) is a singleton.

Defn 2.59 (Observational Equivalence).
Two structures θ′,θ′′ are said to be observationally equivalent if

Fθ′(y) = Fθ′′(y) ∀y ∈ Rk

i.e. the distribution function implied by the two structures is identical. . The struc-
ture θ′ is globally point identified if there is no other θ in the model space with
which it is observationall equivalent.

Defn 2.60 (Partial Identification).
If for some θ̃ ∈ Θ,Ω(Fθ̃(.),Θ) is a subset of the family of Θ but not a singleton, the
structure θ̃ is said to be partially identified because some (but not all) competing
structures have been ruled out. The identified set for a feature µ(θ) can be written
as {

µ(θ) : θ ∈ Ω(Fθ̃(.),Θ)
}

Defn 2.61 (Ceteris Paribus Effect).
Consider the model Yi = f(Xi, Ui;ϕ) where (Yi, Xi) are observed scalars, Ui is an
unobserved scalar, ϕ is a parameter vector, and f(., .;ϕ) is a function. The model
implies a set of counterfactual values f(x, u) that the outcome Yi would take under
various realisations of the random variablesXi, Ui. The causal effect of changingXi

from x′ to x′′ for individual i can be written as

∆i(x
′′, x′) = f(x′′, Ui, ϕ)− f(x′, Ui, ϕ)

If we can identify ϕ and establish that Xi ⊥⊥ Ui, we can identify a distribution of
causal effects δi(x′′, x′).

Defn 2.62 (Statistical Functional).
In a model defined by (finite or infinite)-dimensional parameters θ ∈ Θ, which in
turn indexes the set of distributions of all observed and counterfactual quantities

PΘ :=
{
Pθ(Y,

{
Y D
}
D∈D ,X) : θ ∈ Θ

}
A functional is the map ψ(·) : PΘ 7→ R. In causal inference, the functionals of
interest are called estimands.
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3 Linear Regression
3.1 Simple Linear Regression
3.1.1 OLS in Summation Form
Stipulate model Yi = β0 + β1Xi + εi, where E [εi|Xi] = 0,V [εi|Xi] = σ2.

Fact 3.1 (BLP Least Squares Estimands and Estimators).
Consistent inference for β with only assumption being {yi,xi}Ni=1 is IID with well
defined moments.

β1 :=
Cov [X,Y ]

V [X]
=⇒ β̂1 =

∑
i(Xi − X̄)(Yi − Ȳ )∑

i(Xi − X̄)2
=
XY −X · Y
X2 −X2

β0 := E [Y ]− Cov [X,Y ]

V [X]
E [X] =⇒ β̂0 = Ȳ − β̂1X̄

σ̂2 =

∑
i ε̂

2
i

n− 2

As an application of the law of total variance, we can construct Ŷ = β̂0 + β̂X and
U = Y − Ŷ . Then, the variance decomposition for V [Y ] is

V
[
Ŷ
]
= (β̂1)

2V [X] =

[
Cov(X,Y )

V [X]

]2
V [X] =

ρ2XY σ
2
Xσ

2
Y

σ2
X

= ρ2XY σ
2
Y

V [U ] = σ2
Y − V

[
Ŷ
]
= (1− ρ2XY )σ2

Y

Theorem 3.2 (Properties of Least Squares Estimators).
Let β̂⊤ = (β̂0, β̂1)

T denote least squares estimators. The conditional means and
variances are

E
[
β̂|X

]
=
(
β0
β1

)
V
[
β̂|X

]
=

σ2

ns2X

(
1
n

∑
iX

2
i −X̄

−X̄ 1

)
where s2X = n−1

∑
i(Xi − X̄)2 =: n−1Sxx. This simplifies to

• V
[
β̂0

]
= σ2(1/n+ x̄2/Sxx).

• V
[
β̂1

]
= σ2/Sxx = σ2

n·V[X] ; underHeteroskedasticity, this isV
[
β̂1

]
= V[[xi−x̄]ui]

nV[(Xi−X̄)]
2

• Cov
[
β̂0, β̂1

]
= σ2(−x̄/Sxx)

With more than 1 predictor, the variance is

V
[
β̂j

]
=

σ2

TSSj(1−R2
j )

whereR2
j is theR2 from the regression ofXj on the otherXs and an intercept, and

TSSj =
∑
i(xij − x̄j)2. This denominator is called the Variance Inflation Factor.

3.1.2 Prediction
Say we have a model r̂(x) = β̂0 + β̂1X from data (X1, Y1, . . . Xn, Yn). We see a
new observation X = x0 and want to predict y0. An estimate of the outcome
ŷ0 = β̂0 + β̂1x0. Variance of the prediction is

V
[
β̂0 + β̂1x0

]
= V

[
β̂0

]
+ x20V

[
β̂1

]
+ 2x0Cov

[
β̂0, β̂1

]
= σ2

[
1

n
+

(x0 − x̄)2

(n− 1)sxx

]
Theorem 3.3 (Prediction Interval for OLS).
Variance of prediction error ef := y0 − ŷ0 is

V [e0] = V [ε0] + V [E [y0|x0]− ŷ0] = σ2 + V [ŷ0]

ξ̂2 = V [ŷ0 − y0] = σ̂2

(
1 +

∑
i(xi − x0)2

n
∑
i(xi − x̄)2

)
= σ̂2

(
1 +

1

n
+

(x0 − X̄)2

Sxx

)
Example 3.4 (Simple linear regression in matrix form).
Partition design matrix s.t. X =

[
1 x

]
X ′X =

[
1′1 1′

x′1 x′x

]
=⇒ (X ′X)

−1
=

[
Sxx/∆ −Sx/∆
−Sx/∆ n/∆

]
where Sxx =

∑
x2i , Sx =

∑
xi,∆ = n

∑
(xi − x̄)2 = N

∑
i

(
x2i
)
− (
∑
i(xi))

2.
Equivalent expression

(X′X)
−1

=
1

n2V̂ [x]

[
nV̂ [x]x2 −nx
−nx n

]
;X′y =

[
ny

nĈov(x, y) + nxy

]
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3.2 Classical Linear Model
Reference: White (2014, Chap 1), Marmer lecture notes.

3.2.1 Assumptions
1. Linearity : Y = Xβ + ε

2. Strict Exogeneity : E [ε|X] = 0 almost surely

• Replaced with E [ε] = 0 when estimating with ’fixed’ instead of random Xs
• A2* Cross moment of residuals and regressors is zero, X is orthogonal

to ε : E [Xiεi] = 0.

3. Spherical error variance : V [εi|X] = σ2;E [εε′|X] = σ2In

• Replaced with V [ε] = σ2In when estimating with ’fixed’ instead of random
Xs

4. Full Rank: No multicollinearity - rank(X) = k

5. Spherical Errors: ε|X ∼ N(0, σ2In)

• ε ∼ N(0, σ2) for fixed-regressors case.

6. (Yi, Xi) : i = 1, ..., n are i.i.d.

• εi, . . . , εn assumed IID for fixed-regressors case.

• (A1-A5) define the Classical Normal regression model

Y|X ∼ N
(
Xβ, σ2In

)
• (A1-A4) sufficient for unbiasedness + Gauss-Markov.

• Under A1, A2, A4, β̂ is unbiased (i.e. E
[
β̂
]
= β)

Replace A3 with ε ∼ N (0,Ω), then

β̂ ∼ N
(
β,
(
X⊤X

)−1
X⊤ΩX

(
X⊤X

)−1)

3.2.2 Optimisation Derivation
OLS minimises 〈ε, ε〉

min
β∈RK

(y −Xβ)′(y −Xβ)

= y′y − y′Xβ − β′X ′y︸ ︷︷ ︸
scalar, combined

−β′X ′Xβ

Taking FOCs and solving yields
∂ 〈ε, ε〉
∂β

= −2βX ′y − 2X ′Xβ =⇒ β̂ = (X ′X)−1X ′y

With fixed regressors,
V (β) = σ2(X ′X)−1

where, under homoskedasticity, σ̂2 = e′e
n−k , where e = y −Xβ

3.3 Finite and Large Sample Properties of β̂, σ̂2

Property 3.5 (Finite: Unbiased).
- under fixed regressor assumption - that X’s are nonrandom. Otherwise, the
conditioning is ill-defined. Under A(1-4),

E
[
β̂|X

]
= E

[(
X⊤X

)−1
X⊤(Xβ + ε)

]
= β + E

[(
X⊤X

)−1
X⊤ε

]
= β 2nd term 0 by A2

E
[
β̂
]
= E

[
E
[
β̂|X

]]
by Law of iterated expectations

Otherwise, the expectation operator cannot pass through a ratio.
Alternate statement of bias without fixed regressors:

E
[
β̂
]
= E

( n∑
i=1

xix
′
i

)−1 n∑
i=1

xiyi


6=

(
n∑
i=1

E [xix
′
i]

)−1 n∑
i=1

E [xiyi] = β
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Property 3.6 (Finite: Variance).

V
[
β̂|X

]
=
(
X⊤X

)−1
X⊤ E [εε′|X]︸ ︷︷ ︸

σ2 by A2

X
(
X⊤X

)−1
= σ2

(
X⊤X

)−1
Under (A1-A5),

β̂|X ∼ N
(
β, σ2

(
X⊤X

)−1)
Property 3.7 (Finite: Best Linear Unbiased Estimator (BLUE) - Gauss Markov Thm).
OLS coefficient efficient in the class of LUEs. For any other Linear unbiased esti-
mator b,

a′
(
V
[
β̂|X

]
− V [b|X]

)
a ≥ 0 ∀ a ∈ Rk

Fact 3.8 (Large-Sample Assumptions). • A7 E
[
XiX

⊤
i

]
is finite, positive definite

• A8 E [X]
4
i,j <∞ ∀j = 1, . . . , k

• A9 E [εi]
4
<∞

• A10 E
[
ε2iXiX

⊤
i

]
is positive definite

Property 3.9 (Large: Consistent - β̂ p→ β).
Under A1, A2∗, A6, and A7.

β̂ − β =

(
1

n

n∑
i=1

xix
′
i

)−1
1

n

n∑
i=1

xiεi

∵ E [xiui] = 0, we can apply Slutsky’s Theorem and LLN to write

plim n→∞(β̂−β) =

(
plim 1

n

n∑
i=1

xix
′
i

)−1
plim 1

n

n∑
i=1

xiεi = (E [xix
′
i])
−1 E [xiεi] = 0

Property 3.10 (Large: Asymptotically Normal).
Under A1, A2∗, A6, A7 - A10.

√
n(β̂−β) d→N

(
0, (X ′X)

−1
X ′ΩX (X ′X)

−1
)
≡ N

0, (MXX)
−1︸ ︷︷ ︸

N−1X′X

MXΩX︸ ︷︷ ︸
N−1

∑
i ε̂ixix

′
i

(MXX)
−1︸ ︷︷ ︸

N−1X′X



Ω is generally unknown. We can replace it with a consistent estimator Ω̃, which is
the diagonal matrix [ε̂ii]

Defn 3.1 (Huber-White Sandwich ‘Robust’ SEs).
This a plug-in estimate of an asymptotic approximation of the standard error.

Asym V
[
β̂
]
:=

1

n

(∑
i

xix
′
i

)−1
︸ ︷︷ ︸

A−1

(∑
i

ε̂2ixix
′
i

)
︸ ︷︷ ︸

B

(∑
i

xix
′
i

)−1
︸ ︷︷ ︸

A−1

=
(
X⊤X

)−1
X⊤Ω̂X

(
X⊤X

)−1
where
Ω̂ := diag(ê21, . . . , ê2n)
For the vanilla univariate linear regression, this similifies to

V
[
β̂
]
=

E
[
ε2(X − E [X])2

]
nV [X]

2

which can be replacedwith sample analogues and residuals to compute the robust
SE.

Property 3.11 (σ̂2 is unbiased).
Since σ̂2 = e′e

n−k , this follows from trace ofMx. Recall that e =Mε, so

E [e′e] = E [ε′Mxε] = tr((Mx)Iσ
2) = (n− k)σ2

Theorem 3.12 (Wierstrass Approximation Theorem).
Let f : [a, b]→R be continuous. Then ∀ε > 0, ∃p s.t. ∀x ∈ [a, b], |f(x)− p(x)| < ε

Defn 3.2 (Polynomial Approximation of CEF).
LetX,Y be r.v.s and supposeE [Y |X = x] is continuous and supp[X] = [a, b]. Then,
∀ε > 0, ∃K ∈ N s.t. ∀ K ′ ≥ K,

E
[(

E [Y |X]− g(X,X2, . . . XK′
)
)2]

< ε

where g(X,X2, . . . XK′
) is the BLP of Y given X and higher orders.

Defn 3.3 (Polynomial least squares Sieve Estimator).
For iid r.v.s (Y1,X1), . . . , (Yn,Xn), the polynomial least squares sieve estimator of
the CEF is
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Ê[Y |X = x] =

Jn∑
k=1

β̂kx
k

where

β̂ = argmin
b∈RJn+1

n∑
i=1

(
Yi −

Jn∑
k=0

bkX
k
i

)
where Jn→∞ and 1

nJn→0. Asymptotics of the estimator allow for increasing flex-
ibility; as n grows, so does flexibility. As long as ‘flexibility’ grows slowly relative
to n, the estimator will be consistent.

Defn 3.4 (Inference for conditional mean m̂(X)).

m̂(X) = X⊤
(
X⊤X

)−1
X⊤y

m̂(X) = MVN
(
Xβ, σ2X⊤

(
X⊤X

)−1
X⊤
)
= MVN(Xβ, σ2PX)

3.4 Geometry of OLS
Define 2 matrices that are

• positive semidifinite x′Ax ≥ 0 ∀x ∈ Rk (conformable x)

• symmetric A′ = A

• idempotent AA = A

Defn 3.5 (Projection Matrices).
Matrices that project a vector y into a subspace S. For OLS,

• L := span(X) :=
{
Xb : b ∈ Rk

}
is the linear space spanned by the columns

of X.

• Px = X(X′X)−1X′ - Hat Matrix - projector into columns space of X

– rank(P ) = trace(P ) = p.
– p eigenvalues of 1 and n− p zero eigenvalues
– 0 ≤ hii ≤ 1

– Prediction for observation i is simplyMi·y whereMi· is the ithe row of
the hat matrix

• Mx = In − Px = In − X(X′X)−1X′ - Annihilator Matrix - projector into
span(X)⊥ (orthogonal subspace of X)

– rank(M) = trace(M) = trace(I − P ) = trace(I)− trace(P ) = n− k

This generates

• Fitted Value: ŷ = PxY

• Residual : e =MxY

Theorem 3.13 (Frisch-Waugh-Lovell Theorem).
LetX1, X2 be partitions ofX containing firstK1 andK−K1 columns respectively,
and β1, β2 be the corresponding coefficients in β. Further, letM1, P1 be the projec-
tion and residualiser matrices for X1. Then,

β̂2 =
(
X⊤2 M1X2

)−1
X⊤2 M1y

IoW, one can estimate coefficients for X2 by first residualising X2 and y on X1

3.4.1 Partitioned Regression
Choose k1, k2; k1 + k2 = k s.t. X = [X1 X2]. Then, the normal equation is[

X′1X1 X′1X2
X′2X1 X′2X2

] [
β1
β2

]
=

[
X′1y
X′2y

]
yields the FWL solutions

β̂1 = (X′1M2X1)
−1

X′1M
′
2y =

(
X′1M

′
2︸ ︷︷ ︸M2X1

)−1
X′1M2y =

(
X∗′1X

∗
1

)−1
X∗′1y

3.5 Relationships between Exogeneity Assumptions
main model: yi = β0 + β1x1 + ui.

1. E [u] = 0 is technical assumption; not meeting it only affects the constant
term β0.

2. Zero Covariance: Key assumption for consistency of β1: Cov [u, x] = 0. As-
sumption (1) implies that Cov [u, x] = E [ux]− E [u]E [x] =⇒ E [ux] = 0

3. Mean independence: E [u|x] = E [u] = 0

• Mean independence implies zero covariance E [ux] = E [xE [u|x]] =
E [xE [u]] = E [x]E [u]. Since Cov [u, x] = E [ux] − E [u]E [x], E [u|x] =
E [u] =⇒ E [ux] = E [u]E [x] =⇒ Cov [x, u] = 0
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• Zero covariance does not imply mean independence

4. u ⊥⊥ x if f(u, x) = f(u)f(x).

Violations of the zero conditional mean assumption E [ε|x] usually arise one of
three ways:

• Omitted Variables Bias: if unobserved variable q is correlated with both y
and x, failing to include it in the regression results in Cov(x, ε) 6= 0

• Measurement Error
• Simultaneity

3.6 Residuals and Diagnostics
Defn 3.6 (Leverage).
Since ŷi =

∑n
j=1 hijyj , hij can be interpreted as the weight associated with the

datum (xj , yj). Diagonal elements hii measures how much impact yi has on ŷi,
and is therefore called leverage.

Fact 3.14 (Variance of ε̂i).
Since ε̂ =My = (I −H)y, V [ε̂i] = σ2(1− hi).

Defn 3.7 (Standardised and Studentised Residuals).

estdi =
yi − ŷi

s
√
1− hii

Studentised residuals often omit the observation in question and estimate

estui =
yi − ŷi

s(−i)
√
1− hii

Defn 3.8 (Cook’s Distance).
Let β̂(−i) be the estimate of β with (xi, yi) omitted.
Cook’s distance of xi, yi is defined as

Di =
d′i(X

⊤X)di
ks2

where di = β̂(−i) − β̂

and p is the rank of Mx = k and s2 = σ̂2. Di > 1 is often interpreted as an
influential point.

3.7 Other Least-Squares Estimators
Defn 3.9 (Robust Regression).
When the data has some very high-leverage points, Huber’s Robust Regression is an
alternative to OLS.

β̃ = argmin
b

1

n

n∑
i=1

ρ(yi − x′ib)

where the ρ(.) term is Huber’s Loss Function

ρ(u) =

{
u2 |u| < c

2c |u| − c2 |u| ≥ c

which looks like square error for ‘small’ errors and absolute error for ‘large’ er-
rors. It is continuous in c and has a continuous first derivative, which helps with
optimisation. c is a tuning parameter.
Implemented in R using MASS:rlm.

Defn 3.10 (Weighted Least Squares).
Minimise WMSE

WMSE(β, ω1, . . . , ωn) =
1

n

n∑
i=1

ωi(yi − x′iβ)

which yields the estimator

β̂WLS =
(
X⊤WX

)−1
XWy

Defn 3.11 (Generalised least squares).
If covariance matrix of errors is known: E(εε′|X) = Ω

β̂GLS = (X′Ω−1X)−1X′Ω−1y

V(β̂GLS) = (X′Ω−1X)−1

Defn 3.12 (Restricted OLS).
maximise

L(b, λ) = (Y −Xβ)′(Y −Xβ) + 2λ(Rβ − r)

where R and r are the restriction matrix and vector respectively.
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3.8 Measures of Goodness of Fit
• TSS = Total Sum of Squares := ‖y‖2

• ESS = Explained Sum of Squares := ‖Py‖2

• RSS = Residual Sum of Squares := ‖My‖2

〈y, y〉 = 〈ŷ + e〉 = (Xβ + e)′(Xβ + e)

= β′X ′Xβ + e′e Other terms disappear bc xβ⊥e
(y′y − nȳ2) = β′X ′Xβ − nȳ2 + e′e

TSS = ESS +RSS

Defn 3.13 (R2).

R2 =
ESS

TSS
=

∑n
i=1(Ŷ − Ȳ )2∑n
i=1(Y − Ȳ )2

= 1− RSS

TSS
= 1−

∑n
i=1(Ŷ − Y )2∑n
i=1(Y − Ȳ )2

Defn 3.14 (AdjustedR2).

R̄2 = 1− n− 1

n− k
(1−R2)

Defn 3.15 (Mallow’s Cp).

Cp =
RSS + 2(k + 1)σ̂2

k

Defn 3.16 (Akaike Information Criterion (AIC)).

AIC = ln

(
e′e

n

)
+

2k

n

Defn 3.17 (Bayesian Information Criterion (BIC)).

BIC = ln

(
e′e

n

)
+
k ln(n)

n

Defn 3.18 (F statistic).

F Stat = (Rβ̂ − r)′(s2R(X ′X)−1R′)−1(Rβ̂ − r)/q

Equivalently,

F Stat = (TSS− RSS)/(k − 1)

RSS/(n− k) =
R2/(k − 1)

(1−R2)/(n− k)
∼ Fk−1,n−k

Defn 3.19 (Wald Statistic).

Wn = nh(β̂n)
′

(
∂h(β̂n)

∂β′
V̂n
∂h(β̂n)

′

∂β

)
nh(β̂n)

reject H0 ifWq > χ2
q,1−α = F/q

3.8.1 Model Selection

Defn 3.20 (Generalisation Error).
G = E

[
(Y − m̂(x))2

]
for a new data point (x, y).
This is different from in-sample training error

T =
1

n

n∑
i=1

(yi − m̂(xi))
2

Usually, T < G.

Defn 3.21 (Generalized / Leave-one-out Cross-Validation).
Let ŷ−(i)i be the predicted value when we leave out (xi, yi) from the dataset. The
LOOCV is

LOOCV =
1

n

n∑
i=1

(
yi − ŷ−(i)i

)2
=

1

n

n∑
i=1

(
yi − ŷi
1−Hii

)2

since tr(H) = p+ 1, the average of Hii = (p+ 1)/n =: γ. Then,

LOOCV ≈ 1

n

n∑
i=1

(
yi − ŷi
1− γ

)2

≈ training error+ 2σ̂2

n
(p+ 1)

For ridge, the trace is

tr(H) =

J∑
j=1

λj
λj + λ

where λj is the j-th Eigenvalue of Σ = X⊤X. For linear regression, λ is zero, and
the trace is simply the sum of eigenvalues of the vcov.

3.9 Multiple Testing Corrections
T-tests perform inference on one hypothesis. Suppose one is interested in testing
K hypotheses (e.g. β1 = 0, . . . , βk = 0).
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Fact 3.15 (Probability of rejecting any nullswhen k independent true nulls are tested).

• Test size = 0.05

• Probability (No rejections) = 0.95k

• Probability (Any (incorrect) rejections) = 1− 0.95k→1 as k gets big

Defn 3.22 (Family Wise Error Rate (FWER) adjustments).

DefineM0 := {i : Hi is true} and R := {i : Hi is rejected}. The FWER is defined
as follows

FWER = Pr
(
M0 ∩R 6= ∅

)
Equivalently, letN1 be the number of type I errors (rejections of nulls when null is
true). Then, FWER = Pr (N1 > 0) = 1−Pr (N1 − 0).
FWER = 1− (1−α)k where α is the size of the test. FWER for k = 10= 1− .9510 ≈
0.4.
We want procedures for which FWER ≤ α.

• Bonferroni correction - If testing J hypotheses : Critical value τ = α/J

• Holms-Bonferroni stepdown method

– Order k p-values from smallest to largest p(1), . . . p(k)
– If p(1) > α/k, stop. Fail to reject all. Else, Reject H(1) if p(1) < α/k.

Proceed.
– If p(2) > α/(k − 1), stop.
– rinse and repeat until you stop rejecting because p(j) > α/(k − (j − 1))

or all k have been rejected.

• Computationalmethods such asRomano andWolf (2005),Westfall andYoung

These methods all modify test sizes; instead we might want an adjusted p-value
for each hypothesis.

Defn 3.23 (Joint Confidence Bands).
relies on convergence of distribution over rectangles. Suppose β̂−β ∼a N (β,V/n).
We want to construct a band [a,b] = ([ak, bk])

K
k=1 such that

Pr (β ∈ [a,b]) = Pr (βk ∈ [ak, bk] ∀k)→1− α

These bands take the form of [ak, bk] =
[
β̂k − c

√
Vkk/n, β̂k + c

√
Vkk/n

]
where c is chosen such that

Pr
(∥∥∥N (0,S−1/2VS−1/2

)∥∥∥
∞
≤ 0
)
= 1− α

where S = diag(V). This is chosen by simulation plugging in V̂.

Defn 3.24 (False Discovery Proportion (FDP)/ Rate (FDR)).

• setup

– data X ∼ P ∈ P
– nulls H1, . . . , Hm ⊆ P
– p− values p1(X), . . . , pm(X). Not independent.

• H0 = {i : Hi is true}

• R = {i : Hi is rejected}; R = |R|

• V = |R ∩ H0|

FDP =
V

R ∨ 1
FDR = E [FDP] ≤ α

Benjamini-Hochberg Procedure

• Order p− values p(1) ≤ · · · ≤ p(m)

• BH(α) rejects R hypotheses

R(X) = max
{
r : p(r) ≤

αr

m

}
• Data-dependent rejection threshold

RejectHi ⇔ pi ≤
αR(X)

m
=: τ(α;X)

Adjusted P-value / BH q-value qi(X) = min {α : Xi is rejected by BH(α)}.
p.adjust(pvals, method = "BH")
Anderson (2008) adjustment - Rescale p values by number of hypotheses / p-value
rank, and adjust for non-monotonicity.

← ToC 27



Figure 2: BH Procedure visual - data-dependent slope gray line

3.10 Quantile Regression
Notes based on Koenker (2005).

Defn 3.25 (Conditional Quantile Function).
Instead of CEF, we may be interested in the conditional quantile function at quan-
tile τ . Define the conditional CDF of yi

F (y|xi) = Pr (Yi < y|xi)

The quantile regression model assumes that the τ−th conditional quantile of yi
given xi is a parametric function of xi and is given by Qτ (τ |x) = x′iβτ , where βτ
tells us the impact of x on a conditional quantile.
The conditional quantile function at quantile τ is Qτ (yi|xi) = F−1y (τ |xi).

Fact 3.16 (Relation to Heteroskedasticity).
Let yi = x′iβ + εi ; εi|xi ∼ N

(
0, σ2(xi)

)
. The τ − th conditional quantile function

Qτ (xi) satisfies

τ = Pr (yi ≤ Qτ (xi)|xi) = F (Qτ (xi)|xi)

Let zτ denote the τ−the quantile of the standard normal distribution. Since

yi − x′iβ
σ(xi)

|xi ∼ N (0, 1) we have

τ = Pr

(
yi − x′iβ
σ(xi)

≤ zτ |xi
)

= Pr (Yi ≤ x′iβ + σ(xi)zτ |xi)

This implies that the τ−th conditional quantile of the distribution of yi is given by

Qτ (xi) = x
′
iβ + σ(xi)zτ

The marginal effect of xi on the τ−th quantile of yi is therefore given by

∂Qτ (xi)

∂xi
= β +

σ(xi)

xi
zτ

If the errors are homoskedastic (i.e. σ(xi = σ), the effect of xi is the same for all
τ ∈ (0, 1) and coincides with the effect on the conditional mean of yi. Moreover,
since zτ < 0 if τ < 0.5 ∧ zτ > 0 if τ > 0.5, the contribution of the second term
∂σ(xi)
∂xi

has opposite effects on the upper and lower quantiles.

Defn 3.26 (Quantile Regression Estimator β̂τ ).
β̂(τ) solves

min
β∈Rp

R(β) := E [ρτ (yi − x′iβ)]

This objective function is piecewise linear and continuous, and differentiable ex-
cept at the points at which one or more residuals yi−x′iβ are zero. At these points,
only Gateaux derivatives exist, see details in Koenker (2005, Chap 2-3).
The objective function (reframed as a linear program and solved numerically) is

Qn(βτ ) =

N∑
i:yi≥x′

iβ

τ |yi − x′iβτ |+
N∑

i:yi<x′
iβ

(1− τ) |yi − x′iβτ |

• Since the median is robust to outliers in y, QR is a useful check relative to
OLS when there are high-leverage outliers in y.

• The slope parameter β(τ) is interpreted as the slope of the relationship be-
tween the τ th quartile of y and X .

Fact 3.17 (Asymptotic Distribution of β̂q).√
N(β̂q − βq)

d→N
(
0, (A)

−1
B (A)

−1
)
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Figure 3: Examples of Treatment Effects onCDF,QF, andQTE fromKoenker (2005)

where A := plim 1
N

∑
i fuq (0|xi)xix′i and B := plim 1

N

∑
i q(1− q)xix′i

Defn 3.27 ((Lehmann-Doksum) Quantile Treatment Effect).
Let F be the CDF of Y0 [potential outcome under control] and G be the CDF of Y1
[potential outcome under treatment].
Define ∆(x) as the ‘horizontal distance’ between F and G, such that F(x) = G(x+
∆(x)), then ∆(x) = G−1(F (x))− x
On changing variables so that τ =: F (x), we have the quantile treatment effect

δ(τ) := ∆(F−1(τ)) = G−1(τ)− F−1(τ)

In this setting, the ATE is obtained by integrating the QTE over τ

δ =

∫ 1

0

δ(τ)dτ =

∫
G−1dτ −

∫
F−1dτ = µ(G)− µ(F)

The QTE analogue estimator to difference in means is

δ̂(τ) = Ĝ−1(τ)− F̂−1(τ)

where F̂ denotes an empirical distribution function. The quantile regression ana-
logue is

QY (τ |Di) = α(τ) + δ(τ)Di

The L-D quantile treatment effect is the response necessary to keep a respondent
at the same quantile under both control and treatment regimes.

3.10.1 Interpreting Quantile Regression Models
In a transformed model Qh(y)(τ |X = x) = h(QY (τ |X = x)) = x′β(τ), for mono-
tone transforms h(.), we get

∂QY (τ |X = x)

∂xj
=
∂h−1(x′β)

∂xj

If we specify Qlog(Y ), then ∂QY (.)
∂xj

= exp(x′β)βj .
For practical purposes, suppose we observe two CDFs F andG for treated and un-
treated groups. Under randomisation, the two CDFs are identical by assumption
(since the treatment was randomly administered), so the difference between their
medians is the median treatment effect.

3.11 Measurement Error
Fact 3.18 (Classical Measurement error in the outcome does not Bias OLS).
let observed y = y∗ + uy be the true value plus noise. We estimate the regression
y = xβ + ε+ uy . The coefficient is

plim (β̂) =
Cov(y, x)

Var(x)
=

Cov(x+ ε+ uy, x)

Var(x)
= β +

Cov(ε+ uy, x)

Var(x)
= β

The last equality holds iff measurement error in y is orthogonal to x. This means
this rarely holds in practice.
Also means OLS estimates are more imprecise. The (homoscedastic) variance is
now (X′X)

−1
[σ2
ε + σ2

uy ].

Defn 3.28 (Classical measurement error / Error in variables).
True dataX∗ is measuredwith error,X . Let y = X∗β+U , andX = X∗+V . Then,
y = Xβ + (u − V β). The error term is correlated with X through measurement
error V , so OLS is inconsistent.
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Example 3.19 (Measurement Error with a Scalar Regressor).
True regressor: x∗, variance σ2

x∗ measured with v ∼ N
(
0, σ2

v

)
. Then, we under-

estimate the true coefficient [Attentuation Bias]

plim β̂ =
σ2
x∗

σ2
x∗ + σ2

v

β = β

(
1− s
1 + s

)
where s = σ2

v/σ
2
x∗ is the noise-to-signal ratio.

Fact 3.20 (Measurement error with correlated regressors).
Adding correlated errors makes attenuation bias from measurement error worse.

Fact 3.21 (IVs solve measurement error problem).
∃Zi s.t. Cov [Zi, X∗i ] 6= 0,Cov [Zi,mi] = 0, where Zi is the instrument, X∗ is the
signal, andm is the measurement error. in the bivariate regression,

β̂IV =
Cov [Y, Z]
Cov [X,Z] =

Cov [α+ βX∗i + ei, Zi]

Cov [X∗i +m,Zi]
=
βCov [X∗i , Zi]
Cov [X∗i , Zi]

= β

3.12 Missing Data
Defn 3.29 (Missing Data Categories).

• Missing at Random (MAR) : missingness in xi does not depend on its value
but may depend on values of xj (j 6= i)

• Missing Completely at Random (MCAR):Xobs is a simple random sample
of all potentially observable data values. ignorable for likelihood inference if this
is the case.

• Not missing at Random (NMAR) if neither of the above applies.

3.13 Inference on functions of parameters
3.13.1 Bootstrap
Based onCosmaShalizi’sADAEPoVandnotes https://www.stat.cmu.edu/ cshalizi/402/lectures/08-
bootstrap/lecture-08.pdf
Statistical quantities of interest, be they means, variances, or more complicated
quantities, are functions of the underlying stochastic model (represented by the
distribution function), and hence are statistical functionals.

The bootstrap principle Say the original data is X. Our parameter estimate from
the data is θ̂. We can simulate surrogate datasets called (bootstrap replications) by
sampling from thedataX and computing a sequence of statistics t̃1 = T (X̃1), . . . , t̃b =

T (X̃M )

For a reasonable number of replicationsM , we can V̂ar[t̂] as V
[
t̃
]

Debiasing: This logic can also be used for debiasing: since t̂ is an estimator for t0,
the sampling distribution of t̃ is close to that of t̂, and t̂ itself is close to t0,

E
[
t̂
]
− t0 ≈ E

[
t̃
]
− t̂

wewant to approximate the RHS usingwhatwe can calculate (LHS). This requires
t̂− t0 to be approximately pivotal.
Key idea: resampling samples from the Empirical CDF, which is consistent for the
true CDF F. Since all statistical functionals t(F) are calculated on F, we can get the
distribution of t by computing the ECDF of t̃(·).
General Bootstrap Algorithm

1. Givendatax1, . . . ,xN , drawabootstrap sample of sizeN , denoted asx∗1, . . . ,x∗N
2. compute test-statistic t̂(θ)∗n(x∗1, . . . ,x∗N )

Repeat steps (1) and (2) B independent times, obtaining B bootstrap replica-
tions of the statistic θ̂n. Compute quantiles / variance of empirical distribution
of t(β)(1)N , . . . , t(β)

(M)
N .

Example 3.22 (Bootstrap Standard Error).

s2
θ̂,Boot

=
1

B − 1

B∑
b=1

(θ̂∗b − θ̂
∗
)2 where ¯̂

θ∗ = B−1
B∑
b=1

θ̂∗b

Defn 3.30 (Edgeworth Expansion).
the EE is the expansion of the distribution function around the normal distribution.
If we have n IID randomvariablesX1, . . . , Xnwith density f , mean µ, and variance
σ2. An edgeworth expansion for the CDF of

√
n(X−µ)
σ can be written

Pr

(√
n(X − µ)

σ
≤ ω

)
= Φ(ω) + ϕ(ω)

[
−1
6
√
n
κ(ω2 − 1) +Rn

]
where nRn has a boundary.

Defn 3.31 (Jackknife).
Exposition from Efron (1982).
Given an estimate ũ =: T (F̂) based on a sample of n draws from empirical distri-
bution F, define the estimate with the i-th observation left out as
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ũ−i := T (F̂−i)

And let ũ(·) :=
∑n
i=1 ũ−i/n average these leave-out estimates.

The jackknife estimate of the standard error for ũ is the square root of

σ2
jack :=

n

n− 1

n∑
i=1

ũ−i −
u∗︷ ︸︸ ︷

n∑
i=1

ũ−i/n


2

n− 1
=

n∑
i=1

(ũ− u(·))2

n(n− 1)

Defn 3.32 (Asymptotically Pivotal Statistic).
A statistic whose limit distribution does not depend on unknown parameters is
said to be asymptotically pivotal. Estimators are generally not asymptotically piv-
otal, while standard normal or chi squared test statistics typically are.
Defn 3.33 (Cluster Wild Bootstrap).
With a ‘small’ number of clusters, conventional clustered bootstrap errors yield
over-optimistic variances. CGM Algorigthm for each resampling

• Estimate the main model imposing the null, e.g. to test the stat. significance
of a single variable regress yig on all components of xig except the variable
that has coefficient zero under the null. Construct ũig = yig − x′igβ̃H0

• for each resampling

– Randomly assing cluster g the weight dg =

{
−1 w.p. 0.5

1 w.p. 0.5
. All ob-

servations in cluster g get the same Rademacher weights
– Generage new pseudo-residuals u∗ig = dg× ũig =⇒ y∗ig = x′igβ̃H0+u

∗
ig .

– Regress y∗ig on xig [not imposing the null] and compute w∗ [the t-stat
with clustered SEs]

• p value for this test is the proportion of times that |w| > |w∗b | [where |w| is
the original sample statistic]

3.13.2 Propogation of Error / Delta Method
Propagation of error for generated quantities
Say we estimate θ̂, which is a function of some intermediate quantities ϕ̂1, . . . , ϕ̂p,
which are themselves estimated. Difference in group means, marginal effects in
nonlinear models are examples of such generated quantities.

Since θ̂ = f(ϕ̂1, . . . , ϕ̂p), we derive standard errors for the generated quantity by
writing a taylor expansion.

θ̂ ≈ f(ϕ∗1, . . . ϕ∗p) ≈ f(ϕ̂1, . . . , ϕ̂p) +
p∑
i=1

(ϕ∗i − ϕ̂i)
∂f

∂ϕi

∣∣∣∣
ϕ=ϕ̂

≈ f(ϕ∗1, . . . , ϕ∗p) +
p∑
i=1

(ϕ̂i − ϕ∗i )f ′(ϕ̂)

≈ θ∗ +
p∑
i=1

(ϕ̂i − ϕ∗i )f ′i(ϕ̂)

The variance for θ̂ can be written using a general analogue to V [a+ bX + cy] =
b2V [X] + c2V [Y ] + 2bcCov [XY ]. Allowing for covariance between any two pa-
rameters in the vector ϕ̂i, ϕ̂j , we can write the variance as

V
[
θ̂
]
≈

p∑
i=1

(
f ′i(ϕ̂)

)2
V
[
ϕ̂i

]
+ 2

p−1∑
i=1

p∑
j=i+1

f ′i(ϕ̂)f
′
j(ϕ̂)Cov

[
ϕ̂i, ϕ̂j

]
The second term is zero if the quantities are uncorrelated.
General Statement
Works by considering a Taylor expansion of QoI h(xi, θ).

h(z) ≈ h(z0) + h′(z0)(z − z0) + o(‖z − z0‖)
If τ = h(β) and h(θ) 6= 0, by Slutsky’s thm,

h (β∗)
d→MVN

(
h(β),∇h (β∗)′Σ∇h (β∗)

)
where the gradient is evaluated at MLE estimates and Σ is the covariance matrix
of the MLE.

∇h (β∗) =

(
∂h(β)

∂β1

∣∣∣∣
β∗,

∂h(β)

∂β2

∣∣∣∣
β∗
, . . . ,

∂h(β)

∂βK

∣∣∣∣
β∗

)
For the scalar case,

τ̂n − τ
ŝe(τ̂)

d→N (0, 1)

where
ŝe(τ̂n) =

∣∣∣g′(θ̂)ŝe(θ̂n)∣∣∣
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3.13.3 Parametric Bootstrap
Assuming the point estimates and variances of the parameters are correct, draw
from distribution of parameters and construct quantity of interest (e.g. a marginal
effect) for each draw. Form ofM simulations,

βm ∼ MVN
(
β∗, IN (β)−1

)
h(β)m = h (βm)

Then, average them or take their quantiles

f [h (β∗)] =

M∑
m=1

f (h(β)m)

M

3.14 Generalised Method of Moments
Data is D := (Yi,Xi,Zi)

n
i=1 where Yi ∈ R, Xi is a k-vector of regressors, and Zi is

a l−vector of ‘instruments’. Need l ≥ k
Defn 3.34 (Linear GMM).
Model given by Yi = X′iβ + Ui and E [ZiUi] = 0

When k = l, we can solve for β̂ as

β̂n =

(
n∑
i=1

ZiX
′
i

)−1 n∑
i=1

ZiYi

Let Wn be a (possibly random) l × l weight matrix such that Wn
p→W. For a

given choice of a weight matrix Wn, the GMM estimator solves

β̂n(Wn) = argmin
b

∥∥∥∥∥Wn
1

n

n∑
i=1

Zi(Yi −X′iβ)

∥∥∥∥∥
2

= argmin
b

(
1

n

n∑
i=1

Zi(Yi −X′iβ)

)′
W′

nWn

(
1

n

n∑
i=1

Zi(Yi −X′iβ)

)

Different choices ofW produce different estimators. Choice of weight matrix only
matters in over-identified case (l > k).
Defn 3.35 (GMM Estimator (general formulation)).
Assume existence (from theoretical model) of rmoment conditions for q parame-
ters

E [g(wi,θ0)] = 0

where θ0 is a q × 1 vector, g(·) is a r × 1 vector function with r ≥ q, and θ0 denotes
the value of θ in the DGP. w includes all observables.
Sample Analogue:

E [g(wi, θ)] ≈
1

n

n∑
i=1

g(wi, θ) =: gN (θ) ∈ Rq

Define Jacobian
D(θ) := E

[
∂g(wi, θ)

∂θ′

]
, q × k

problem is under-identified if rank(D) < k, just identified if rank(D) = k, and
over-identified when rank(D) > k.
Evaluated at the maximum,

1√
N

n∑
i=1

g(wi, θ0)
d→N (0,S)

where
S = E

[
g(wi, θ0)g(wi, θ)

⊤] ; q × q

Can insert a positive definite q × q weighting matrix W that tells us how much to
penalise violations of one moment condition relative to another.
So, GMM estimator θ̂GMM minimises a quadratic form

θ̂ = argmin
θ

QN (θ) := gN (θ)⊤ WN︸︷︷︸
q × q, PSD

gN (θ)

in sample, this means

θ̂ = argmin
θ

(
1

n

n∑
i=1

gi(θ)

)⊤
W

(
1

n

n∑
i=1

gi(θ)

)

Technical conditions for GMM (Newey and McFadden, 1994)

1. θ ∈ Θ (parameter space is compact)

2. E [g(zi,θ0)] = 0 andE [g(zi,θ)] 6= 0 ∀θ 6= θ0 (global identification condition)

3. gn(θ)
p→ E [g(zi,θ)]

4. E [g(zi,θ)] is continous

5. ∆ := D(θ0) W D(θ0)
⊤ is invertible

← ToC 32



6. g(zi,θ) has at least two moments finite and finite derivatives at all θ ∈ Θ

7. gn(θ) is twice-continuously differentiable about θ0

8. Wn
p→W (weight matrix goes to constant)

9. θ0 is not on the boundary of Θ

Asymptotic Distribution
√
N(θ̂ − θ) d→N (0,Vθ)

Where
Vθ = (DWD)−1(DWSW′D′) (DWD)

−1

with D := E
[
∂
∂θ′ gi(θ)

]
and S := E

[
gi(θ)gi(θ)

⊤] for general weight matrices W.

Defn 3.36 ((2-step) Efficient GMM).
The weight matrix WN that minimises the variance of θ̂GMM is WN = S−1, which
produces

Vθ =
(
DS−1D′

)−1
Want S to be small (sampling variation / noise of the moments) to be small andD
to be large (objective function steep around θ0).
Problem is S = E [g(wi, θ0)g(wi, θ0)

′] is unobserved. So use sample analogue

Ŵ = Ŝ−1 =

(
1

n

n∑
i=1

(
g(wi, θ̂)− gN (θ̂)

)(
g(wi, θ̂)− gN (θ̂)′

))−1
Steps

1. Pick some initial guess W0 = Iq

2. Solve θ̂ = argminθ gN (θ)′W0gN (θ)

3. Update Ŵ =
(

1
n

∑n
i=1

(
g(wi, θ̂)− gN (θ̂)

)(
g(wi, θ̂)− gN (θ̂)′

))−1
4. Solve θ̂GMM = argminθ gN (θ)′ŴgN (θ)

5. Compute D(θ̂GMM) and S(θ̂GMM)

Example 3.23 (Standard Methods nested in GMM).
Most standard methods can be re-expressed as GMM.

• OLS: yi = x′iβ+ϵi. Exogeneity implies E [x′iϵi] = 0. Can write in terms of ob-
servables and parameters as E [x′i(yi − x′iβ)] = 0. Yields moment condition
g(yi, xi, β) = x′i(yi − x′iβ)

• 2SLS: xi is endogenous, so E [x′iϵi] 6= 0. However, ∃zi such that E [z′iϵi] = 0,
so moment condition for exclusion restriction is g(yi, xi, zi, β) = z′i(yi − x′iβ)

• MaximumLikelihood: g is simply the score function, so g(wi, θ) = ∂ log f(wi,θ)
∂θ

3.14.1 Empirical Likelihood
Notes based on Owen (2001) and Anatolyev and Gospodinov (2011).

Defn 3.37 (Nonparametric Likelihood).
Given X1, . . . , Xn ∈ R assumed IID with common CDF F0, the nonparametric like-
lihood of the CDF F is

L(F) =
N∏
i=1

(F(Xi)− F(Xi−)) =
N∏
i=1

Pr (Xi = x)

The value L(F) is the probability of getting exactly the observed sample values
X1, . . . , Xn from the CDF F.
L(F) = 0 for continuous F; for positive nplikelihood, a distribution F must place
positive probability on every one of the observed data values.

Theorem 3.24 (The Empirical CDF (ECDF) maximises the Nonparametric Likelihood).
where

F̂ =
1

n

n∑
i=1

δxi

where δx is a point mass as x.

NPMLE as constrained optimisation Consider a random sample {xi}ni=1 from a
population distribution F(x) with density f(x). The joint likelihood is given by∏

i=1

f(xi)

instead of assuming a particular parametric form for f(x|η), we define η := p =
(p1, . . . , pn)where pi = f(f(xi) denotes a sequence of discrete probability weights
assigned to each sample observation observation. The Nonparametric Maximum
Likelihood estimate of p solves
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max
p

1

n

n∑
i=1

log(pi)

subject to the constraint∑n
i=1 pi = 1.

The lagrangian for this problem is

L(p1, . . . , pn, µ) =
1

n

n∑
i=1

log(pi)− µ

(
n∑
i=1

pi − 1

)
which yields the solution p̂i = 1

n , i = 1, . . . , n

Defn 3.38 (Empirical Likelihood).
Suppose now we have a model in the form of a system of unconditional moment
restrictions

E [m(w,θ0)] = 0

where θ0 is k×1,w is a vector of observables, andm(w,θ) is an l vector of moment
conditions. This amends the above constrained optimisation problem to

max
p

1

n

n∑
i=1

log(pi)

subject to the constraints
n∑
i=1

pim(wi,θ) = 0

∑n
i=1 pi = 1.

The lagrangian for this problem is

L(p1, . . . , pn, µ) =
1

n

n∑
i=1

log(pi)− λ⊤
n∑
i=1

pim(wi,θ)− µ

(
n∑
i=1

pi − 1

)
which, upon tedious rearrangement, yields the system of equations that implicitly
define the solutions

1

n

n∑
i=1

m(wi, θ̂)

1 + λ̂⊤m(wi, θ̂)
= 0

1

n

n∑
i=1

∂m(wi, θ̂)
′/∂θ

1 + λ̂⊤m(wi, θ̂)
λ̂ = 0

where the solution θ̂ is called the empirical likelihood (EL) estimator and λ̂ is a vector
of EL multipliers. The dual of the above problem solve the EL saddlepoint problem

max
θ∈Θ

min
λ

1

n

n∑
i=1

(
− log(1 + λ⊤m(wi,θ))

)
GeneralisedEmpirical Likelihood Replacing the log abovewith an arbitrary shape-
constrained criterion function ρ(v) (ρ(0) = 0, ρ′(0) = ρ′′(0) = −1) yields the gen-
eralised empirical likelihood estimator which solves

min
θ∈Θ

sup
λ∈Λn

1

n

n∑
i=1

ρ(λ⊤m(wi,θ))

where Λn =
{
λ : λ⊤m(wi,θ) ∈ Υ

}
where Υ is an open set containing zero.

• ρ(v) = log(1− v),Υ = (−∞, 1) reduces GEL to the basic EL setup.

• ρ(v) = − 1
2v

2 − v: Continuously Updated GMM (CUE)

• ρ(v) = 1− exp(v): Exponential tilting

The primal of the problem is

θ̂ = argmin
θ,p

n∑
i=1

hn(pi)

where hn(·) belongs to the Cressie-Read family of divergences

hn(pi) =
[γ(γ + 1)]−1[(npi)

γ+1 − 1]

n

Implemented in momentfit::gel4.

3.14.2 M-estimation
GMM, but as taught in stats departments.
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AM− estimator is a solution for θ that solves a moment condition

n∑
i=1

ψ(Oi, θ̂) = 0 (1)

where O1, . . . ,On are IID obs (of arbitrary length), θ̂ ∈ Rk, and ψ(·) is a known
k × 1 estimating function that does not depend on i or n.
The moment condition 1 is solved numerically using standard root-finding tech-
niques.
The M-estimator θ̂ is consistent and asymptotically normal with asymptotic variance
of the following sandwich form

V
[
Oi, θ̂

]
=
(
Bn(Oi, θ̂)

)−1
Mn(Oi, θ̂)

((
Bn(Oi, θ̂)

)−1)⊤
where

Bread Bn(Oi, θ̂) =
1

n

n∑
i=1

−ψ′(Oi, θ̂)

Meat Mn(Oi, θ̂) =
1

n

n∑
i=1

ψ(Oi, θ̂)ψ(Oi, θ̂)⊤

Since many (most?) statistical estimation problems are solutions to an optimiza-
tion problem, M-estimation nests many familiar statistical problems with ψ(·) as
the corresponding FOC. For example, for maximum likelihood, ψ(·) is the score
equation ∂ log f(y;θ)

∂θ

⊤
.

4 Causal Inference
4.1 Foundations, Experiments
4.1.1 Potential Outcomes
Exposition from Athey and Imbens (2016b) and Imbens and D. B. Rubin (2015)
Yi is the observed outcome, Di is the treatment with levels d ∈ D,
potential outcomes denoted Ydi, Y di , Yi(d) (interchangeably).

Y obs
i = Yi(Di) =

{
Y1i if Di = 1
Y0i if Di = 0

Equivalently, we have the switching equation
Yi = Di · Y1i + (1−Di) · Y0i = Y0i + (Y1i − Y0i)︸ ︷︷ ︸

τi

Di

This encodes what is known as the causal-consistency assumption (/ SUTVA).
Generally, define a potential outcome (Frölich and Sperlich, 2019)

Y di = φ(d,Xi,Ui)

where Xi is a vector of observed covariates and Ui is a vector of unobservables,
and φ is an unknown measurable function. Typically, we are interested in non-
parametric identification of φ or some features of it.

Defn 4.1 (Assignment Mechanism).
Given a population of n units, the assignment mechanism is a row-exchangeable
function Pr (D|X,Y(0),Y(1)) taking values on [0, 1] that satisfies∑

D∈{0,1}N
Pr (D|X,Y(0),Y(1)) = 1

A unit level assignment probability for unit i is

pi(X,Y(0),Y(1)) =
∑

D:Di=1

Pr (D,X,Y(0),Y(1))

A finite population propensity score is

e(x) =
1

N(x)

∑
i:Xi=x

pi(X,Y(0),Y(1))

where N(x) = # {i = 1, . . . , N |Xi = x} is the number of units in each stratum
defined by Xi = xi.

Defn 4.2 (Causal Estimand).
is a row-exchangeable function of potential outcomes, treatment assignment, and

← ToC 35



covariates.

τ = τ(Y(0),Y(1),X,d)

Y(0),Y(1) are n− vectors of potential outcomes,X is a n×p covariate matrix, and
d is an assignment vector.
The most intuitive estimand is a n− vector τ = Y(1) − Y(0). This is impossible
to estimate because of the FPCI, so we instead use summaries, such as its sample
average, or subgroup averages.

Defn 4.3 (Fundamental Problem of Causal Inference).
We never see both potential outcomes for any given unit.
Decompositions of Observed Differences:

E[Yi|Di = 1]− E[Yi|Di = 0]︸ ︷︷ ︸
observed difference

= E[Y1i|Di = 1]− E[Y0i|Di = 1]︸ ︷︷ ︸
ATT

+E[Y0i|Di = 1]− E[Y0i|Di = 0]︸ ︷︷ ︸
Selection Bias

= E [Y1]− E [Y0]︸ ︷︷ ︸
ATE

+ E[Y0i|Di = 1]− E[Y0i|Di = 0]︸ ︷︷ ︸
Selection Bias

+(1− π) (ATT −ATU)︸ ︷︷ ︸
Heterogeneous Treatment Bias

where π = E [D] is the share of the sample treated.

Assumption 1 (Identification Assumption: Complete Randomisation).

(Y1i, Y0i) ⊥⊥ Di

This is a Missing Completely at Random (MCAR) assumption on potential out-
comes.

Assumption 2 (Stable Unit Treatment Value Assumption (SUTVA)).
Writing outcomes generated by the switching regression assumes that potential
outcomes for any unit do not vary with the treatment assigned to other units. In
practice, this is equivalent to a no spillovers assumption.

(Y1i, Y0i) ⊥⊥ D−i

Equivalently, letD denote a treatment vector forN units, and Y(D) be the poten-
tial outcome vector that would be observed if was based on allocation D. Then,
SUTVA requires that for allocations D,D′,

Yi(D) = Yi(D
′) if Di = D′i

Intuitively, SUTVA ensures that the ‘science table’ (Imbens & Rubin 2015) has 2
columns for the two potential outcomes as opposed to 2n (number of potential
outcomes with arbitrary interference).

4.1.2 Treatment Effects
Estimands

• τATE := E (Y1i − Y0i)

• τATT := E (Y1i − Y0i|Di = 1) = E [Y1i|Di = 1]− E [Y0i|Di = 1]

Under randomisation, τATE = τATT , since the treated are a random sample of the
population. Under weak(er) assumption of Y0i ⊥⊥ Di, only τATT is identified.

4.1.3 Difference in Means

Defn 4.4 (Difference in Means point estimate).

τ̂ =
1

N

N∑
i=1

(
D · Y1
N1/N

− (1−D) · Y0
N0/N

)
=

1

N1

∑
N

DiYi −
1

N0

∑
N

(1−Di)Yi

Defn 4.5 (Variance estimation for difference in means).
Variance of Difference in means estimator is given by

V [τ ]DiM =
S2
0

N0
+
S2
1

N1
− S2

01

N

where S0, S1 are sample variances of Y 0, Y 1 respectively, and S01 is the variance
of the unit level treatment effect

1

N − 1

n∑
i=1

(Yi(1)− Yi(0)− τ)

This is not identifiable because of the last term. If the treatment effect is constant
in the population, the last term is zero.
A (conservative) variance estimator is given by

V̂(τ̂DiM) =

(
σ̂2
1

N1
+
σ̂2
0

N0

)
where

σ̂2
(d) =

1

Nd − 1

∑
i:di=d

(Yi − Y d)2 ; d = 0, 1

These variance estimates can be used to construct 95% confidence intervals

C0.95(τ) = (τ̂ − 1.96
√
V̂, τ̂ + 1.96

√
V̂, )
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4.1.4 Regression Adjustment
Yi = α+ τREGDi + ηi

= Y 0︸︷︷︸
α

+
(
Y 1 − Y 0︸ ︷︷ ︸
τREG

)Di +
{(
Yi0 − Y 0

)
+Di ·

[(
Yi1 − Y 1

)
−
(
Yi0 − Y 0

)]}︸ ︷︷ ︸
ηi

• α = E[Y0i]

• τ = E [Y1i − Y0i]

• ηi = Y0i − E(Y0i) [extra terms above come from allowing for heterogeneous
TEs]

Selection bias: Cov [Di, ηi] 6= 0

Example 4.1 (Matrix formulae for randomized regression).
Suppose 50 percent of the population gets the treatment. LetX′i =

[
Di 1

]
. Then,

X′X =

[
N
2

N
2

N
2 N

]
=
N

2

[
1 1
1 2

]
=⇒ (X′X)

−1
=

2

N

[
2 −1
−1 1

]
Similarly,

X′y =

[ ∑
T Yi∑

T Yi +
∑
c Yi

]
Therefore

β̂ = (X′X)
−1

X′y =

[
ȲT − Ȳc
Ȳc

]
Generalise to p fraction treated
VCV under homoscedasticity(

1

p(1− p)N(N − 2)

)[
1 −p
−p p

](∑
T

û2 +
∑
C

û2

)
VCV under heteroskedasticity(

1

p2(1− p)2N(N − 2)

)[
(1− p)2

∑
T û

2 + p2
∑
C û

2 −p2
∑
C û

2

−p2
∑
C û

2 −p2
∑
C û

2

]
Including controls:

Yi = α+ τDi +X′iβ + ηi

Corrects for chance covariate imbalances, improves precision by removing variation
in outcome accounted for by pre-treatment characteristics.

Fact 4.2.
Freedman (2008) Critique
Regression of the form Yi = α+ τregDi + β1Xi + ϵi

• τ̂reg is consistent for ATE but has small sample bias (unless model is true);
bias is on the order of 1/n

• τ̂reg precision does not improve through the inclusion of controls; including
controls is harmful to precision if more than 3/4 units are assigned to one
treatment condition

Theorem 4.3 (Lin (2013) fix / response to Freedman critique).
Recommends fitting

Yi = α+ τlinDi + β0 · (Xi − X̄) + β1 ·Di · (Xi − X̄) + ϵi

Where the two potential outcomes are stipulated to follow

Y 1 = Y 1 + (X−X1)
⊤(β̂0 + β̂1)

Y 0 = Y 0 + (X−X0)
⊤(β̂0)

which has same small sample bias, but cannot hurt asymptotic precision even if
the model is incorrect and will likely increase precision if covariates are predictive
of the outcomes.

4.1.5 Randomisation Inference

Defn 4.6 (Fisher’s Exact Test).
sharp null: Y1i = Y0i ∀i. Implies H0 : E [Yi] = E [Y0] ; H1 : E [Yi] 6= E [Y0].
To test sharp null, set Y1 = Y0 for all units and re-randomize treatment. Complete
randomisation of 2N units with N treated.

(
2N
N

)
assignment vectors. P value can

be as small as 1/
(
2N
N

)
.

Ω is the full set of randomisation realisations, and ω is an element in the set (drawn
either under complete randomization or binomial randomization), with associated
probability 1/

(
2N
N

)
One sided P-value : Pr ((α̂(ω) ≥ τ̂ATE))

4.1.6 Blocking
Stratify randomisation to ensure that groups start out with identical observable
characteristics on blocked factors.
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V [τ̂BR] < V [τ̂CR] if SSRε̂∗
n−k−1 < SSRε̂

n−2 where ϵ̂ and ϵ̂∗ are errors from specification
omitting and including block dummies respectively.
For J blocks,
Point estimate

τ̂B =

J∑
j=1

Nj
N
τ̂j

Variance Randomisations within each block are independent, so the variances are
simple means (with squared weights).

Var (τ̂B) =

J∑
j=1

(
Nj
N

)2

Var (τ̂j)

Regression Formulation

yi = τDi +

J∑
j=2

βj ·Bij + ϵi

If treatment probabilities vary by block, then weight by

wij =

(
1

pij

)
Di +

(
1

1− pij

)
(1−Di)

Efficiency Gains from Blocking

• Complete Randomisation : Yi = α+ τCRDi + ϵi

• Block Randomisation: Yi = α+ τBRDi +
∑J
j=2 βjBij + ϵ∗i

Var [τ̂CR] =
σ2
ε∑n

i=1

(
Di −D

)2 with σ̂2
ε =

∑n
i=1 ε̂

2
i

n− 2
=
SSRε̂
n− 2

Var [τ̂BR] =
σ2
ε∗∑n

i=1

(
Di −D

)2 (
1−R2

j

) with σ̂2
ε∗ =

∑n
i=1 ε̂

∗2
i

n− k − 1
=

SSRε̂∗

n− k − 1

Where R2
j is the fit from regressing D on all Bj dummies. Since R2

j ≈ 0 by ran-
domisation,

V [τ̂BR] < V [τ̂CR]⇔
SSRϵ̂

n− k − 1
<
SSRϵ̂
n− 2

4.1.7 Power Calculations

Basic idea: With large enough samples, V
[
Ȳ1 − Ȳ0

]
≈ σ2

1

pN +
σ2
0

(1−p)N [where p =

N1/N is the share of sample treated]. Set p to minimise overall variance. Yields
p∗ = σ1

σ1+σ0
. With homoskedasticity, this is 1

2 Treatment, 1
2 control.

Defn 4.7 (Power Function).
τ = µ1 − µ0 (effect size)
Test for τ > (t1−κ + tα/2SE(β̂).
For common variance σ,

π = Pr (|t| > 1.96) = Φ

(
−1.96− τ

√
N

2σ

)
+

(
1− Φ

(
1.96− τ

√
N

2σ

))
General formula for Power with unequal variances

π = Φ

1.96− τ√
σ2
1

pN +
σ2
0

(1−p)N

+

1− Φ

1.96− τ√
σ2
1

pN +
σ2
0

(1−p)N


This yields
Defn 4.8 (Minimum Detectable Effect MDE).
Common variance (assumed)

MDE(τ) =Mn−2

√
σ2

Np(1− p)

where Mn−2 = t(1−α/2) + t1−κ = Critical t-value to reject null + t-value for alter-
native (where 1− κ) is power.
MDES (Minimum Detectable Effect Size in Standard Deviation Units):

MDES(τ) =Mn−2

√
1

Np(1− p)

Fact 4.4 (Typical MDE for α = 0.05, κ = 0.8, N large).
MultiplierMn−2 simplifies to 1.96 + 0.84 ≈ 2.8

MDE ≈ (0.84 + 1.96)SE(τ̂) ≈ 2.8 SE(τ̂)
Rearrange to get necessary sample size for any given hypothesised MDE and ex-
pected variance.

N = (z1−κ + zα/2)
2 ·
(

1

p(1− p)

)
· σ2

MDE2
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MDES for Blocking

MDES(τBR) =Mn−k−1

√
1−R2

B

Np(1− p)

where R2
B is the R-squared from regressing Y on block dummies.

Fact 4.5 (Required Sample Size for rejection probability β, size α, treatment share γ,
effect size τ ).
To testH0 : E [Yi(1)− Yi(0)] = 0 against the alternative, we look at the T Statistic

T =
Y
obs

t − Y obsc√
S2
y/Nt + S2

y/Nc
≈ N

(
τ√

σ2/Nt + σ2/Nc
, 1

)

Inverting this for size α/2 gives us a required sample size

Required Sample Size = N =

(
Φ−1(β) + Φ−1(1− α/2)

)
(τ/σ)2 · γ · (1− γ)

typically, β = 0.8, α = 0.05, γ = 0.5, so by subtitution

N =

(
Φ−1(0.8) + Φ−1(0.975)

)
(τ/σ)2 · 0.52

4.2 Selection On Observables
Imbens (2004) typology

• Regression estimators: rely on consistent estimation of µ0(x), µ1(x)

• Matching estimators

• Propensity score estimators: rely on estimation of π(x)

• Combination methods (augmented IPW, bias-corrected Matching, etc)

4.2.1 Regression Anatomy / FWL

βk =
Cov(Yi, x̃ki)

V (x̃ki)

where x̃ki is the residual from a regression of xki on all other covariates.

Fact 4.6 (Omitted-Variables Bias Formula).
If structural (long) equation is Yi = α+ τDi +W ′iγ + ϵi, withWi vector of unob-
served, andwe estimate short Yi = α+ρDi+ϵi, thenwe canwrite the specification
as y = τDi +W ′iγ + ϵ︸ ︷︷ ︸

νi

ρ =
Cov [Yi, Di]

V [D]
= τ + γ′δWD

equivalently,

plim τ̂OLS = τ + δγ = τ + plim [
(
N−1D′D

)−1
N−1D′W ]γ︸ ︷︷ ︸

Omitted Variables Bias

Coefficient in Short Regression=Coefficient in long regression+ effect of omit-
ted × regression of omitted on included. This bias can be arbitrarily large.

4.2.2 Identification of Treatment Effects under Unconfoundedness

Assumption 3 (Conditional Independence Assumption and Overlap).

• Unconfoundedness / Selection on Observables / Ignorability / Conditional Inde-
pendence Assumption: (Y0, Y1) ⊥⊥ D|X
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– In terms of densities, this is equivalent to the validity of the following
density factorisation

fY (d),D|X(y, d|x) = fY (d)|X(y|x)fD|X(d|x)
= fY |D,X(y|d,x)fD|X(d|x)

• common support 0 < Pr (D = 1|X) < 1

E [Yd] =

∫
E
[
Y d|X = x

]
dPx by LIE

=

∫
E
[
Y d|D = d,X = x

]
dPx by unconfoundedness, overlap

=

∫
E [Y |D = d,X = x] dPx by consistency

The third quantity is estimable using observed data.
Estimators:
Discrete Case: x has finite values indexed by k = 1, . . . ,K with generic entry xk

τATE =

K∑
k=1

(E [Y |D = 1,X = xk]− E [Y |D = 0,X = xk])Pr (X = xk)

τATT =

K∑
k=1

E [Y |D = 1,X = xk]− E [Y |D = 0,X = xk]) Pr (X = xk|D = 1)

Multi-valued and Continuous Treatments Imbens (2000) and Hirano and Imbens
(2004)
Treatment values: D finite if multi-valued / ⊂ R for continuous, with correspond-
ing dose-responses Yi(d). We are interested in dose-response function µ(d) =
E [Yi(d)], and contrasts.
First define Generalised propensity score :

R := r(d,x) = fD|X (d|x)

Assumptions:

• Weak unconfoundedness: Y (d) ⊥⊥ D|X = x ∀ D ∈ D

• Conditional density overlap: f (D = d|X = x) > 0

Bias removal using the generalised propensity score:

• Estimate the conditional expectation of the outcome as a function of treat-
ment level d and GPS R as

β(d, r) = E [Y (d)|r(d,X) = r] = E [Y |D = d|R = r]

• Estimate the dose-response function of the treatment by averaging the con-
ditional expectation at that particular level of treatment µ(d) = E [β(d, r(d,X))]

Then compute contrasts to get first derivative (MTE)
∂

∂d
E [µ(d)]

4.2.3 Estimators of E
[
Y d
]

which can be used to construct estimators of ATE(γ̂1 − γ̂0), ATT((γ1 − γ̂0|D = 1),
and other estimands. reference: Imbens (2004), David Childers’ lecture notes.

• Regression Adjustment

– Estimate µd(x) = E [Y |D = d,X = x] by nonparametric regression esti-
mator µ̂d(x)

– Average γ̂reg
d := 1

n

∑n
i=1 µ̂d(x)

– Since average of predicted treated outcome for the treated is equal to
the average predicted outcome for controls, can also write ATE as

τ̂ATE
reg =

1

n

n∑
i=1

Di · [Yi − µ̂0(Xi)] + (1−Di)[µ̂1(Xi)− Yi]

– SATT only requires imputation of one potential outcome

τ̂ATT
reg =

1

Nt

n∑
i=1

Di[Yi − µ̂0(Xi)]

• Inverse Propensity Weighting

– Estimate propensity score π(x) = E [D = d|X = x] by conditional prob-
ability estimator π̂(d|x)

– Average

γ̂IPW
d :=

1

n

n∑
i=1

Yi1Di=d
π̂(d|x)
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• Augmented Inverse Propensity Weighting / Combination methods

– Estimate µd(x) = E [Y |D = d,X = x] by µ̂d(x)
– Estimate π(x) = E [D = d|X = x] π̂(d|x)
– Average

γ̂AIPW
d :=

1

n

n∑
i=1

(
µ̂d(x) +

(Yi − µ̂d(x))1Di=d
π̂(d|x)

)

• Hahn (1998) normalized outcome regression : estimate

µ̃1 =
(µ̂1(x))

π̂(x)
; µ̃0 =

(µ̂0(x))

1− π̂(x)

4.2.4 Subclassification / Blocking
Weighted combination of K subclasses of covariate values, which partition the
population

τ̂ATE =

K∑
k=1

(
Y
k

1 − Y
k

0

)
·
(
Nk

N

)

τ̂ATT =

K∑
k=1

(
Y
k

1 − Y
k

0

)
·
(
Nk

1

N1

)

4.2.5 Regression Adjustment
A single regression with controls X is potentially problematic because of Simp-
son’s paradox. To account for this in a parametric setup, assume a set of iid subjects
i = 1, . . . n we observe a tuple (Xi, Yi, Di), comprised of

• feature vectorXi ∈ Rp

• response Yi ∈ R

• treatment assignment Di ∈ {0, 1}

Define conditional response surfaces as
µ(d)(x) := E [Yi|Xi = x, Di = d]

First pass regression adjustment estimator (using OLS)

τ̂ =
1

n

n∑
i=1

[
µ̂(1)(Xi)− µ̂(0)(Xi)

]

where µ̂(d)(x) is obtained via OLS. This generically doesn’t work for regularised
regression.
With known propensity score π(X) (as in case of regression), an efficient estima-
tor (Hahn, 1998) weights all estimated treatment effects µ̂1(Xi) − µ̂0(Xi) by the
propensity score:

τ̃ATT
reg =

∑n
i=1 π(Xi)[µ̂1(Xi)− µ̂0(Xi)]∑n

i=1 π(Xi)

Fact 4.7 (Consistency of Regression estimation of ATE).
Additional Assumptions for consistent estimate of ATE from OLS:

1) Constant treatment effects

2) Outcomes linear in X

=⇒ τ will provide unbiased and consistent estimates of ATE.

• (2) fails - τOLS is Best Linear Approximation of average causal response func-
tion E [Y |D = 1, X]− E [Y |D = 0, X].

• (1) fails - τOLS is conditional variance weighted average of underlying τs.

Pretend there arem strata of X. Then, OLS estimates

τOLS =
m∑
k=1

(E[Y |X = xk, D = 1]− E[Y |X = xk, D = 0])ωk

where the weight

ωk =
V [(D|X = xk]Pr (X = xk)∑m
r=1 V [D|X = xr]Pr (X = xr)

τOLS weighs up groups where the size of the treated and untreated population are
roughly equal, and weighs down groups with large imbalances in the size of these
two groups.
τOLS is true effect IFF constant treatment effects holds.

4.2.6 Matching
Regression estimators impute missing potential outcomes by imputing it using
µ̂d(Xi). Matching estimators proceed by by ‘imputing’ potential outcome using
the observed outcome from ‘closest’ control unit.
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Defn 4.9 (Matching Estimators).
Define ℓm(i) as the index that satisfies∑

j:dj ̸=di

1∥Xj−Xi∥≤∥Xl−Xi∥ = m

So, ℓm(i) is the index of the unit in the opposite treatment group that is m−th
closest to unit i in terms of covariate values in terms of the norm ‖·‖. Let JM (i) :=
{ℓ1(i), . . . , ℓM (i)} denote the indices of the firstM matches for unit i. Then, impute
potential outcomes as

Ŷi(0) =

{
Yi if Di = 0
1
M

∑
j∈JM (i) Yj if Di = 1

Ŷi(1) =

{
1
M

∑
j∈JM (i) Yj if Di = 0

Yi if Di = 1

then, the simple matching (with replacement) estimator for ATE is

τ̂ATEMatch =
1

n

n∑
i=1

[Ŷ (1)− Ŷ (0)]

and corresponding ATT

τ̂ATTMatch =
1

N1

∑
D=1

(
Yi − Yj(i)

)
whereM = 1 corresponds with one-to-one matching andM > 1 is many-to-one.
Many-to-one matching is not √n consistent (Abadie and Imbens (2006)) and has
a bias of O(N−1/k) where k is the number of continuous covariates.
Bias-corrected (Abadie-Imbens)

τ̂ATT =
1

N1

∑
D=1

(
Yi − Yj(i)

)
−
(
µ̂0 (Xi)− µ̂0

(
Xj(i)

))
Where µ0(x) = E[Y |X = x,D = 0] is the regression function under the control.

Metrics
• Euclidian Distance

‖Xi −Xj‖ = ED (Xi, Xj) =

√
(Xi −Xj)

′
(Xi −Xj)

• Stata diagonal distance

StataD (Xi, Xj) =

√
(Xi −Xj)

′
diag

(
Σ̂X

)−1
(Xi −Xj)

where the normalisation factor is the diagonal element of Σ̂, the estimated
variance covariance matrix.

• Mahalanobis distance (scale-invariant)

MD (Xi, Xj) =

√
(Xi −Xj)

′
Σ−1 (Xi −Xj)

Where Σ̂ is the variance-covariance matrix.

Defn 4.10 (Variance Estimators for Matching).
Matching estimators have a normal distribution in large samples provided that
bias is small.
For matching without replacement,

σ̂2
ATT =

1

NT

∑
Di=1

(
Yi −

1

M

M∑
m=1

Yjm(i) − δ̂ATT

)2

For matching with replacement,

σ̂2
ATT =

1

NT

∑
Di=1

(
Yi −

1

M

M∑
m=1

Yjm(i) − δ̂ATT

)2

+

1

NT

∑
Di=0

(
Ki(Ki − 1)

M2

)
V [ϵ|Xi, Di = 0]

where Ki is the number of times observation i is used in a match, and the last
error variance term is estimated by matching also. the bootstrap doesn’t work for
matching.

Theorem 4.8 (Balancing Property of the Propensity Score Rosenbaum and D. B. Rubin
(1983)).
PScore is a balancing score - Conditioning on Propensity score is equivalent to
conditioning on covariates:

Pr (D = 1|Y0, Y1, π(X)) = Pr (D = 1|π(X)) = π(X)
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Yi(0), Yi(1) ⊥⊥ Di|Xi ≡ Yi(0), Yi(1) ⊥⊥ Di|π(Xi)

Theorem 4.9 (Efficiency bound and efficient score).
Hahn (1998) defines the semiparametric Efficiency Bound for ATE: the asymptotic
variance of any regular estimator of τ of the population ATE obeys

√
n(τ̂ + τP )

d→N (0,V)

where

V ≥ VPATE
eff := E

[
σ2
1(X)

π(X)
+

σ2
0(X)

1− π(X)
+ (τ(X)− τ)2

]
and for PATE (γ)

VPATT
eff = E

[
π(X) σ2

1(X))

p2
+
π(X2) σ2

0(X)

p2(1− π(X)
+

(τ(X)− γ)2π(X)

p2

]
where σ2

d(X) = V
[
Y d|X

]
, τ(X) := E

[
Y 1 − Y 0|X

]
, and p := E [π(X)].

Any regular estimator whose asymptotic variance achieves this efficiency bound
is equal to 1

n

∑n
i=1 ψi(µ) +OP (

√
n), where

ψi(µ) = µ(1,Xi)− µ(0,Xi) +
Di(Yi − µ(1,Xi))

π(Xi)
− (1−Di)(Yi − µ(0,Xi))

1− π(Xi)

is the Efficient Influence Function for estimating τ .
Imbens (2004) shows that

VSATE
eff = VPATE

eff − E

 τ̂︷ ︸︸ ︷
Y1 − Y0−τP

2

︸ ︷︷ ︸
Variance of treatment effect

Estimators in this section try to attain the SPEB.

Defn 4.11 (Weighting on the Propensity Score: Horvitz-Thompson Estimands).

τ IPWATE = E
[
Y · D − π(X)

π(X)(1− π(X))

]
= E

[
Y D

π(X)
− Y (1−D)

(1− π(X))

]
and

τ IPWATT =
1

Pr (D = 1)
E
[
Y · D − π(X)

1− π(X)

]

The counterfactual mean E
[
Y 0|D = 1

]
= µ1

0 can be identified as

E
[
π(Xi)

ρ

1−Di

1− π(Xi)
Yi

]
where ρ = Pr (D = 1).

Defn 4.12 (Inverse Probability-Weighted Estimators).

τ̂ ateipw =
1

n

n∑
i=1

 YiDi

π̂(Xi)︸ ︷︷ ︸
E[Y1]

− Y (1−Di)

(1− π̂(Xi))︸ ︷︷ ︸
E[Y0]

 =
1

n

n∑
i=1

Yi

(
Di

π̂(Xi)
− 1−Di

1− π̂(Xi)

)

Hirano, Imbens, and Ridder (2003) normalise both pieces using a Hajek-style ad-
justment, since extreme values of π̂ makes variance explode. Often advisable to
trim or use Hajek weights, which introduces limited bias at the cost of large de-
creases in variance.

τ̂ ateipw2 =
1

n

n∑
i=1

[(
YiDi

π̂(Xi)

/
Di

π̂(Xi)

)
−
(
(1−Di)Yi
1− π̂(Xi)

/
1−Di

1− π̂(Xi)

)]
Similarly, for the effect on the treated

τ̂ attipw =
1

n

n∑
i=1

(
Yi

Pr (Di = 1)
· Di − π̂(Xi)

(1− π̂(Xi))

)

≡ 1

n

n∑
i=1

Yi

(
Di

π̂(Xi)
− (1−Di)π̂(Xi)

(1− π̂(Xi))Pr (Di = 1)

)

τ̂ attipw2 =

[
1

N1

∑
i:Di=1

Yi

]
−

[ ∑
i:Di=0

Yi ·
π̂(Xi)

1− π̂(Xi)

/ ∑
i:Di=0

π̂(Xi)

1− π̂(Xi)

]

Horvitz-Thompson Estimator as Regression Yi = α+ τDi + ϵi with IPW weights

λi =

√
Di

π(Xi)
+

1−Di

1− π(Xi)

Defn 4.13 (Weighted Average Treatment Effect Hirano, Imbens, and Ridder (2003) ).
define the Weighted ATE (WATE) as
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τATE =

∫
E
[
Y 1 − Y 0|X = x

]
g(x)dF(x)∫

g(x)dF(x)

where g(x) is a weighting function. ATT is constructed when g(x) = π(x)
the corresponding estimator is

τ̂WATE =

n∑
i=1

g(xi)

(
YiDi

π̂(xi)
− Yi(1−Di)

1− π̂(xi)

)/ n∑
i=1

g(xi)

Defn 4.14 (Overlap Weights (Li, Morgan, and Zaslavsky, 2018)).
Sample drawn from f(X), and can represent a target population as g(X) ∝ f(X)h(X)
where h(·) is the tilting function.
Define fd(x) = Pr (X = x|D = d), which gives f1(x) ∝ f(x)π(x) ; f0(x) ∝
f(x)(1− π(x)
For a given tilting function, to estimate τh, weight fd(x)

w1(x), w0(x) =
h(x)

π(x)
,

h(x)

1− π(x)

Target h(x) Estimand w1, w0

Combined 1 ATE
(

1
π(x) ,

1
1−π(x)

)
[IPW]

Treated π(x) ATT
(
1, π(x)

1−π(x)

)
Control 1− π(x) ATC

(
1−π(x)
π(x) , 1

)
Overlap π(x)(1− π(x)) ATO (1− π(x), π(x))

Overlapweights are defined by choosing h(x) thatminimises asymptotic variance
of τ̂h. The achieve exact balance on covariates included in the propensity score
estimation.

τ̂ = µ̂h1 − µ̂h0 =

N∑
i

w1(xi)DiYi
w1(xi)Di

− w0(xi)(1−Di)Yi
w0(xi)(1−Di)

τOW can be interpreted as treatment effect among population that have good bal-
ance on observables.
Implemented in PSweight.

Defn 4.15 (Entropy Balancing (Hainmueller, 2012)).
Entropy weights wi for each control unit are chosen by a reweighting scheme

max
wi

H(w) = −
∑
i:D=0

wi log(wi)

subject to balance/moment-condition and normalising constraints

∑
i:D=0

wicri(Xi) = mr r ∈ 1, . . . , R∑
i:D=0

wi = 1 and wi ≥ 0 ∀{i : di = 0}

The above problem is convex but has dimensionality of n0 (nonnegativity) + p
(moment conditions) + 1 (normalisation). The dual, on the other hand, only has
dimensionality p+1 and unconstrained, which is considerably easier to solve using
Newton-Raphson.

Defn 4.16 (Covariate Balancing Propensity Score).
Imai and Ratkovic (2014) propose CBPS, which is a method that involves mod-
ifying an initial propensity score estimate (e.g. by changing coefficients from a
logistic model) iteratively until a balance criterion is reached.
Their basic insight is thatwhenweuse a logistic regression to estimate a propensity
score, we assert that the pscore takes the form πβ(xi) = Λ(x⊤i β) =

exp(x⊤
i β)

1+exp(x⊤
i β)

, and
maximise the bernoulli log likelihood

n∑
i=1

di log(πβ(xi)) + (1− di) log(1− πβ(xi))

which is then solved by the corresponding score

1

n

n∑
i=1

diπ
′
β(xi)

πβ(xi)
−

(1− di)π′β(xi)
1− πβ(xi)

= 0

this score balances a particular function of covariates: π′β(xi). Alternatively, we
could choose that function by specifying a moment condition

E
[
dif(xi)

πβ(xi)
− (1− di)xi

1− πβ(xi)

]
= 0

Analogously for ATT, this moment condition is

E
[
dif(xi)−

πβ(xi)

1− πβ(xi
(1− di)f(xi)

]
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When this balance condition is solved independently, the problem is just-identified.
When it is used in conjunction with the conventional bernoulli likelihood, the
problem is over-identified. Implemented in CBPS::CBPS as well as balance.
Defn 4.17 (Covariate-Balancing Scoring Rules Q. Zhao (2016)).

Defn 4.18 (General form of Weighting Estimators : Ben-Michael et al. (2021)).
The estimand is µ1 = E [Y (1)] (with µ0 defined analogously). The estimator for
this quantity is written

µ̂1 =
1

n

n∑
i=1

Diγ̂(Xi)Yi

where the weights γ(·) are chosen to satisfy the sample balance property

1

n

n∑
i=1

Diγ(Xi)f(Xi) ≈
1

n

n∑
i=1

f(Xi) for any bounded f(x)

in words: for every function f(x), the weighting function equates weighted aver-
ages of f over the treated units to unweighted averages over the study population.
The weights are solved by solving an optimisation problem to trade off imbalance
and some measure of complexity

γ̂ = argmin
γ

imbalance2M(γ)︸ ︷︷ ︸
ζ(·)

+
σ2

n2

∑
Di

γ(Xi)
2

︸ ︷︷ ︸
χ(γ{Xi)}


with convex ζ, χ functions.
A common imbalance measure is

imbalance2M(γ) = max
j=1...p

∣∣∣∣∣ 1n
n∑
i=1

Xij −
1

n

n∑
i=1

Diγ(X)iXij

∣∣∣∣∣
forM = {β · x : ‖β‖1 ≤ 1}

4.2.7 Hybrid Estimators
A doubly-robust estimator is consistent if one gets either the propensity score π̂ or
the regression µ̂ right.
Defn 4.19 (Augmented IPW Estimators).
Oracle AIPW

τ̂∗AIPW =
1

n

n∑
i=1

[
µ(1)(Xi)− µ(0)(Xi) +Di

yi − µ(1)(Xi)

e(Xi)
+ (1−Di)

yi − µ(0)(Xi)

1− e(Xi)

]
Feasible AIPW

τ̂AIPW =
1

N

n∑
i=1

(
Di(Yi − µ̂1(Xi))

π̂(Xi)
− (1−Di)(Yi − µ̂0(Xi))

1− π̂(Xi)
+ {µ̂1(Xi)− µ̂0(Xi)}

)

=
1

n

n∑
i=1


Regression︷ ︸︸ ︷
µ̂1(Xi) +

IPW︷ ︸︸ ︷
Di(Yi − µ̂1(Xi))

π̂(Xi)︸ ︷︷ ︸
estimator for E[Yi(1)]

−
[
µ̂0(Xi) +

(1−Di)(Yi − µ̂0(Xi))

1− π̂(Xi)

]
︸ ︷︷ ︸

estimator for E[Yi(0)]

This is the Augmented-Inverse-Propensity Weighting Estimator (AIPW) intro-
duced by Robins, Rotnitzky, and L. P. Zhao (1994) and Hahn (1998). Additional
overviews:(Bang and Robins, 2005; Chernozhukov, Chetverikov, et al., 2018). Gen-
eral double-robustness property also shared by targeted maximum-likelihood estima-
tors(TMLE) - due to Van Der Laan and D. Rubin (2006).
Similarly, analogous estimator for ATT

τ̂ attaipw =
1

n

n∑
i=1

(
(Yi − µ̂0(Xi))Di

ρ̂
− π̂(Xi)(1−Di) (Yi − µ̂0(Xi))

ρ̂(1− π̂(Xi))

)
where ρ = Pr (Di = 1) and ρ̂ is its empirical analogue.

Defn 4.20 (Cross-Fit AIPW).
The Cross-fit version can be stated as

τ̂IPW =
1

n

n∑
i=1

µ̂
−k(i)
(1) (Xi)− µ̂−k(i)(0) (Xi)

+Di

yi − µ̂−k(i)(1) (Xi)

π̂−k(i)(Xi)
− (1−Di)

yi − µ̂−k(i)(0) (Xi)

1− π̂−k(i)(Xi)

where k(i) is a mapping that takes an observation and puts it into one of the k
folds. µ̂−k(i)(1) is an estimator excluding the kth fold.
Define individual treatment effect score as
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Γ̂i = µ̂(1)(Xi)− µ̂(0)(Xi) +
Di(Yi − µ̂(1)(Xi))

π̂(Xi)
−

(1−Di)(Yi − µ̂(0)(Xi))

1− π̂(Xi)

Then, τ̂ = 1
n

∑n
i=1 Γ̂i

We can form level-α CIs Iα :

Iα = τ̂ ± z1−α/2V̂
1
2 ; V̂ =

1

n(n− 1)

n∑
i=1

(Γ̂i − τ̂)2

grf has a forest-based implementation of AIPW

cf = causal_forest(X, Y, D)
ate_hat = average_treatment_effect(cf)

Defn 4.21 (Double Selection Estimator for High-Dimensional Controls).
Belloni, Chernozhukov, and Hansen (2014) and Chernozhukov, Chetverikov, et al.
(2018) partially-linear setup

yi = diτ + g(xi) + εi E [εi|xi, di] = 0

di = m(xi) + ηi E [ηi|xi] = 0

where di is a scalar treatment indicator. Observations are independent but not
necessarily identically distributed. We are interested in inference about τ that is
robust to mistakes in model-selection.
Approximate g andmwith linear combinations of control terms ci = P (xi), which
may contain interactions and non-linear transformations.
Assume approximate sparsity (:= there are only a small number of relevant controls,
and irrelevant controls have a high probability of being small).
Naive (incorrect) approach: use LASSO on an eqn of the form

yi = τDi + x
′
iβ + εi with penalty h(β) = ‖β‖1 =

∑
j

|β|j

where the treatment τ is not penalised. This will mean we drop any control that
is highly correlated with the treatment if the control is moderately correlated with
the outcome. Then, if we use a post-LASSO selection to estimate the treatment
effect, the effect will be contaminated with an omitted variable bias.
recommended two-step approach

1. Estimate yi = c′iβ + νi with LASSO, select predictive variables (i.e. those
with nonzero coefficients) in A

2. Estimate di = c′iβ + νi with LASSO, select predictive variables (i.e. those
with nonzero coefficients) in B

3. Estimate yi = τDi + e
′
iκ + υi where ci := A ∪ B [i.e. control for variables

that are selected in either the first or second regression]

Defn 4.22 (Post-double-selection estimator).
Let l̂1, l̂2 ⊂ {1, . . . , p} be the indices of the selected controls for the outcome and
treatment respectively.
The post-double-selection estimator is

(τ̌ , β̌) = argmin
τ∈R,β∈Rk

{
En
[
(yi − diτ − x′iβ)2

]
: βj = 0 ∀j 6∈ l̂1 ∪ l̂2

}
Can use plugin estimator for variance based on residuals

σ−1n
√
τ̌ − τ d→N (0, 1) =⇒ σ2

n =
E
[
v2i ψ

2
i

]
E [v2i ]

2

where

ψ̂i = (yi − diτ̌ − x′iβ̌)
√

n

n− ŝ− 1

v̂i = di − x′iβ̂

β̂ = argmin
β∈Rp

{
En
[
(di − x′iβ)2

]
: βj = 0 ∀j 6∈ l̂

}

Implemented in hdm::rlassoEffect(., 'double selection')

Defn 4.23 (Double-ML - General case with moment conditions).
Let the target parameter τ0 solve the equation E [m(Zi, τ0, β0)] = 0 for known score
function m, vector of observables Zi := {Xi, Di, Yi}ni=1, and nuisance parameter
β0. In fully parametric models, m is simply the score function [derivative of the
log-likelihood]. For ATE,m(Zi, τ, β) := (Yi −Diτ −X ′iβ)Di.
In naive double-ML settings,E [∂βm(Zi, τ0, β0) = π0µ1 6= 0]. So, we replacemwith
the Neyman-orthogonal score ψ s.t.

E [∂ηψ(Zi, τ0, η0) = 0] .

which yields theOrthogonalisedMomentConditionE [ψ(Zi, τ0, η0)] = 0 for some
real-valued condition ψ(.).
Using a Neyman-orthogonal score eliminates first-order biases arising from the
replacement of η0 with η̂0.
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Defn 4.24 (Orthogonal Scores).
Reference: Bach et al. (2021)
Consider dataW := (Y,D,X) with D ∈ {0, 1}
Partial linear setup Y = Dθ0 + g0(X) + U ; D = m0(X) + V .
Score function is

ψ(W; θ, η) = (Y − l(X)︸︷︷︸
E [Y |X]

−θ(D − m(X)︸ ︷︷ ︸
E [D|X]

))(D −m(X))

Partially Linear IV

Y −Dθ0 = g0(X) + ζ, E(ζ | Z,X) = 0

Z = m0(X) + V, E(V | X) = 0

Score is

ψ(W, θ, η) := (Y − l(X)︸︷︷︸
E [Y |X]

−θ(D − r(X)︸ ︷︷ ︸
E [D|X]

))(Z −m(X)︸ ︷︷ ︸
E [Z|X]

)

Interactive Regression

Y = g0(D,X)︸ ︷︷ ︸
E [Y |D,X]

+ε, E [ε|D,X] = 0

D = m0(X)︸ ︷︷ ︸
P [D = 1|X]

+ξ, E [ξ|X] = 0

Here, the estimands are

θATE0 = E [g0(1, X)− g0(0, X)]

θATT0 = E [g0(1, X)− g0(0, X)|D = 1]

The score function for ATE (Hahn (1998))

ψATE(Zi, θ, η) = (g(1, X)− g(0, X))+
D(Y − g(1, X))

m(X)
− (1−D)(Y − g(0, X))

1−m(X)
−θ

The nuisance parameter true value is η0 = (g0,m0). For ATET,

ψATT (Zi, θ, η) =
1

π0

(
D − m(X)

1−m(X)
(1−D)

)
(Y − g(0, X))− D

π0
θ

Defn 4.25 (Cross-fitting Double-ML). 1. Take aK-fold randompartition (Ik)k=1,...,K

of observation indices {1, . . . , n} s.t. each fold Ik has size n/k. For each k, de-
fine ICk := {1, . . . , n} Ik as the complement / auxilliary sample.

2. For each k ∈ {1, . . . ,K}, construct a ML estimator of η0 using only the aux-
illiary sample ICk ; η̂k = η̂((Zi)i∈ICk )

3. For each k ∈ {1, . . . ,K}, using the main sample Ik, construct the estimator
τ̌k as the solution of

1

n/K

∑
i∈Ik

ψ(Zi, τ̌k, η̂k) = 0

4. Aggregate the estimators τ̌k on each main sample τ̌ = 1
K

∑K
k=1 τ̌k

Example 4.10 (Sample-Splitting for Treatment Effects).
Simple implementation of Cross-fitting for Treatment effects

1. Partition the data in two, such that each fold I1, I2 has size n/2.

2. Using only sample I1, construct a ML estimator of g(0, X) and m(X),e.g. a
feedforward nnet of Yi onXi, denoted as ĝI1(x), and logit-lasso ofDi onXi,
denoted by m̂I1(x).

3. Use the estimators on the hold-out sample I2 to compute the T.E

τ̌I2 =
1∑

i∈I2 Di

[
Di −

m̂I1(Xi)

1− m̂I1(Xi)
(1−Di)

]
(Yi − ĝI1(Xi))

4. Repeat (2,3) swapping the roles of I1 and I2 to get τ̌I1
5. Aggregate the estimators:

τ̌ =
τ̌I1 + τ̌I2

2

Implemented in DoubleML

4.2.8 Augmented Balancing
Loosely: AIPWwithout the (potentially fraught) inversion of the propensity score
step. Exposition based on Bruns-Smith et al (2023)
setup:
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• Covariates X ∈ X ⊆ Rk , Y ∈ R outcome, two populations p and q that are
distributions over (X,Y )

– p is ‘source’, q is ‘target’ (e.g. treatment group and overall sample)

• Estimand is Eq [Y ]

• Identification Assumptions

1. Conditional Mean Ignorability: Ep [Y |X] = Eq [Y | X]

2. Population Overlap: q(x) is absolutely continuous w.r.t. p(x)

Effect Functionals
Regression Functional

Eq [Ep [Y | X]] = Eq [Eq [Y | X]] = Eq [Y ]

Weighting Functional

Ep
[
dq

dp
(X)Y

]
= Ep

[
dq

dp
(X)Ep [Y | X]

]
= Eq [Ep [Y | X]] = Eq [Y ]

Doubly-Robust Functional

Eq [Ep [Y | X]] + Ep
[
dq

dp
(X) {Y − Ep [Y | X]}

]
Balancing Weights: Rationale

• dq
dp (X) is difficult to estimate using plug-in estimation

• Alternative: weighting for balance ≡ automatic estimation of the Riesz rep-
resenter

Weighting to minimise covariate imbalance

min
w


Imbalance︷ ︸︸ ︷

sup
f∈F

Ep [w(X)f(X)]− Eq [f(X)]+δ ‖w‖22


Direct estimation of the density ratio

min
f∈F

{
Ep

[(
f(X)− dq

dp
(X)

)2
]}

Minimum variance weights that balance F are also guaranteed to balance all other
measurable functions in F .

Defn 4.26 (Linear Balancing Weights). • In linear setting, relevant imbalance is
captured entirely by feature mean imbalance

• Xp, Yp are n iid draws from p, Xq are m draws from q

• Define feature map ϕ : X→Rd; construct gram matrices

– Φp := ϕ(Xp)

– Φq := Êq[Φq]

• Let F =
{
f(x) = θ⊤ϕ(x) : ‖θ‖ ≤ r

}
– Let ‖·‖∗ denote dual norm [ℓ2 : ℓ2, ℓ1 : ℓ∞]

̂ImbalanceF(w) =
∥∥wΦp − Φq

∥∥
∗

Three Equivalent Representations

Penalised Form : min
w∈Rn

[∥∥wΦp − Φq
∥∥2
∗ + δ1 ‖w‖22

]
Constrained form : min

w∈Rn
‖w‖22 s.t.

∥∥wΦp − Φq
∥∥ ≤ δ2

Automatic Form : min
θ∈Rd

{
θ⊤(Φ⊤p Φp)θ − 2θ⊤Φq + δ3 ‖θ‖

}
Example 4.11 (Equivalence Example : OLS is DR).
OLS is equivalent to a weighting estimator that exactly balances the featuremeans.
Let β̂OLS = (Φ⊤p Φp)

−1Φ⊤p Yp be the linear regression fit on p (source sample). Then,

Êq[Φqβ̂OLS] = Êp[ŵexact ◦ Yp]

Êq[Φq(Φ⊤p Φp)−1Φ⊤p Yp] = Êp[Φq(Φ⊤p Φp)−1Φ⊤p ◦ Yp]

Analogue for Ridge

Êq[Φq(Φ⊤p Φp + δI)−1Φ⊤p Yp] = Êp[Φq(Φ⊤p Φp + δI)−1Φ⊤p ◦ Yp]

Proposition 4.12 (Augmented Balancing as Undersmoothed Regression).
∀β̂λreg ∈ Rd, and any linear balancing weight estimator with estimated coefficients
θd ∈ Rd, ŵδ = θ̂Φ⊤p , and Φ̂δq = ŵΦp
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Êq[Φqβ̂λreg] + Êp[ŵδ ◦ (Yp − Φpβ̂
λ
reg)] = Êp[ŵδ ◦ Yp] + Êq

[(
Φq − Φ̂δq

)
β̂λreg

]
= Êq

[
Φ̂δqβ̂OLS +

(
Φq − Φ̂δq

)
β̂λreg)

]
= Êq[Φqβ̂aug]

β̂aug,j := (1− aδj)β̂λreg,j + aδj β̂ols,j where aδj :=
Φ̂δq,j − Φp,j

Φq,j − Φp,j

In words: when both outcome and weighting models are linear, the augmented
estimator is equivalent to a linear model with coefficients that are element-wise
affine combinations of base learner β̂λreg and coefs β̂OLS from regressing Yp onΦp

4.2.9 Heterogeneous Treatment Effects with selection on observables

Conditional Average Treatment Effects (CATEs) (τ(x) = E
[
Y 1 − Y 0|X = x

]
)

are often of great policy interest for targeting those who have largest potential
gains. However, conventional methods are prone to a severe risk of fishing from
researchers (cf ‘conditional effects’ in most published work in the social sciences).
Instead, recent work proposes to use nonparametric estimators to find subgroups,
use sample-splitting for honesty.

1. transformed outcome regression use outcome transformed w pscore

H =
DY

p(X)
− (1−D)Y

1− p(X)

2. conditional mean regression use the fact that under SOO

τ(x) = E [Y1|X = x]− E [Y0|X = x] = µ1(x)− µ0(x)

(1) typically inefficient because of pscore in denominator, so most focus is on (2).
Random forests are a flexible method that is widely liked.

Defn 4.27 (Robinson Semiparametric Setup (Robinson, 1988)).
Consider a model for τ(x) where

Yi(d) = f(Xi) + d · τ(Xi) + ε(d), P [di|Xi] = e(x)

where τ(x) = ψ(x)β for some pre-determined set of basis functions ψ : X→Rk.
We allow for non-parametric relationships between Xi, yi, di, but the treatment
effect function itself is parametrised by β ∈ Rk. Robinson (1988) showed that
under unconfoundedness, we can rewrite the semiparametric setup above as

Yi −m(Xi) = (di − e(Xi))ψ(Xi) · β + εi where
m(x) = E [Yi|Xi = x] = f(Xi) + e(Xi)τ(Xi)

The oracle algorithm for estimating β is (1) define Ỹ ∗i = Yi − m(Xi) and Z̃∗i =
(di − e(Xi)ψ(Xi), then estimate residuals-on-residual regression. This procedure
is √n-consistent and asymptotically normal.
Use cross-fitting to emulate the Oracle.

1. Run non-parametric regressions Y ∼X and D ∼X to get m̂(x), ê(x)

2. define transformed features Ỹi = Yi−m̂−k(i)(Xi), Z̃ = (Di−ê−k(i)(Xi)ψ(Xi)

3. Estimate ζ̂b by regressing Ỹi ∼ Z̃i

Defn 4.28 (R-Loss).
To define R-Loss (Athey, J. Tibshirani, andWager, 2019), undermore general setup
restate unconfoundedness as follows

E [εi(di)|Xi, di] = 0 where εi(d) := Yi(d)− (µ(0)(Xi) + wτ(Xi))

and follow Robinson’s approach to write

Yi −m(Xi) = (Di − e(Xi))τ(Xi) + εi

R-loss is then written

τ(·) = argmin
τ ′

{
E
[
((Yi −m(Xi)− (di − e(Xi))τ

′(Xi))
2
]}

Defn 4.29 (R-Learner, Athey, J. Tibshirani, and Wager (2019)).
Define e(x) = Pr (D = 1|X = x) and m(x) = E [Y |X = x] The R-learner consists
of the following steps

1. Use any method to estimate the response functions ê(x), m̂(x)

2. Minimise R-loss using cross-fitting for nuisance components

τ̂(.) = argmin
τ

((Yi − m̂(Xi))− τ(Xi)(Di − ê(Xi)))
2
+ Λn(τ(·))

where Λn is some regulariser.
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Causal forest as implemented by grf starts by fitting two separate trees to estimate
m̂, ê, makes out-of-bag predictions [using cross-fitting] using the two first-stage
forests, then grow causal forest via

τ̂(x) =

∑n
i=1 αi(x)(Yi − m̂(Xi)(Di − ê(Xi)))∑n

i=1 αi(x)(Di − ê(Xi))2

where
αi(x) =

1

B

∑
b

1Xi∈Lb(x),i∈B

|i : Xi ∈ Lb(x), i ∈ B|

are the learned adaptive weights.

Defn 4.30 (Double-sample / Honest trees (Athey and Imbens, 2016a)).

1. Draw a subsample of size s from the sample with replacement and divide it
into disjoint sets I,J ; |I| = |J | = n/2.

2. Grow a tree via recursive partitioning, with splits chosen from J (i.e. with-
out using Y observations from I sample)

3. Estimate leaf responses using only I sample

Finally, aggregate all trees over subsamples of size s

µ̂(x,Zi, . . . ,Zn) =

(
n
s

)−1 ∑
1≤i1<...,<is≤n

Eξ∈Ξ [T (x, ξ,Zi1 , . . . ,Zis)]

≈ 1

B

B∑
b=1

T (x, ξ∗b ,Z
∗
b,1, . . . ,Z

∗
b,s) Bagging

where ξ summarises randomness in the selection of the variable when growing the
tree, Zi := (Di,Xi, Yi) is shorthand for a training sample.
where the base learner

T (x; ξ∗b ,Z
∗
b,1, . . . ,Z

∗
b,s) =

∑
i∈{ib,1,...ib,s}

α∗i,b(x)Y
∗
i,b ;α∗i,b(x) =

1X∗
i,b∈L

∗
b (x)∣∣∣i :X∗i,b ∈ L∗b(x)∣∣∣

the ‘honesty’ property is making α∗i,b(x) independent of Y ∗i,b, i.e. do not use the
same data to select partition (splits) and make predictions.
Implemented in causalForest and grf.

4.2.10 Multi-action policy learning
i = 1, . . . , N units, to be assigned to J + 1 actions Ai ∈ {0, 1, . . . , J} =: A, which
has have corresponding rewards {Y (0)

i , Y
(1)
i , . . . , Y

(J)
i }. Each observation has co-

variate Xi ∈ X ⊆ Rd. Define a policy function
π : x→ A

Agiven policy assigns each unit to a treatment level. Each policy has a correspond-
ing value function

V (π) := E [Y (π(x))]

An optimal policy π∗ ∈ Π is defined as
π∗ = argmax

π∈Π
E [Y (π)]

Deviations from this optimum is called regret
R(π) = E [Y (π∗)]− E [Y (π)] = V (π∗)− V (π)

Define a CEF as

µi(a,xi) = E
[
Y

(a)
i | xi

]
The first-best optimal rule is

πi(xi) = argmax
a∈J

{µi(a,xi)}

In the binary action case, this simplifies toπ(xi) = 1 {µ(1,xi) ≥ µ(0,xi)} = 1 {τ(x) > 0}
which is the conditional empirical success (CES) rule of Manski (2004).
Under unconfoundedness and Overlap, we can estimate µ̂s and construct an em-
pirical analogue of the value function for a policy π using the following familiar
estimators

V̂RA(π) =
1

n

n∑
i=1

µ̂i(π(xi),xi)

V̂IPW (π) =
1

n

n∑
i=1

1[Ai = π(xi)]

p̂Ai(Xi)
Yi

V̂AIPW (π) =
1

n

n∑
i=1

[
µ̂i(π(xi),xi) +

1[Ai = π(xi)]

p̂Ai(xi)

]
A √n-convergent estimator of the value function is the Cross-fit Augmented In-
verse Probability Weighted Learning (CAIPWL) estimator of Zhou, Athey, and
Wager (2018), which is constructed as a cross-fit analogue of the AIPW estimator.
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4.2.11 Sensitivity Analysis

Defn 4.31 (Standardised Difference).
Check balance by computing SDiff for observable confounders

Standardised Difference =
Xt −Xc√
(s2t + s2c)/2

Example 4.13 (Multiple control groups).
Three valued treatment indicator: Ti ∈ {−1, 0, 1} corresponding with ineligibles,
eligible nonparticipants, and participants. We can test unconfoundedness by com-
paring ineligibles with eligible nonparticipants, i.e. test

Yi ⊥⊥ 1 {Ti = 0} |Xi, Ti ∈ {−1, 0}

Placebo Outcomes
Covariates included lagged outcomes Yi,−1, . . . Yi,−T . Test

Yi,−1 ⊥⊥ Di|Yi,−2, Yi,−T , Xi

e.g. Earnings in 1975 in Lalonde

Defn 4.32 (Parametric Sensitivity Analysis (Imbens (2003)).
U is a nuisance parameter.

Y1, Y0 ⊥⊥ D|X,U

Where U ∼ B(π = 0.5), and U ⊥⊥ X . P (U = 1) = P (U = 0) = 0.5.
Propensity score is Logistic:

P (D = 1|X,U) =
exp(Xθ + γU)

1 + exp(Xθ + γU)

γ indicates strength of relationship between U and D|X .
Y is conditionally normal

Y |X,U ∼ N (αD +Xβ + δU, σ2)

δ indicates strength of relationship between U and Y |X .
MLE setup
Construct grid of (γ, δ) and calculate theMLE for α̂(γ, δ) bymaximising l(α, β, θ, γ, δ)
over (γ, δ).
Use 2 partial R2s:

• R2
Y,par(δ): Residual variation in outcome explained by U (after partialling

out X).

• R2
D,par(γ): Residual variation in treatment assignment explained by U (after

partialling out X).

Draw threshold contours, should expect most covariates to be clustered around
origin.

Rosenbaum (2002)
Tuning parameter Γ ≥ 1 that measures departure from zero hidden bias.
For any two observations i and j with identical covariate values Xi = Xj , under
unconfoundedness, probability of assignment into treatment should be identical
π(Xi) = π(Xj)
Treatment assignment probabilitymaydiffer due to unobserved binary confounder
U . We can bound this by the ratio:

1

Γ
≤ π̂i(1− π̂j)

(1− π̂i)π̂j
≤ Γ

γ = 1 =⇒ No bias. Γ = 2 =⇒ i is twice as likely to be treated than j despite
identical x.
Γ is assumed to satisfy

1

Γ
≤ Pr (D = d|X = x) /(1−Pr (D = d|X=x))

Pr (D = d|X = x, Y (d) = y) /(1−Pr (D = d|X = x, Y (d) = y))
≤ Γ

For any given candidate Γ > 1, estimates of the treatment effect can be computed.
Implemented in rbounds::hlsens.

Defn 4.33 (Coefficient Stability Approaches).
Altonji, Elder, Taber (2005)
Only informative if selection on observables is informative about selection on
unobservables.
How much does treatment effect move when controls are added? Estimate model
with and without controls:

• Yi = αFDi +Xβ + ϵ

• Yi = αRDi + ϵ

AET ratio: ρ = α̂F

α̂R−α̂F

Want ρ to be as big as possible (i.e. α̂R − α̂F→0 under unconfoundedness).

Defn 4.34 (Oster (2019) - Proportional selection coefficient).
Define proportional selection coefficient

δ =
Cov [ϵ,D]

V [ϵ]
/
Cov [X ′γ]
V [X ′γ]

← ToC 51



Then,

β∗ ≈ β̃ − δ
[
β̇ − β̃

] Rmax − R̃
R̃− Ṙ

p→ β

where

• β̇, Ṙ are from a univariate regression of Y on T

• β̃, R̃ are from a regression including controls

• Rmax is maximum achievable R2

Defn 4.35 (q-Robustness Value (Cinelli and Hazlett, 2020)).
True model is Y = τD + Xβ + γZ + ε, but we don’t observe Z. We would like
to quantify how biased the coefficient from the short regression τ̂s is for the long
regression coefficient τ . From OVB FOrmula, we know τ̂s = τ̂ + γ̂ + δ̂ where γ̂ is
the conditional association between the omitted Z and Y (‘impact’) and δ̂ is the
coefficient from regressing Z on D (‘imbalance’).
The bias from this omission is

∣∣∣B̂ias∣∣∣ =
√√√√(R2

Y∼Z|D,XR
2
D∼Z|X

1−R2
D∼Z|X

)
sd(Y ⊥X,D)
sd(D⊥X)

They then define

RVq =
1

2

[√
f4q + 4f2q − f2q

]
where fq := q

∣∣fY∼D|X∣∣ where fY∼D|X is the partial Cohen’s f of the treatment
with the outcome, and q is the proportion of reduction on the treatment coefficient
τ that would be deemed problematic.

4.2.12 Partial Identification
the ATE can be decomposed as

ATE = E [Y (1)]− E [Y (0)]

= E [Yi(1)|Di = 1]Pr (Di = 1) + E [Yi(1)|Di = 0]Pr (Di = 0)

− E [Yi(0)|Di = 1]Pr (Di = 1) + E [Yi(0)|Di = 0]Pr (Di = 0)

The terms in red are counterfactual outcomes for which the data contains no in-
formation. Bounding approaches involve estimators for these missing quantities.

Defn 4.36 (Agnostic Bounds).
Suppose all we know is Y d ∈ [0, 1]

w.l.o.g. given bounded support [Y , Y ], we can always min-max rescale to Y−Y
Y−Y

E
[
Y 1 − Y 0

]
∈[{E [Y |D = 1]Pr (D = 1)− E [Y |D = 0] (1−Pr (D = 1))} −Pr (D = 1) ,

{E [Y |D = 1]Pr (D = 1)− E [Y |D = 0] (1−Pr (D = 1))}+ (1−Pr (D = 1))]

Width of possible interval learnable from data is [0, 1] at largest, [−1, 0] at smallest,
so worst case interval always contains 0. Need theory/assumptions to even get the
sign right.

Defn 4.37 (Manski Bounds).
Assume bounded support for the outcome. Replace missing values with maxi-
mum (yUB) or minimum (yLB) of support. These are worst-case bounds and
yield intervals that are basically uninformative.

E [Y (1)]
UB

= E [Y |D = 1]Pr (D = 1) + yUBPr (D = 0)

E [Y (1)]
LB

= E [Y |D = 1]Pr (D = 1) + yLBPr (D = 0)

E [Y (0)]
UB

= yUBPr (D = 1) + E [Y |D = 0]Pr (D = 0)

E [Y (0)]
LB

= yLBPr (D = 1) + E [Y |D = 0]Pr (D = 0)

And denote ∆UB := E [Y (1)]
UB − E [Y (0)]

LB
∆LB := E [Y (1)]

LB − E [Y (0)]
UB

Monotone Treatment Response: assume mean potential outcome under treat-
ment cannot be lower than under control E [Y (1)] ≥ E [Y (0)] = ∆ ≥ 0. Then

∆LB = max(E [Y (1)]
LB − E [Y (0)]

UB
, 0)

Monotone Treatment Selection: subjects select themselves into treatment in away
the mean potential outcomes of the treatment and control groups can be ordered.
PositiveMTS impliesE [Y (1)|D = 1] ≥ E [Y (1)|D = 0] andE [Y (0)|D = 1] ≥ E [Y (0)|D = 0].
This implies E [Y (0)]

LB
= E [Y |D = 0] and E [Y (1)]

UB
= E [Y |D = 1]

Theorem 4.14 (Kolmogorov’s Conjecture - Sharp bounds on treatment effects).
Let τi := Y1i− y0i denote the treatment effect and F denote its distribution, and let
F1,F0 denote the distributions of outcomes for the two potential outcomes. Then,
FL(b) ≤ F(b) ≤ FU (b) where
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FL(b) = max

{
max
y

F1(y)− F0(y − b), 0
}

FU (b) = 1 +min

{
min
y

F1(y)− F0(y − b), 0
}

4.3 Instrumental Variables
SOO Fails/E [Xiϵi] 6= 0 because of OVB, then β̂OLS is no longer consistent. Use Z
as instrument for D which isolates variation unrelated to the omitted variable.

4.3.1 Traditional IV Framework (Constant Treatment Effects)
Setup

• Second Stage: Y = α0 + α1D + u2

• First Stage: D = π0 + π1Z + u1

• Reduced Form:
Y = γ0 + γ1Z + u3

= α0 + α1(π0 + π1Z + u1) + u2

= (α0 + α1π0) + (α1π1)︸ ︷︷ ︸
γ1

Z + (α1u1 + u2)

Assumption 4 (IV Assumptions).

• Exogeneity (as good as random conditional on covariates): Cov [u1, Z] = 0

• Exclusion Restriction: Cov [u2, D] = 0, Z has no effect on Y except through
D.

• Relevance: Z affects D

With the above assumptions, we can write

Defn 4.38 (Instrumental Variables Estimator).

β̂IV = (Z′X)
−1

Z′y

This is equivalent to

Defn 4.39 (Wald Estimator).
With binary treatment and binary instrument, one can write the IV effect as

α1 =
γ1
α1

=
Cov [Y, Z]
Cov [Y,D]

=
E [Y |Z = 1]− E [Y |Z = 0]

E [D|Z = 1]− E [D|Z = 0]

Defn 4.40 (2SLS Estimator).
With multiple instruments or endogenous variables,

α̂2SLS = (X′PzX)
−1

X′Pzy

where Pz = Z (Z′Z)
−1

Z′ is X projected in the column space of Z.

Defn 4.41 (k-Class estimation).

α̂k = (X′(I− kPz)X)
−1

X′(I− kPz)y

which nests 2SLS, LIML, and Fuller’s estimator as special cases. Specifically,

• k = 0 =⇒ α̂k is OLS

• k = 1 =⇒ α̂k is 2SLS

• k = kLIML =⇒ α̂k is LIML

• k = kLIML − b
n−L−p ; b > 0 =⇒ α̂k is Fuller’s estimator

here, kLIML is the minimum value of k that satisfies

det

(
y⊤(I− kPz)y y⊤(I− kPz)X
X⊤(I− kPz)y X⊤(I− kPz)X

)
= 0

Implemented in ivmodel, which takes model fits from AER::ivreg and computes
LIML / k-class estimates.
Asymptotically, all k− class estimators are consistent for α when k→1, n→∞.

Inference

• Under homoscedasticity, V [α̂2SLS ] = σ2 (X′PzX)
−1

• Under heteroskedasticity,

V(β̂IV ) = (Z′PzX)
−1

PzX
′Ω̂PzX (X′PzX)

−1
; Ω̂ = Diag[û2i ]
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Defn 4.42 (Hausman test for exogeneity).
Test statistic and null distribution

H :=
(β̂2sls − β̂ols)2

V̂ (β̂2sls)− V̂ (β̂ols)
∼ χ2

1

Equivalently, Assuming the instrument Z is valid, we can test for whether x is
endogenous by estimating the following regression

yi = Z
′
iπ + xiα1 + v̂iρ1 + ϵi

where v̂ are the (fitted) residuals from estimating the first stage regression xi =
Z ′iψ + vi. A standard t-test for ρ tests whether x is exogenous assuming Zi is a valid
set of instruments. [means this test is not that useful in practice]

4.3.2 Weak Instruments

plim αIV =
Cov [Y, Z]
Cov [Z,D]

+
Cov [Z, u2]
Cov [Z,D]

= αD +
Cov [Z, u2]
Cov [Z,D]

Second term non-zero if instrument is not exogenous. Let σu1,u2 = Cov [u1, u2]
and σ2

u1
= V [u2] [variance of first stage error] and F be F statistic of the first-stage.

Then, bias in IV is

E [α̂IV − α] =
σu1u2

σ2
u2

1

F + 1

If first stage is weak, bias approaches σu1u2
σ2
u2

. As F→∞, BIV→0.

Defn 4.43 (Anderson-Rubin Robust Confidence Intervals).
When instruments are weak, AR Confidence intervals are preferable to eyeballing
F-statistics. Let M be a n × 2 matrix of

(
y X

)
, and let a0 = (β0, 1), b0 = (1,−β0)

(where β0 is typically 0), and

Σ̂ =
M⊤PzM

n− L− p
be an estimator for the covariance matrix for the errors.
and let ŝ, t̂ be two-dimensional vectors defined as

ŝ := (Z⊤Z)
1
2Z⊤Mb0(b

⊤
0 Σ̂b0)

− 1
2

and

t̂ := (Z⊤Z)
1
2Z⊤MΣ̂−1a0(a

⊤
0 Σ̂a0)

− 1
2

Define the scalars Q̂1 = ŝ⊤ŝ, Q̂2 = ŝ⊤t̂, Q3 = t̂⊤t̂
based on these scalars, two tests that are fully robust to weak instruments for test-
ing H0 : β = β0 - Anderson Rubin test (AR1949) and Conditional Likelihood Test
(Moriera 2003)

AR (β0) =
Q̂1

L

CLR (β0) =
1

2

(
Q̂1 − Q̂3

)
+

1

2

√(
Q̂1 + Q̂3

)2
− 4

(
Q̂1Q̂3 − Q̂2

2

)
4.3.3 IV with Heterogeneous Treatment Effects / LATE Theorem

• binary instrument Zi ∈ {0, 1}

• binary treatment Dz ∈ {0, 1} is potential treatment status given Z = z

• potential outcomes: Yi(D,Z) = {Y (1, 1), Y (1, 0), Y (0, 1), Y (0, 0)}

• heterogeneous treatment effects βi = Yi(1)− Yi(0)

Defn 4.44 (IV Subpopulations).

• Compliers: D1 > D0, D0 = 0, D1 = 0

• Always takers: D0 = D1 = 1

• Never Takers : D0 = D1 = 0

• Defiers: D1 < D0

Assumption 5 (LATE Thm Assumptions).

• A1: Independence of Instrument : {Y0, Y1, D0, D1} ⊥⊥ Z

• A2: Exclusion restriction : Yi(d, 0) = Yi(d, 1) ≡ Ydi for d = 0, 1

• A3: First Stage: E [D1i −D0i] 6= 0

• A4: Monotonicity / No defiers: D1i −D0i ≥ 0 ∀ i or vice versa

Theorem 4.15 (LATE Theorem (Angrist and Imbens (1994))).
Under A1-A4,

αIV =
E [Y |Z = 1]− E [Y |Z = 0]

E [D|Z = 1]− E [D|Z = 0]
= E [Y1i − Y0i|D1i > D0i]
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If A1:A4 are satisfied, the IV estimate is the Local Average Treatment Effect for
the compliers.

LATE = ATE+
Cov [β1i, π1i]

E [π1i]

So, late is weighted average for people with large π1i; i.e. treatment effect for those
whosle probability of treatment is most influenced by Zi.

Theorem 4.16 (Bloom Result).
IV in Randomized Trials with one-sided noncompliance. Conditional on A1:A4 hold-
ing, and E [D|Zi = 0] = Pr (D = 1|Z = 0) = 0. Then,

E [Y |Z = 1]− E [Y |Z = 0]

Pr (D = 1|Z = 1)
=

ITT
Compliance = E [Y1 − Y0|D = 1] = ATT

Precision for LATE Estimation

SE
L̂ATE

≈
SE

ÎTT

Compliance

4.3.4 Characterising Compliers
POModel of IV allows for heterogeneous treatment effects but does not formally iden-
tify LATE conditional on X.
Abadie (2003) extends methods by allowing the treatment inducer to be random-
ized conditionally on the covariates and by allowing the outcome to depend on the
covariates besides the treatment intake. The paper also provided semiparametric
estimations of the probability of receiving the treatment inducement, which helps
to identify the treatment effects in a more robust way.
Need the following assumptions (all conditional on X):

• Independence of instrument: Z ⊥⊥ (D(z), Y (z′, d))|X ∀z, z′, d ∈ {0, 1}: SOO
w.r.t. instrument.

• Exclusion restriction: Pr (Y (1, d) = Y (0, d) = Y (d)|X) = 1

• Monotonicity: Pr (D(1) ≥ D(0)|X) = 1

• First Stage: E [D|Z = 1,X]− E [D|Z = 0,X] 6= 0

• Common Support : 0 < Pr (Z = 1,X) < 1

Specifically, when the treatment inducer Z is as good as randomized after condi-
tioning on covariates X, Abadie proposed a two-stage procedure to estimate treat-
ment effects.

• Estimate the probability of receiving the treatment inducement P (Z = 1|X)
(preferably using a semiparametric estimator) in order to provide a set of
pseudo-weights.

• Second, the pseudo-weights are used to estimate the local average response
function (LARF) of the outcome conditional on the treatment and covariates.

The estimated coefficient for the treatment intake D reflects the conditional treat-
ment effect.

Fact 4.17 (Size of Strata).
Givenmonotonicity, we can identify the proportion of compliers, never-takers, and
always-takers respectively.

πcompliers = Pr (D1 > D0|X) = E [D|X, Z = 1]− E [D|X, Z = 0]

πalways-takers = Pr (D1 = D0 = 1|X) = E [D|X, Z = 0]

πnever-takers = Pr (D1 = D0 = 0|X) = 1− E [D|X, Z = 1]

If nobody in the treatment group has access to the treatment (i.e. E [D|Z = 0] =
0), the LATE = ATT.

Fact 4.18 (Proportion of treatment group that are compliers).
By Bayes rule,

Pr (D1 > D0|D = 1) =
Pr (D = 1|D1 > D0)Pr (D1 > D0)

Pr (D = 1)

=
Pr (Z = 1) [E [D|Z = 1]− E [D|Z = 0]]

Pr (D = 1)

Theorem 4.19 (Abadie’s Kappa).
Suppose assumptions of LATE thm hold conditional on covariates X . Let g(·) be
any measurable real function of Y,D,X with finite expectation. We can show that
the expectation of g is a weighted sum of the expectation in the three groups
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E [g|X] = E [g|X, D1 > D0]Pr (D1 > D0|X)︸ ︷︷ ︸
Compliers

+

E [g|X, D1 = D0 = 1]Pr (D1 = D0 = 1|X)︸ ︷︷ ︸
Always takers

+ E [g|X, D1 = D0 = 0]Pr (D1 = D0 = 0X)︸ ︷︷ ︸
Never Takers

Rearranging terms gives us
Then,

E [g(Y,D,X)|D1 > D0] =
E [κ · g(Y,D,X)]

Pr (D1 > D0)
=

E [κ · g(Y,D,X)]

E [κ]

where

κi = 1− D(1− Z)
1−Pr (Z = 1|X)

− (1−D)Z

Pr (Z = 1|X)

This result can be applied to any characteristic or outcome and get its mean for compliers
by removing the means for never and always takers. Angrist and Pischke (2008, p
181-183) provides overview of estimation. Trick is to construct aweighting scheme
with positive weights so that κi, which is negative for always-takers and never-
takers.
To compute κ, we need Pr (Z = 1|X), which can be computed using a standard
logit/probit or a power-series.
Standard example: average covariate value among compliers:

E [X|D1 > D0] =
E [κX]

E [κ]

is the weighted average of covariate X using Kappa weights.

Likelihood that Complier has a given value of (Bernoulli distributed) charac-
teristic X relative to the rest of the population is given by

E [D|Z = 1, X = 1]− E [D|Z = 0, X = 1]

E [D|Z = 1]− E [D|Z = 0]
=

FS in Subgroup
Overall FS

Theorem 4.20 (Average Causal Response).
Assume A1-A4 from LATE. Generalise D to take values in the set

{
0, 1, . . . , Ď

}
;

Let Ydi := fi(d) denote the potential (or latent) outcome for person i for treatment
level d. Then,

E [Y |Z = 1]− E [Y |Z = 0]

E [D|Z = 1]− E [D|Z = 1]
=

Ď∑
d=1

ωdE [Ydi − Yd−1,i|d1i ≥ d > d0i]

where the weights
ωd =

Pr (d1i > d > d0i)∑Ď
j=1 Pr (d1i ≥ j ≥ d0i)

are non-negative and sum to 1.

Defn 4.45 (Local Average Response Function (LARF)).
CEF of Y |X,D for the subpopulation of compliers: E [Y |X,D,D1 > D0]

E [Y |X,D,D1 > D0] =
E [κY |X,D]

E [κ]

• Estimate κ

• Estimate E [Y |X,D] in the whole population, weighting by κ

implemented in LARF::larf in R.

Defn 4.46 (Inverse Compliance Score Weighting (Aronow and Carnegie, 2013)).
Treatment isW . First define two additional quantities

• PA,C,i := Pr (W1 > W0 ∪W0 = 1|Xi = x) = F(x′iθA,C) is the conditional
probability that unit i is either a complier *or* an always taker

– assume that this probability is a function of covariates Xi , with cor-
responding parameter vector θA,C and CDF F that transforms it to the
probability scale [taken to be the normal CDF Φ henceforth, but can be
relaxed]

• PA|A,C,i := Pr (W0 = 1|W1 > W0 ∪W0 = 1,Xi = x) = F(x′iϕA|A,C) is the
conditional probability that unit i is an always taker *conditional* on being
either a complier or a never taker

– assume that this probability is a function of covariates with correspond-
ing covariate vector ϕA|A,C

Next, they note that the probability of treatment for stratumXi = xi can bewritten
as

Pr (W = 1|Xi = xi) =

Compliers assigned to treatment︷ ︸︸ ︷
Pr (W1 > Wi|Xi = xi)Zi+

Always takers︷ ︸︸ ︷
Pr (W0 = 1|Xi = xi)
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Using the two conditional probabilties defined above, this can be written as

Pr (W = 1|Xi = xi) = PA,C,i(1− PA|A,C,i)Zi + PA,C,iPA|A,C,i

which, for binary treatmentWi lets us write a Bernoulli likelihood for an observa-
tion

ℓi(PA|A,C,i, PA,C,i|W,Z) = (PA,C,i(1− PA|A,C,i)Zi + PA,C,iPA|A,C,i)
Wi

(1− PA,C,i(1− PA|A,C,i)Zi − PA,C,iPA|A,C,i)1−Wi

Plugging in the definitions of PA,C,i and PA|A,C,i gives us the likelihood and its
argmax defines the solution for θ̂A,C and ϕ̂A|A,C . This is generically a difficult
optimisation problem and improving its computation is a promising avenue for
future research.

L(PA|A,C,i, PA,C,i|W,Z) =
N∏
i=1

(
F(x′iθA,C)(1− F(x′iϕA|A,C)Zi + F(x′iθA,C)F(x′iϕA|A,C))

)Wi

(
(1− F(x′iθA,C))(1− F(x′iϕA|A,C)Zi − F(x′iθA,C)F(x′iϕA|A,C))

)1−Wi

The maximum likelihood estimates of the two parameter vectors can be plugged
into F to compute individual compliance scores

P̂C,i = Pr (W1 > W0|Xi = xi) =

Pr i is C or AT︷ ︸︸ ︷
F(x′iθ̂A,c)

Pr i is not AT =⇒ i is C︷ ︸︸ ︷
1− F(x′iϕ̂A|A,c)

The inverse compliance score weighted estimator for the ATEwith weights ωC,i :=
1/P̂C,i is then

τ̂ATE
ICSW =

(
∑n
i=1 ω̂CiZiYi) / (

∑n
i=1 ω̂CiZi)− (

∑n
i=1 ω̂Ci (1− Zi)Yi) / (

∑n
i=1 ω̂Ci (1− Zi))

(
∑n
i=1 ω̂CiZiWi) / (

∑n
i=1 ω̂CiZi)− (

∑n
i=1 ω̂Ci (1− Zi)Wi) / (

∑n
i=1 ω̂Ci (1− Zi))

which is a weighted version of the familiar Wald estimator with a Hajek correction
that normalises each expectation by the sum of weights in that treatment group.

4.3.5 Shift Share / Bartik Instruments
SSIV setting from Borusyak, Hull, and Jaravel (2022) and Goldsmith-Pinkham,
Sorkin, and Swift (2020) [notation and exposition from PGP’s slides]. We want to
estimate the causal effect or structural parameter τ in

yl = τwl + γ⊤xl + εl

where Cov [εl, wl] 6= 0 because the ‘treatment’ wl is typically a change in an eco-
nomic quantity (e.g. employment) that is correlated with unobserved shocks to
the outcome yl (e.g. wages). l indexes locations.
An accounting identity that decomposes the treatment is

wl =

K∑
k=1

Location-Industry Shares︷︸︸︷
zlk glk︸︷︷︸

Location-Industry Shifts

where k indexes industries. 2nd accounting identity for location-industry shifts is
glk︸︷︷︸

Location-industry

= gk︸︷︷︸
industry

+ g̃lk︸︷︷︸
location-industry shocks: unobserved

As a GMM system

ylt = D⊤ltβ0 + τwlt + εlt

wlt = D⊤ltγ0 + ψBlt + ηlt Dlt = Exog controls, FE
glkt = gkt + g̃lkt

Blt =

K∑
k=1

zlk0gkt

{
{wlt,Dlt, εlt}Tt=1

}L
l=1

are IID , L→∞

Under constant τ , need
• Exogeneity E [Bltεlt | Dlt] = 0

• Relevance Cov [Blt, wlt | Dlt] 6= 0

Defn 4.47 (Bartik Estimator).

τ̂Bartik =

∑L
l=1

∑T
t=1

∑K
k=1

Shares︷︸︸︷
zlkt

Shocks︷︸︸︷
gkt y

⊥
lt∑L

l=1

∑T
t=1

∑K
k=1 zlkt gkt w

⊥
lt

• ‘shares’: focus on zlk0 : Goldsmith-Pinkham, Sorkin, and Swift (2020)
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– Analogy to DiD: ∆gt = Changes in industry composition gkt
• ‘shifts’: focus on gkt : Borusyak, Hull, and Jaravel (2022)

– requires argument for why shocks are randomly assigned

τ̂bartik =
∑
k

α̂k τ̂k

with Rotemberg weight

α̂k =
gkZ

⊤
k W∑K

k=1 gkZ
⊤
k W

4.3.6 Marginal Treatment Effects: Treatment effects under self selection
Heckman and Vytlacil (2007) propose the marginal treatment effect (MTE) setup
that generalises the IV approach for continuous instruments and nests many es-
timands (and is a generalisation of the Roy (1951) model). It also has a clearer
treatment of self-selection.
Exposition based on Cornelissen et al. (2016). Define potential outcomes

Y0i = µ0(xi) + υ0i

Y1i = µ1(xi) + υ1i

where µj(·) is the conditional mean function and υji captures deviations, with
E [υji|xi] = 0.
Treatment assignment assumes a weakly separable choice model

D∗i = µd(xi, zi) + vi
Di = 1D∗

i≥0

where d∗i is the latent propensity to take the treatment, and is interpreted as the net
gain from treatment since treatment is only taken up ifD∗i ≥ 0. zi is an instrument.
vi enters the selection equation negatively, and thus represents latent resistance to
treatment.
The condition D∗i ≥ 0 can be rewritten as µd(xi, zi) ≥ vi. Applying the CDF of v
Fv to both sides yields

Fv(µd(xi, zi))︸ ︷︷ ︸
Propensity score =: P (xi, zi)

≥ Fv(vi)︸ ︷︷ ︸
Quantiles of distaste distribution =: υdi

Both RHS and LHS are distributed on [0, 1]. The treatment decision can now be
written as

Di = 1P (xi,zi)≥υdi .
Now, we define treatment effects

Yi = (1−Di)Y0i +DiY1i

= Y0i +Di (Y1i − Y0i)︸ ︷︷ ︸
=: ∆i

= µ0(xi) +Di [

∆(xi)︷ ︸︸ ︷
µ1(xi)− µ0(xi)+

Idiosyncratic gain︷ ︸︸ ︷
υ1i − υ0i ]︸ ︷︷ ︸

≡ ∆i

+υ0i

Aggregating over different parts of the covariate distribution yields different esti-
mates.

ATE(x) := E [∆i|xi = x] = µ1(x)− µ0(x)

ATT(x) := E [∆i|xi = x, Di = 1] = µ1(x)− µ0(x) + E [υ1i − υ0i|Di = 1]

ATU(x) := E [∆i|xi = x, Di = 0] = µ1(x)− µ0(x) + E [υ1i − υ0i|Di = 0]

Integrating these over x yields the conventional estimators. With self-selection
based on Di = 1di≥0∗ typically means ATT > ATE > ATU.

Fact 4.21 (Estimation with Binary Instrument).
The covariate-specific Wald estimator is

Wald(x) = E [Yi|zi = z,xi = x]− E [Yi|zi = z,xi = x]

E [Di|zi = z,xi = x]− E [Di|zi = z,xi = x]

Under the standard A1-A4 from AIR96,

LATE(x) := E [Y1i − Y0i|D1i > D0i,xi = x]

= µ1(xi)− µ0(xi) + E [υ1i − υ0i|D1i > D0i,xi = x]

These can be aggregated using the ‘saturate and weight’ theorem (Angrist and
Imbens)

IV =
∑
x∈X

ω(x)LATE(x)

with weights
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Figure 4: MTE weights from Mogstad and Torgovitsky (2018)

ω(xi) =

Share with xi = x︷︸︸︷
px V


E [Di|xi = x, zi = z]︷︸︸︷

D̂i |xi, zi


V
[
D̂i

]
For a continuous instrument, for a pair of instrument values z, z′, LATE(z, z′,x) =
E [Y1i − Y0i|Dzi > Dz′i,xi = x].

Defn 4.48 (Marginal Treatment Effect (MTE)).

MTE(xi = x, Vi = v) := E [Y1i − Y0i|xi = x, V = v]

=
∂E [Yi|xi = x, p(Z,X) = p(z, x)]

∂p(z, x)

MTE is defined as a continuum of treatment effects along the distribution of υD.
Define two marginal treatment response (MTR) functions

m0(u,x) = E [Y0|U = u,X = x] ; m1(u,x) = E [Y1|U = u,X = x]

Many useful parameters are identified using the following expression

β⋆ ≡ E
[∫ 1

0

m0(u,X)ω⋆0(u,X,Z)du

]
+ E

[∫ 1

0

m1(u,X)ω⋆1(u,X,Z)du

]
with weights specified in 4.
Parametric Model: Assuming joint normality for U0, U1, V ,

E [U0i | Di = 0, Xi, Zi] = E [U0i | Vi ≥ (Xi, Zi)βd, Xi, Zi] = ρ0

(
ϕ ((Xi, Zi)βd)

1− Φ((Xi, Zi)βd)

)
E [U1i | Di = 1, Xi, Zi] = E [U1i | Vi < (Xi, Zi)βd, Xi, Zi] = ρ1

(
−ϕ ((Xi, Zi)βd)

Φ ((Xi, Zi)βd)

)
where ρ0 is the correlation ρ [U0i, Vi], and ρ1 = ρ [U1i, Vi].
yields MTE estimator

MTE(x, uD) = E (Y1i − Y0i | Xi = x, UDi = uD) = x (β1 − β0)+(ρ1 − ρ0)Φ−1 (uD)

Defn 4.49 (Control Function IV).
Let x̃i = xi − x. Write

Yi = x⊤i α+Dix̃
′
iθ +Diδi + εi

where δi is a random effect that captures treatment effect heterogeneity . We can
rewrite this and by demeaning δi = δ − δ̃i.

Yi = x⊤i α+Dix̃i
⊤θ +Diδ +

υ0i︷︸︸︷
εi (2)

where δ captures the ATE at means of X , which is the unconditional ATE under
the linear specification.
Write the selection equation

Di = xiπ
⊤
1 + ziπ2 + νi with E [νi|xi, zi] = 0

Assumptions

• E [εi|νi] = ηνi: Conventional selection bias.

• E
[
δ̃i|νi

]
= ψνi: unobservable part of treatment effect δ̃i depends linearly on

the unobservables that affect treatment selection.

Including ν̂i and ν̂iDi in eqn 2 yields a consistent estimate of the ATE : δ.

4.3.7 High Dimensional IV selection
Chernozhukov, Hansen, and Spindler (2015) setup:
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yi = τdi + x
′
iβ + εi

di = x
′
iγ0 + z

′
iδ0 + υi

where
1. xi is a vector of pxn exogenous controls, including a constant.

2. zi is a vector of pzn instruments

3. di is an endogenous variable

4. pxn >> n and pzn >> n

1. Run (post)LASSO of di on xi, zi to obtain γ̂, δ̂

2. Run (post)LASSO of yi on xi to get θ̂.

3. Run (post)LASSO of d̂i = x′iγ̂ + z′iδ̂ on xi to get ϑ̂.

4. Construct ρ̂yi := yi − xiθ̂, ρ̂di := di − x′iϑ̂ and v̂i := xiγ̂ + z′iδ̂ + x
′
iϑ̂.

5. Estimate τ̂ by using standard IV regression of ρ̂yi on ρ̂di with v̂i as instrument.
Perform inference using score stastics or conventional heteroskedasticity-robust
SEs.

implemented in hdm::rlassoIV(., select.X = T, select.Z = T).
Discussion in https://cran.r-project.org/web/packages/hdm/vignettes/hdm.pdf.

4.3.8 Principal Stratification
Treatment comparisons often need to be adjusted for post-treatment variables.
Binary treatmentZi ∈ {0, 1}. post-treatment Intermediate variable Si(zi) ∈ {0, 1},
Outcome Yi ∈ {0, 1}. For each individual, the treatment assumes a single value,
so only one of the two potential intermediate values are observed. Based on joint
potential outcomes of the intermediate variable (Si, (0), Si(1)), we have 4 strata

00 = {i : Si(0) = 0, Si(1) = 0} Never Takers
10 = {i : Si(0) = 1, Si(1) = 0} Defiers
01 = {i : Si(0) = 0, Si(1) = 1} Compliers
11 = {i : Si(1) = 0, Si(1) = 1} Always takers

Defn 4.50 (Principal Stratification Frangakis and D. B. Rubin (2002)).
The basic principal stratification P0 w.r.t post treatment variable S is the partition
of units i = 1, . . . , n such that, forall units in any set of P0, all units have the same
vector of (Si(0), Si(1)). The principal stratum Gi ∈ {00, 10, 01, 11} to which unit i
belongs is not affected by treatment assignment for any principal stratification, so
can be considered pre-treatment.

• Treatment Ignorability implies

(Yi(0), Yi(1)) ⊥⊥ Zi|Si(0), Si(1),X

(i.e. treatment and control units can be compared conditional on stratum)

• Principal Causal Effect (PCE)

τs0,s1 := E [Yi(1)− Yi(0)|Si(0) = s0, Si(1) = s1]

A common example is the
Complier Average Causal Effect (CACE) = Causal Effect on Principal Stratum of
Compliers (AIR96)

CACE = E [Yi(1)− Yi(0)|Si(0) = 0, Si(1) = 1]

Recall that Gi = (S0, S1) concatenated. So, AIR96 in PS terms:

• Monotonicity: S1 ≥ S0 =⇒ {Gi = 10}must be empty: no defiers.

• Exclusion: τ11 = τ00

Estimation under principal ignorability (Jiang, Yang, and Ding, 2020)

• Treatment ignorability Z ⊥⊥ (S0, S1, Y0, Y1) | X

• monotonicity: S1 ≥ S0 =⇒ Gi = 10 is not allowed

• principal ignorability

E [Y1 | G = 11, X] = E [Y1 | G = 01, X]

E [Y0 | G = 00, X] = E [Y1 | G = 01, X]

S = 0 S = 1
Z = 0 G = 00 or 01 G = 11
Z = 0 G = 00 G = 11 or 01
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Disentangle mixture distribution within strata by assuming same conditional ex-
pectation across mixture components (complier, never taker, always taker).
Define nuisance functions:

• Treatment probability: π(X) = Pr (Z = 1 | X)

• Principal Score: eg(X) = Pr (G = g | X) identified by

e01(X) = p1(X)− p0(X)

e00(X) = 1− p1(X)

e11(X) = p0(X)

where pz(X) = Pr (S = 1 | Z = z,X)

• Outcome mean: µzs(X) = E [Y | Z = z, S = s,X]

Treatment Probability and Principal Score

τ01 = E
{
e01(X)

p1 − p0
S

p1(X)

Z

π(X)
Y

}
− E

{
e01(X)

p1 − p0
1− S

1− p0(X)

1− Z
1− π(X)

Y

}
τ00 = E

{
1− S
1− p1

Z

π(X)
Y

}
− E

{
e00(X)

1− p1
1− S

1− p0(X)

1− Z
1− π(X)

Y

}
τ11 = E

{
e11(X)

p0

S

p1(X)

Z

π(X)
Y

}
− E

{
S

p0

1− Z
1− π(X)

Y

}
Treatment Probability and Outcome Mean

τ01 = E
[
SZ/π(X)− S(1− Z)/{1− π(X)}

p1 − p0
{µ11(X)− µ00(X)}

]
τ00 = E

[
1− SZ/π(X)

1− p1
{µ10(X)− µ00(X)}

]
τ11 = E

[
S(1− Z)/{1− π(X)}

p0
{µ11(X)− µ01(X)}

]
Principal Score and Outcome Mean

τ01 = E
[
p1(X)− p0(x)

p1 − p0
{µ11(X)− µ00(X)}

]
τ00 = E

[
1− p1(X)

1− p1
{µ10(X)− µ00(X)}

]
τ11 = E

[
p0(X)

p0
{µ11(X)− µ01(X)}

]

Direct and Indirect Effects viaPrincipal Stratification Direct effect ofZ conditional
on S exists if there is a causal effect of Z on Y for observations for whom the treat-
ment does not affect selection S, i.e. principal strata 00, 11. This is a zero-first-stage
sample in IV-terms.
The Indirect Effect is mediated through S.

Attrition as Selection Bias Let S denote a binary selection indicator for when Y
is observed. Let S(1), S(0) denote potential selection states under treatment and
nontreatment.

• S(1) = 0, S(0) = 0 : never-selected

• S(1) = 1, S(0) = 1 : always selected

• S(0) = 0, S(1) = 1 : selection compliers

• S(0) = 1, S(1) = 0 : selection defiers (ruled out by Lee bounds)

Dominance assumption: E [Y (1)|S(1) = 1, S(0) = 1] ≥ E [Y (1)|S(1) = 1, S(0) = 0]
and E [Y (0)|S(1) = 1, S(0) = 1] ≥ E [Y (0)|S(1) = 1, S(0) = 0]. The average poten-
tial outcome of the always selected dominates that of compliers under either treat-
ment state.
Then, Zhang and Rubin (2003) bounds are

∆UB = E [Y |D = 1, S = 1, Y ≥ y∗]− E [Y |D = 0, S = 1]

∆LB = E [Y |D = 1, S = 1]− E [Y |D = 0, S = 1]

where y∗ is chosen such that the lowest outcomes among those withD = 1, S = 1
correspond to the share of compliers among those with D = 1, S = 1 are smaller
than this value.

Defn 4.51 (Lee Bounds).
Assuming

• randomisation: {Y (1), Y (0), S(0), S(1),X} ⊥⊥ D

• monotonicity: S(1) ≥ S(0)a.s.

Lee (2009) focuses on the ATE among the always observed

E [Y (1)− Y (0)|S(0) = S(1) = 1]

The second quantity: E [Y (0)|S(1) = 1, S(0) = 1] is point identified. In contrast,
the outcome in the treatment group can be either an always-selected’s outcome or
a selection complier’s outcome.
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Always selected share among the treated is

p0 = Pr (S(1) = 1, S(0) = 1|S(1) = 1) = Pr (S(0) = 1|S(1) = 1) =
Pr (S = 1|D = 0)

Pr (S = 1|D = 1)

In the best case, the always-selected comprise the top p0 quantile of the treatment
outcomes. Then the largest possible value of β is

βU = E
[
Y |Y ≥ Qy|S=1,D=1(1− p0), D = 1, S = 1

]
− E [Y |S = 1, D = 0]

The smallest possible one is

βL = E
[
Y |Y ≤ Qy|S=1,D=1p0, D = 0, S = 1

]
− E [Y |S = 1, D = 0]

this can be implemented conditional on covariates by constructing p0(x) within
each x stratum.

4.4 Regression Discontinuity Design
Setup
Treatment (D) changes discontinuously at some particular value x0 in x [and
nothing else does], so

Di =
{
0 if xi < x0
1 if xi ≥ x0

Standard identification assumptions violated by definition because although un-
confoundedness holds trivially since we have Di = 1xi≥c, this also means overlap is
always violated. Need to invoke continuity to do causal inference.

Defn 4.52 (Sharp Regression Discontinuity Estimand (Hahn et al 2001)).
Identified at x = c, i.e. τc = µ(1)(c)− µ(1)(c) via

τc := E [Y1 − Y0|X = c] = lim
x↓c

E [Y |X = c]− lim
x↑c

E [Y |X = c]

lim
x↓c

E [y|X]− lim
x↑c

E [y|X] = τSRDD + lim
x↓c

E [u|X]− lim
x↑c

E [u|X]︸ ︷︷ ︸
≈ 0

Identification Assumption 1 (Smoothness of Unobservables).

• Conditional mean function E [u|X] is continuous at c

• Mean Treatment effect function E [τi|X] is right continuous at c

4.4.1 Estimators
Normalise running variable c := x0. Then, the linear regression implementation
is the following:

Y = αl + τD + βlf(X − c) + (βr − βl)×D × g(X − c) + ϵ

where f and g are local or global polynomials. Since the design relies on identifi-
cation at infinity (i.e. at the cutoff), choice of polynomial / functional form matters a
lot.
Calonico, Cattaneo, Titiunik (2014) recommend local-linear regressions. Older
literature relies on global higher-order polynomials, which often yields strange
estimates.

Defn 4.53 (Local Linear RD Estimator).

τ̂c = argmin

{
n∑
i=1

K

(
|Xi − c|
hn

)
× (Yi − a− τDi − β(0)(Zi − c)− − β(1)(Zi − c)+)

}
WhereK(·) is a kernel function. Common choices are thewindow functionK(x) =
1|x|≤1 or the triangular kernelK(x) = (1− |x|)+

Assumptions for Local Linear Estimator Loosely, we need CEFs µ(w) to be smooth.
More precisely, we needµ(w)(x) to be twice-differentiablewith uniformly bounded
second derivative. ∣∣∣∣ d2dx2µ(w)(x)

∣∣∣∣ ≤ B ∀x ∈ R ∧ w ∈ {0, 1}

Taking a taylor expansion around c, we can write the CEFs as

µ(w)(x) = a(w) + β(w)(x− c) +
1

2
ρ(w)(x− c)

∣∣ρ(w)(x)
∣∣ ≤ Bz2

with τc = a(1) − a(0). The local linear regression with a window kernel can be
solved in closed form

â(1) =
∑

c≤Xi≤c+hn

γiYi , γi =
Ê(1)[(Xi − c)2]− Ê(1)[Xi − c] · (Xi − c)

Ê(1)[(Xi − c)2]− Ê(1)[Xi − c]2

where Ê(·) denote sample averages over the regression window. Then, the error
term can be written as

â(1) = a(1) +
∑

c≤Xi≤c+hn

γρ(1)(Xi − c)︸ ︷︷ ︸
Curvature Bias

+
∑

c≤Xi≤c+hn

γi(Yi − µ(1)(Xi))︸ ︷︷ ︸
Sampling Noise
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Curvature bias bounded by Bh2n.

τ̂c = τc + O
(
n−2/5

)
withhn ∼ n−1/5

This rate is a consequence of working with the 2nd derivative. In general, if we
assume µ(w)(·) has a bounded k−th derivative, we can achive n−k/(2k+1) rate us-
ing local polynomial regression of order k − 1 with a bandwidth scaling as hn ∼
n−1/(2k+1).

Defn 4.54 (Minimax Linear Estimation (Imbens andWager, 2017)).
The local linear regression estimator for τc

τ̂c = argmin

n∑
i=1

K

(
|Zi − c|
hn

)
(Yi − a− τWi − β(0)(Zi − c)− − β(1)(Zi − c)+)2

which can be written as a local linear estimator τ̂c =
∑n
i=1 γiYi where weights γi

only depend on the running variable Z. Imbens and Wager (2017) show that local
linear regression is not the best estimator in this class.
Under an assumption that

∣∣∣µ′′(w)(z)
∣∣∣ ≤ B| {Z1, . . . , Zn}, the minimax linear estima-

tor is the one that minimises the MSE MSE(τ̂c(γ)| {Z1, . . . , Zn}) ≤ σ ‖γ‖22 + I2B(γ)
and is given by

τ̂c(γ
B) =

n∑
i=1

γBi Yi ; γ
B = argmin

{
σ ‖γ‖22 + I2B(γ)

}
These weights can be solved for using quadratic programming.

4.4.2 Fuzzy RD
Discontinuity doesn’t deterministically change treatment, but affects probability of
treatment. Analogue of IV with one-sided non-compliance.

P [Di = 1|xi] =
{
g0(xi) if xi < x0
g1(xi) if xi ≥ x0

g0(xi) 6= g1(xi). Assuming g1(x0) > g0(x0), the probability of treatment relates to
xi via:

E[Di|xi] = P [Di = 1|xi] = g0(xi) + [g1(xi)− g0(xi)]Ti
where Ti = 1xi≥x0 := point of discontinuity

4.4.3 Regression Kink Design
First-derivative version of the fuzzy RD. Continuous treatment, where the treat-
ments are a function of the running variable X with kink at x0. This implies that
the first derivative ∂D

∂X of continuous treatment D is discontinuous at the threshold.
The marginal treatment effect at the threshold is defined as

∆X=x0
(d0) =

∂E [Y (d0)|X = x0]

∂D
=

limε→0
∂E[Y |X∈[x0,x0+ε)]

∂X − limε→0
∂E[Y |X∈[x0−ε,x0)]

∂X

limε→0
∂E[D|X∈[x0,x0+ε)]

∂X − limε→0
∂E[D|X∈[x0−ε,x0)]

∂X

4.5 Differences-in-Differences
4.5.1 DiD with 2 periods
Binary treatment d ∈ {0, 1}, 2 time periods t ∈ {0, 1}.
Potential outcomes denoted Y dt .

Defn 4.55 (Estimand).
ATT in the 2nd period.

τATT := E
[
Y 1
1 − Y 0

1 |D = 1
]

E
[
Y 0
1 |D = 1

]
not observed, so must be imputed.

Naive Estimation Strategies

• Before-After Comparison: τ = E
[
Y 1
1 |D = 1

]
− E

[
Y 0
0 |D = 1

]
– assumes E

[
Y 0
1 |D = 1

]
= E

[
Y 0
0 D = 1

]
(No trending)

• Post Treatment-Control Comparison: τ = E
[
Y 1
1 |D = 1

]
− E

[
Y 0
1 |D = 0

]
– Assumes E

[
Y 0
1 |D = 1

]
= E

[
Y 0
1 |D = 0

]
(Random Assignment in the

2nd period)

Both typically untenable in practice, so we need parallel trends.

Defn 4.56 (DiD Estimator).
Sample analogue of
Impute E

[
Y 0
1 |D = 1

]
with

E
[
Y 0
0 |D = 1

]︸ ︷︷ ︸
Baseline PO for treated

+ E
[
Y 0
1 |D = 0

]
− E

[
Y 0
0 |D = 0

]︸ ︷︷ ︸
Change over time in control series
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∆D=1 :=E
[
Y 1
1 |D = 1

]
− E

[
Y 0
0 |D = 1

]︸ ︷︷ ︸
over-time difference for treated unit

−

E
[
Y 0
1 |D = 0

]
− E

[
Y 0
0 |D = 0

]︸ ︷︷ ︸
over-time difference for control unit

Defn 4.57 (Parallel Trends Assumption).

E
[
Y 0
1 − Y 0

0 |D = 1
]︸ ︷︷ ︸

Trend in control PO for Treated

= E
[
Y 0
1 − Y 0

0 |D = 0
]︸ ︷︷ ︸

Trend in control PO for Control

Often justified using a figure [with transformed y if necessary], or control for time
trends [which relies on a strong functional form assumption], or a clear falsifica-
tion test [on a placebo group].
If E

[
Y 0
0 |D = 1

]
= E

[
Y 0
0 |D = 0

]
, this collapses to a Selection-on-observables in the

2nd period assumption.

E
[
Y 0
1 |D = 1

]
= E

[
Y 0
1 |D = 0

]
For a two-period difference, we can also write the standard OLS exogeneity con-
dition in differences form

E [∆x′∆ϵ] = 0

E [x′2ϵ2] + E [x′1ϵ1]− E [x′1ϵ2]− E [x′2ϵ1]︸ ︷︷ ︸
No feedback loop

= 0

Which makes a direct link with the strong exogeneity assumption in panel data
models that asserts that ϵt ⊥⊥ x1, . . .xt.
Regression Estimator
We typically prefer the following regression estimator (for automatic standard er-
rors etc).

Yit = α+ γTreati + λPostt + τ(Treati × Postt) + εit

Triple Differences (DDD) Estimator
Regular Diff-in-Diff estimate - Diff-in-diff estimate for placebo group.

4.5.2 Nonparametric Identification Assumptions with Covariates
Lechner (2011)
Estimand:

τATT := E
[
Y 1
t − Y 0

t |D = 1
]

= E

E [Y 1
t − Y 0

t |X = x, D = 1
]︸ ︷︷ ︸

θt(x)

|D = 1


= EX|D=1 [θt(x)]

Identification Assumptions:

• SUTVA
Yt = DY 1

t + (1−D)Y 0
t , t ∈ {0, 1}

• Covariate exogeneity

X1 = X0 = X x ∈ X

• No effect before treatment

θ0(x) = 0; ∀x ∈ X

• Common Trend
(parallel trends within x strata)

E
[
Y 0
1 |X = x, D = 1

]
− E

[
Y 0
0 |X = x, D = 1

]
= E

[
Y 0
1 |X = x, D = 0

]
− E

[
Y 0
0 |X = x, D = 0

]
= E

[
Y 0
1 |X = x

]
− E

[
Y 0
0 |X = x

]
• Common support

Pr (T = 1, D = 1|X = x, (T,D) ∈ {(t, d), (1, 1)}) < 1

∀(t, d) ∈ {(0, 1), (0, 0), (1, 0)} x ∈ X

This allows us to estimate the conditional ATT as the standard DiD within eachXstratum.
E [Y1|D = 1, X]− E [Y0|D = 1, X]− E [Y0 | D = 0, X]− E [Y0 | D = 0, X]

Averaging these over dX gives us the ATT
τATT
1 = E [{µ1(1, X)− µ1(0, X)} − {µ0(1, X)− µ0(0, X)} |D = 1, T = 1]

where regression functions µd(t, x) denote conditional expectations for treatment
d at time t given covariates x.
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Defn 4.58 (Semiparametric Difference-in-Differences).
Abadie (2005)
Denote potential outcomes under treatment and control for unit i as Y 1

it and Y 0
it .

For some observed covariates Xi, we are interested in the CATT

τ0(Xi) := E
[
Y 1
i1 − Y 0

i1|Xi, Di = 1
]

For identification, we need

1. Conditional parallel trends: E
[
Y 0
i1 − Y 0

i0|Di = 1, Xi

]
= E

[
Y 0
i1 − Y 0

i0|Di = 0, Xi

]
2. Overlap: ∃c > 0 such that E [Di = 1|Xi] > c and E [Di|Xi] < 1− c

The Abadie estimand can be defined as

E
[
Y 1
i1 − Y 0

i1|Xi, Di

]
= E

 Di − E [Di = 1|Xi]

E [Di = 1|Xi] (1− E [Di = 1|Xi)]︸ ︷︷ ︸
ρ0

(Yi1 − Yi0)|Xi


Defining ∆Yi := Yi1 − Yi0, we then have

E
[
Y 1
i1 − Y 0

i1|Xi, Di

]
= E

[
Di − E [Di = 1|Xi]

E [Di = 1|Xi]E [Di = 0|Xi]
∆Yi|Xi

]
= E

[
Di∆Yi

E [Di = 1|Xi]
|Xi

]
− E

[
(1−Di)∆Yi

(1− E [Di = 1|Xi])
|Xi

]

This is an IPW Estimator.
Integrating this over dP (X|D = 1) gives us the ATT

E
[
Y 1
1 − Y 0

0 |D = 1
]
= E

[
Y1 − Y0

Pr (D = 1)
· D − E [D = 1|Xi]

1− E [D = 1|Xi]

]
THe full IPW estimator can be written

∆D=1,T=1 = E[Y · {DT
Π
− D(1− T )ρ1,1(X)

ρ1,0(X)Π

−
(
(1−D)Tρ1,1(X)

ρ0,1(X)Π
− (1−D)(1− T )ρ1,1(X)

ρ0,0(X)Π

)
}]

where Π = Pr (D = 1, T = 1) is the unconditional probability of being treated
in the post-treatment period, and ρd,t(X) = Pr (D = dT = t|X) are conditional
probabilities of specific treatment-group combinations.
Double-robust version - Zimmert (2020)

∆D=1,T=1 = E[{DT
Π
− D(1− T )ρ1,1(X)

ρ1,0(X)Π

−
(
(1−D)Tρ1,1(X)

ρ0,1(X)Π
− (1−D)(1− T )ρ1,1(X)

ρ0,0(X)Π

)
} ×

(Y − µd(T,X)) +
DT

Π
(µ1(1, X)− µ1(0, X)− (µ0(1, X)− µ0(0, X)))]

4.6 Panel Data
Setup: We observe a sample of i = 1, . . . , N cross-sectional units for t = 1, . . . , T
time periods =⇒ Data : {(yit,x′it) : t = 1, . . . , T}Tt=1
One-way fixed effects and Random effects both use the form

yit = x
′
itβ + θi + ϵit︸ ︷︷ ︸

eit

(3)

although they make different assumptions about the error.
Error assumptions for panel regressions
(1) FE: E [ϵit|xi, θi] = 0 ⇔ θi 6⊥⊥ xi.
(2) RE: (1) and E [eit|xi] = 0 [Absorb unobserved unit effect into error term, im-
pose orthogonality it] =⇒ θi ⊥⊥ xi. Equivalent to Pooled OLS with FGLS.

4.6.1 Fixed Effects Regression
Identification Assumption

• Strict Exogeneity - errors are uncorrelated with lags and leads of x

E [ϵit|xi] = E [ϵit|xi1, · · ·xiT ] = 0⇔ E [x′isϵit] = 0 ∀s, t = 1, . . . T

Equivalent statement for yit is

E [yit|xi1, . . . ,xiT ] = E [yit|xit] = x′itβ

– Rules out feedback loops i.e. xit correlated with ϵi,t−1 because Xs are
set in response to prior error, e.g. Policing and crime.

• regressors vary over time for at least some i.
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Setup
Define an individual fixed effect for individual i

Ai =
{
1 if the observation involves unit i
0 otherwise

and define the same for each time period for panel data.
If Dit is as good as randomly assigned conditional on Ai:

E[Y0it|Ai, Xit, t,Dit] = E[Y0it|Ai, Xit, t]

Then, assuming Ai enter linearly,
E[Y0it|Ai, Xit, t,Dit] = α+ λt +A′iγ +X ′itβ

Assuming the causal effect of the treatment is additive and constant,
E[Y1it|Ai, Xit, t] = E[Y0it|Ai, Xit, t] + ρ

where ρ is the causal effect of interest.
Then, we can write:

Yit = αi + λt +ρ Dit +X ′itβ + ϵit

ϵit = Y0it − E[Y0it|Ai, Xit, t] Error Term
αi = α+Aiγ Fixed effect

Restrictions
• Linear
• Additive functional form
• Variation in Dit, over time, for i, must be as good as random

Defn 4.59 (Within Estimator).
Estimate the specification

ÿi = ẍ
′
iβ + ϵi

where k̈i = Miki individual demeaned values from pre-multiplying by the Indi-
vidual specific demeaning operator Mi := Ii − 1i (1

′
i1i)

−1
1′i with every compo-

nent in eqn 3, which removes the fixed effect θi.

Defn 4.60 (First Differences Estimator).
Lag eqn 3 1 period and subtracting gives

∆yit = ∆x′itβ +∆ϵit

where ∆yit = yit − yi,t−1 and so on. This naturally eliminates the time-invariant
fixed effect θi. The pooled OLS estimation of β in the above regression is called the
first differences (FD) estimator β̂FD.

Fact 4.22 (Efficiency of FE and FD Estimators).

• FE estimator is more efficient under the assumption that ϵit are serially un-
correlated [E [eie

′
i|xi, θi] = σ2

eIT ]

• FD more efficient when ϵit follows a random-walk.

Fact 4.23 (Equivalence betweenWithin/FE and first differences for 2 periods).
For Individual Fixed Effects/Within estimation, using the regression anatomy for-
mula, write:

ρ̂FE =
Cov(Ÿit, D̈it)

Var(D̈it)

Since t = 2, Y i = Yit +
∆Yit
2 and Di = Dit +

∆Dit
2

ρ̂FE =
Cov(Ÿit, D̈it)

Var(D̈it)

=
Cov(Yit − Y i, Dit −Di)

Var(Dit −Di))

=
Cov(Yit − Yit − ∆Yit

2 , Dit −Dit − ∆Dit
2 )

Var(Dit −Dit − ∆Dit
2 )

=
−Cov(∆Yit,∆Dit)

−Var(∆Dit)
=

Cov(∆Yit,∆Dit)

Var(∆Dit)

= ρ̂FD

4.6.2 Random Effects
Identification Assumption
Assume θi ⊥⊥ Xi ⇔ E [θi|xi] = E [θi] = 0 - strong assumption
In other words, entire error term eit = νit + θi is independent of X . This assumes
OLS is consistent but inefficient, which is why it is of limited use in observational
settings.
When there is autocorrelation in time series (i.e. ϵt s are correlated over time ),
GLS estimates can be obtained by estimating OLS on quasi-differenced data. This
allows us to estimate the effects of time-invariant characteristics (assuming the in-
dependence condition is met).

yit − λȳi = (xit − λx̄i)β + (1− λ)θi + νit − λν̄i
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where

λ = 1−
[

σ2
ν

σ2
ν + Tσ2

θ

] 1
2

Assumption 6 (RE FGLS Assumptions).

• Idiosyncratic errors νit have constant finite variance: E
[
ν2it
]
= σ2

ν

• Idiosyncratic errors νit are serially uncorrelated: E [νitνis] = 0∀t 6= s.

• E
[
θ2i |xi

]
= σ2

θ

Under these assumptions, the FGLS matrix Ω takes a special form

Ω = σ2
νIT + σ2

θjT j
′
T

where jT j′T is a T × T matrix of 1s. Estimators for the variance components are in
Wooldridge (2010, c 10, pp 260-61). A robust estimator of Ω̂ is constructed using
pooled OLS residuals v̂i

Ω̂ =
1

n

n∑
i=1

v̂iv̂
′
i

With this, we can apply the FGLS estimator

β̂RE =
(
X′Ω̂−1X

)−1
X′Ω̂−1y

4.6.3 Hausman Test: Choosing between FE and RE
βFE is assumed to be consistent. Oft-abused test as a result.

• H0: βFE − βRE = 0

• H0: βFE − βRE 6= 0(
β̂FE − β̂RE

)′ (
V̂arβ̂FE

]
− V̂ar

[
β̂RE

]
)−1

(
β̂FE − β̂RE

)
d→ χ2

k

If the error component θ is correlated with x, RE estimates are not consistent. Per-
formHausman test for randomvsfixed effects (where under the null,Cov(θi, xit) =
0)

• When the idiosyncratic error variance σ̂2
ν is large relative to Tiσ̂2

θ , λ→0 and
β̂RE ≈ β̂pool. In words, the individual effect is relatively small, so Pooled
OLS is suitable.

• When the idiosyncratic error variance σ̂2
ν is small relative to Tiσ̂2

θ , λ→1 and
β̂RE ≈ β̂FE . Individual effects are relatively large, so FE is suitable.

4.6.4 Time Trends
Linear Time Trend

yit = xitβ + ci + t+ εit, t = 1, 2, . . . , T

Time Fixed Effects (a.k.a. Two-way Fixed Effects)
yit = xitβ + ci + tt + εit, t = 1, 2, . . . , T

Unit Specific Time Trends
yit = xitβ + ci + gi · t+ tt + εit, t = 1, 2, . . . , T

4.6.5 Distributed Lag
Define switching indicatorDit as 1 if i switched from control to treatment between
t− 1 and t.

Yist = γs + λt +

m∑
τ=0

δ−τDs,t−τ +

q∑
τ=1

δ+τDs,t+τ +X ′istβ + ϵist

where the sums on the RHS allow for m lags / post-treatment effects, and q leads
/ pre-treatment effects. Leads should be close to 0.

4.6.6 Staggered Adoption
Let T denotemultiple time periods such that t ∈ {0, 1, . . . , T }, with nobody treated
at t = 0 and staggered adoption. LetGt be a dummy that is equal to one if a subject
experiences treatment introduction in period t (e.g. G2 = 1 implies the treatment
is introduced in period 2 in said group).

Fact 4.24 (Inconsistency for ATT (Chaisemartin and D’Haultfœuille, 2020)).
Under parallel trends for the untreated potential outcomes, Yg,t(0), the treatment
effect β̂FE in the vanilla two-way fixed effects regression

Yg,t = β̂FEDg,t + γg + ψt + εgt

can be decomposed as

E
[
β̂FE
]
= E

 ∑
(g,t):Dg,t ̸=0

Wg,t∆g,t

 ; where ∆g,t = Yg,t(1)− Yg,t(0)

The weightsWg,t sum to one and are proportional to and the same sign as
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Ng,t (Dg,t −Dg,· −D·,t +D·,·)︸ ︷︷ ︸
pesky weight

where Dg,· is the average treatment of group g across periods (share of periods
treated), D·,t is the average treatment at period t across groups, and D·,· is the
grand mean of the treatment indicator. These weights can be negative.
Thismeans that β̂FE is biased for theATT becauseWg,t is in not (only) proportional
to Ng,t. β̂ is only unbiased when

• the treatment is binary AND

• the treatment is staggered and absorbing (i.e. groups get treated once and
stay treated) AND

• there is no variation in treatment timing

Under these conditions, the pesky weight is constant across treated units, so the
weights are proportional to Ng,t.
OR, β̂FE is also unbiased if (Dg,t−Dg,·−D·,t+D·,·) is uncorrelated with the treat-
ment effects ∆g,t. This is only plausible when treatment has been randomly staggered,
otherwise, it is entirely plausible that groups with larger treatment effects selected
into treatment early, and so on.

Theorem 4.25 (DiD Decomposition Theorem (Goodman-Bacon, 2018)).
Consider a dataset comprisingK timing groups ordered by the time at which they
first receive treatment and a maximum of one never-treated group U . The OLS
estimate from a two-way fixed effects regression is

β̂DD =
∑
k ̸=U

skU β̂
DD
kU +

∑
k ̸=U

∑
j>k

skj β̂DDkj + sjkβ̂
DD
jk︸ ︷︷ ︸

DD estimated with
already treated group


where weights depend on sample size and variance of treatmentwithin each DD.
This maximises the weights of groups treated in the middle of the panel. The Late
vs Early comparison is particularly problematic (and is typically incorrect when
treatment effects are heterogeneous in time).
Visually, this involves decomposing the setup in fig 5 into its constituent two-way
parts fig 6.

Theorem4.26 (Group-timeaverage treatmenteffects (CallawayandSant’Anna, 2020)).
Estimand: Group-time average treatment effect

yit
k

yit
l

yit
U

PRE(k) MID(k, l) POST(l)

0

10

20

30

40

tk
* tl

*

Time

Un
its

 o
f y

Figure 5: Some Staggered Difference in Differences data

ATT (g, t) = E [Yt(g)− Yt(∞)|Gg = 1] , ∀ t ≥ g

where Yt(g) is the potential outcome for group treated at g.
Separate (1) identification, (2) estimation and inference, and (3) aggregation.

• A1: No anticipation ∀i, t and t < g, g′, Yit(g) = Yi,t(g
′)

• A2: Parallel trends based on ‘never treated’ group: ∀t ∈ {2, . . . , T }, g ∈ G s.t.
t ≥ g, E [Yt(0)− Yt−1(0)|Gg = 1]︸ ︷︷ ︸

Trend in group treated at 1

= E [Yt(0)− Yt−1(0)|C = 1]︸ ︷︷ ︸
Trend in never treated

Estimators for Group-time ATEs

ATT never
unc (g, t) = E [Yt − Yg−1|Gg = 1]− E [Yt − Yg−1|C = 1]
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A. Early Group vs. Untreated Group
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B. Late Group vs. Untreated Group
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C. Early Group vs. Late Group, before tl
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D. Late Group vs. Early Group, after tk
*  

Figure 6: Constituent 2-way Differences in Differences Comparisons

ATT
notyet
unc (g, t) = E [Yt − Yg−1|Gg = 1]− E [Yt − Yg−1|Dt = 0, C = 1]

Aggregation: event-study type estimand.

θD(e) =

T∑
g=2

1g+e≤T ATT (g, g + e)Pr (G = g|G+ e ≤ T , C 6= 1)

Implemented in did and DRDID.

Fact 4.27 (Imputation Estimators (IFE / Factor models/ Matrix Completion)).
The negative weighting problem with 2WFE under staggered adoption can be
remedied easily by using the following procedure, which is termed Imputation
by Liu, Wang, and Xu (2021). This nests the procedures in Xu (2017) and Athey,
Bayati, et al. (2017) etc.

• Fit a model for Y (0)
it using only untreated observations for all units (i.e. un-

treated periods for units that eventually got treated)

• Impute Ŷ (0) for treated units and treated time periods

• compute τ̂it = Yit − Ŷ (0)
it | ∀i, t whereWit = 1

• Average for (equal weighting) ATT or average over time for event study

This works well when the outcome model for Y (0)
it is good, i.e. when the fixed

effects or latent factors are well estimated. This will not work well for short panels.

4.6.7 Changes-in-Changes
Athey and Imbens (2006)
Given a continuous outcome Y and a monotonicity in unobserved heterogeneity, CiC
allows us to identify both the ATT and Quantile effect on the treated (QTT).
Assume the following about untreated potential outcomes

Y 0
T = H(U, T ) U ⊥⊥ T |D

where U is a scalar unobservable or an index of unobservables. H(u, t) is a general
function assumed to be strictly monotonically increasing in values of u for periods
t ∈ {0, 1}. The conditional independence assumption requires that the unobserved
heterogeneity is constant over time within treatment groups.
Denote FY (d)|dt(y) = P [Y (d) ≤ y|D = d, T = t] the conditional CDF of potential
outcome Y (d), andFdt(y) = P [D = d, T = t] correspondingCDF for observed out-
come. Conditional outcome distributions F01,F00,F10 are observed. The inverse
of the latter is F−1dt (y), the conditional quantile function. The unobserved CDF is
identified as

FY (0)|11(y) = F10

(
F−100 (F01(y))

)
The QTT at quantile τ is then identified as

∆D=1(τ) = F−111 (τ)− F(0)|11(τ)
−1︸ ︷︷ ︸

F−1
01 (F00(F−1

10 (τ)))

and the ATT is identified as
∆D=1 = E [Y |D = 1, T = 1]− E

[
F−101 (F00(Y10))

]
Implemented in qte::CiC.

4.6.8 Synthetic Control
Original Abadie, Diamond, and Hainmueller (2010) setup.
Observe n0+1 units in periods t = 1, . . . , T . Unit 1 is treated starting from period
T0+1, while 2, . . . , n0+1 are never treated, and are therefore called the donor pool.
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Y obsit = Yit(Dit) =

{
Yit(0) if Dit = 0
Yit(1) if Dit = 1

Since there is only 1 treated unit, the effect of interest

τt := Y1i(t)− Y0i(t), t = T0+1, . . . , T

Observed data matrix ((Doudchenko and Imbens, 2016))

Yobs := (Y obsit )t=T,...,1, i=1,...,n0+1 =



Y1,T (1) Y2,T (0) . . . , Yn0+1,T (0)
...

...
...

...
Y1,T0+1(1) Y2,T0+1(0) . . . , Yn0+1,T0+1(0)
Y1,T0(1) Y2,T0(0) . . . , Yn0+1,T0(0)

...
...

...
...

Y1,1(1) Y2,1(0) . . . , Yn0+1,1(0)


FPCI applies; potential outcome matrices are:

Y(0) =



? Y2,T (0) . . . , Yn0+1,T (0)
...

...
...

...
? Y2,T0+1(0) . . . , Yn0+1,T0+1(0)

Y1,T0
(1) Y2,T0

(0) . . . , Yn0+1,T0
(0)

...
...

...
...

Y1,1(1) Y2,1(0) . . . , Yn0+1,1(0)



Y(1) =



Y1,T (1) ? . . . , ?
...

...
...

...
Y1,T0+1(1) . . . ,

? ?) . . . , ?
...

...
...

...
? ? . . . , ?


Let Xtreat be a p−vector of a pre-intervention characteristics, and Xc is a p × n0
matrix containing the same values for control units. This typically includes pre-
treatment outcomes, in which case p = T0, but predictors (even time invariant
ones, Zi) are usually available.

Xtreat :=


Y obs1,1

Y obs1,2
...

Y obs1,T0

Zi



Defn 4.61 (Synthetic Control Estimator).
For some p × p PSD matrix V, define ||X||V =

√
X′VX, where V is typically

diagonal. Consider weights ω = (ω2, . . . , ωn0+1) satisfying

ωi ≥ 0, 2, . . . , n0 + 1 (Non-Negativity)∑
i≥2

ωi = 1 (Sum to 1)

This forces interpolation, i.e. the counterfactual cannot take a value greater than
the maximal value or smaller than the minimal value of for a control unit. The
synthetic control solution ω∗ solves

min
ω
||Xtreat −Xcω||2V s.t. Non-negativity, Sum to 1

The Synthetic Control Estimator is then

τ̂t := Y obs1,t −
n0+1∑
i=2

ω∗i Y
obs
it

In contrast, a simple difference-in-differences estimator gives

τ̂DIDt := Y obs1,t −

(
Y obs1,T0

− 1

n0

n0+1∑
i=2

Y obsit − Y obsi,T0

)
Abadie, Diamond, and Hainmueller (2010) choose V = diag v1, . . . , vp using a
nested-minimisation of the Mean Square Prediction Error (MSPE) over the pre-
treatment period

MSPE(V) :=

T0∑
t=1

Y obs1,t −
n0+1∑
i=2

ωi(V)Y obsit

Defn 4.62 (Imbens and Doudchenko representation).
Doudchenko and Imbens (2016) Setup:

Yobs =

[
Yobs

t, post Yobs
c, post

Yobs
t, pre Yobs

c, pre

]
=

[
Yt, post(1) Yc, post(0)
Yt, pre(0) Yc, pre(0)

]
T × (N + 1)

Y(0) =

[
? Yc, post(0)

Yt, pre(0) Yc, pre(0)

]
=

[
? Yc, post(0)

Yt, pre(0) Yc, pre(0)

]
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• relativemagnitudes ofT andN might dictatewhetherwe impute themissing
potential outcome ? using this or this comparison

– Many Units and Multiple Periods: N >> T0, Y(0) is ‘fat’, and red
comparison becomes challenging relative to blue. Somatchingmethods
are attractive.

– T0 >> N , Y(0) is ‘tall’, and matching becomes infeasible. So it might
be easier to estimate blue dependence structure.

– Finally, if T0 ≈ N , regularization strategy for limiting the number of
control units that enter into the estimation of Y0,T0+1(0) may be impor-
tant

• Focus on last period for now: τ0,T = Y0,T (1)− Y0,T (0) = Y obs
0,T − Y0,T (0)

• Many estimators impute Y0,T (0) with the linear structure Ŷ0,T (0) = µ +∑n
i=1 ωi · Y obs

i,T

– Methods differ in howµ andω are chosen as a function ofYobs
c, post,Y

obs
t, pre,Y

obs
c, pre

• Impose four constraints

1. No Intercept: µ = 0. Stronger than Parallel trends in DiD.
2. Adding up :

∑n
i=1 ωi = 1. Common to DiD, SC.

3. Non-negativity: ωi ≥ 0 ∀ i. Ensures uniqueness via ‘coarse’ regularisa-
tion + precision control. Negative weights may improve out-of-sample
prediction.

4. Constant Weights: ωi = ω ∀ i

• DiD imposes 2-4.

• ADH(2010, 2014) impose 1-3

– 1 + 2 imply ‘No Extrapolation’.

Relaxing these assumptions:

• Negative weights

– If treated units are outliers on important covariates, negative weights
might improve fit

– Bias reduction - negative weights increase bias-reduction rate

• When N >> T0, (1-3) alone might not result in a unique solution. Choose
by

– Matching on pre-treatment outcomes : one good control unit is better
than synthetic one comprised of disparate units

– Constant weights - implicit in DiD

• Given many pairs of (µ, ω)

• prefer values s.t. synthetic control unit is similar to treated units in terms of
lagged outcomes

• low dispersion of weights

• few control units with non-zero weights

Optimisation Problem
Ingredients of objective function

• Balance: difference between pre-treatment outcomes for treated and linear-
combination of pre-treatment outcomes for control

–
∥∥Yt, pre − µ− ω⊤Yc, pre

∥∥2
2
= (Yt, pre−µ−ω⊤Yc, pre)

⊤(Yt, pre−µ−ω⊤Yc, pre)

• Sparse and small weights:

– sparsity : ‖ω‖1
– magnitude: ‖ω‖2

(µ̂en(λ, α), ω̂en(λ, α)) = argmin
µ,ω

Q(µ, ω|Yt, pre,Yc, pre;λ, α)

where Q(µ, ω|Yt, pre,Yc, pre;λ, α) =
∥∥Yt, pre − µ− ω⊤Yc, pre

∥∥2
2

+ λ

(
1− α
2
‖ω‖22 + α ‖ω‖1

)
Tailored Regularisation

• don’t want to scale covariates Yc, pre to preserve interpretability of weights

• Instead, treat each control unit as a ‘pseudo-treated’ unit and compute Ŷj,T (0) =
µ̂en(j;α, λ) +

∑
i ̸=j ω̂i(j;α, λ) · Y obs

i,T where
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(µ̂en(j;λ, α), ω̂en(j;λ, α)) = argmin
µ,ω

T0∑
t=1

Yj,t − µ− ∑
i ̸=0,j

ωiYi,t

2

+

λ

(
1− α
2
‖ω‖22 + α ‖ω‖1

)
pick the value of the tuning parameters (αenopt, λenopt) that minimises

CV en(α, λ) =
1

N

N∑
j=1

(Yj,T −

Ŷj,T (0)︷ ︸︸ ︷
µ̂en(j;α, λ)−

∑
i ̸=0,j

ω̂eni (j;α, λ) · Yi,T )

Difference in Differences

• assume (2-4)

• No unique µ, ω solution for T = 2, so fix ω = 1
N

ωdid
i =

1

N
∀i ∈ {1, . . . N}

µ̂did =
1

T0

T0∑
s=1

Y0,s −
1

NT0

T0∑
s=1

N∑
i=1

Yi,s

Best Subset; One-to-one Matching
(µ̂S , ω̂S) = argminµ,ω Q(·;λ = 0, α) with

∑N
i=1 1ωi ̸=0 ≤ k (=1 for OtO)

Synthetic Control

• assume (1-3) (i.e. µ = 0)

• ForM ×M PSD diagonal matrix V

(ω̂(V), µ̂(V)) = argmin
ω,µ

{(Xt − µ− ω⊤X)⊤V

(Xt − µ− ω⊤X)}

V̂ = argmin
V=diag(v1,...,vM )

{(Yt, pre − ω̂(V)⊤Yc, pre)
⊤

(Yt, pre − ω̂(V)⊤Yc, pre)}

Constrained regression: When Xi = Yi,t; 1 ≤ t ≤ T0 (Lagged Outcomes only)
V = IN and λ = 0

Defn 4.63 (Many treated units : Synthetic Difference in Differences).
Arkhangelsky et al. (2021)
Consider a balanced panel with N units and T time periods, where the first Nco
units are never treated, while Ntr = N −Nco treated units are exposed after time
Tpre. We seek to solve for sdidweights ω̂sdid that align pre-exposure trends in outcomes
of unexposed units with those for exposed units

Nco∑
i=1

ω̂sdidYit ≈ N−1tr
N∑

i=Nco+1

Yit

we also look for time weights λ̂sdidt that balance pre-exposure time periods with
post-exposure time periods for unexposed units.
Weights are solved using the following optimisation problems(

ω̂0, ω̂
sdid
)
= argmin
ω0∈R,ω∈Ω

ℓunit (ω0, ω) where

ℓunit (ω0, ω) =

Tpre∑
t=1

(
ω0 +

Nco∑
i=1

ωiYit −
1

Ntr

N∑
i=Nco +1

Yit

)2

+ ζ2Tpre ‖ω‖22,

Ω =

{
ω ∈ RN+ :

Nco∑
i=1

ωi = 1, ωi = N−1tr for all i = Nco + 1, . . . , N

}
,

where R+denotes the positive real line. We set the regularization parameter ζ as

ζ = (NtrTpost)
1/4

σ̂ with σ̂2 =
1

Nco (Tpre − 1)

Nco∑
i=1

Tpre−1∑
t=1

(
∆it − ∆̄

)2
,

where ∆it = Yi(t+1) − Yit, and ∆̄ =
1

Nco (Tpre − 1)

Nco∑
i=1

Tpre−1∑
t=1

∆it.

and
We implement this for the time weights λ̂sdid by solving
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(
λ̂0, λ̂

sdid
)
= argmin
λ0∈R,λ∈Λ

ℓtime (λ0, λ) where

ℓtime (λ0, λ) =

Nco∑
i=1

λ0 + Tpre∑
t=1

λtYit −
1

Tpost

T∑
t=Tpre+1

Yit

2

,

Λ =

λ ∈ RT+ :

Tpre∑
t=1

λt = 1, λt = T−1post for all t = Tpre + 1, . . . , T


1. Compute regularisation parameter ζ

2. Compute unit weights ω̂sdid

3. Compute time weights λ̂sdid

4. Compute the SDID estimator using the following weighted DID regression

(τ̂ sdid, µ̂, α̂, β̂) = argmin
τ,µ,α,β

{
N∑
i=1

T∑
t=1

(Yit − µ− αi − βt −Ditτ)
2ω̂sdidi λ̂sdidt

}
implemented in synthdid::synthdid_estimate

Defn 4.64 (Interactive Fixed Effects (Bai, 2009)).

Yit = δitDit + x
′
itβ + λ′ift + εit

WhereD is the treatment, δit is the heterogeneous treatment effect for unit i at time
t, xit is a p− vector of time-varying controls. ft = [f1t, . . . , frt]

′ is a k × 1 vector of
unknown common factors, λi = [λi1, . . . , λir]

′ is a r × 1 vector of unknown factor
loadings. This factor component nests standard functional forms

Uit︸︷︷︸
Confounders

= λi︸︷︷︸
Loadings

× ft︸︷︷︸
factors

• ft = 1 =⇒ λi × 1 = λi unit FEs

• λi = 1 =⇒ 1× ft = ft time FEs

• f1t = 1, f2t = ξt, λi1 = αi, λi2 = 1 =⇒ ft × λi = αi + ξt two-way FEs.

• ft = t =⇒ λi × ft = λi × t Unit-specific linear time trends

• λi = yi0, ft = αt =⇒ λi × ft = αyi,t−1 − νit Lagged dependent variable

Steps

1. Get initial value of β̂ using within estimator

2. Estimate λ̂i, f̂t using β̂

3. Re-estimate β̂ using λ̂i
′
f̂t

4. Iterate

Drawback - constant effect
Defn 4.65 (Generalized Synthetic Control (Xu, 2017)).
With, NCO control units and NTR treated units, Write DGP for individual unit as

Yi = Di ◦ δi +X′iβ + Fλi + εi ; i ∈ 1, 2, . . . NCO, NCO + 1, . . . , N

Where Yi = [yi1, yi2, . . . , yiT ]
′,Di = [Di1, . . . , DiT ]

′, Xi = [xi1, . . . ,xiT ]
′ is T × k,

F = [f1, . . . , fT ]
′ is T × r.

Stack controls together gives

YCO︸ ︷︷ ︸
T×NCO

= XCO︸ ︷︷ ︸
T×NCO×p

β︸︷︷︸
p×1

+ F︸︷︷︸
T×NCO

′
ΛCO︸ ︷︷ ︸
NCO×r

+εCO

GSC for treatment effects is an out-of-sample prediction method: the treatment
effect for unit i at time t is the difference between teh actual outcome and its esti-
mated coutnerfactual δ̂it = Yit(1)− Ŷit(0), where Ŷit(0) is imputed in three steps.

1. Estimate an IFE model using only the control group data and estimate
β̂, F̂, Λ̂CO

β̂, F̂, Λ̂CO = argmin
β̃,F̃,Λ̃

∑
i∈C

(Yi −Xiβ̃ − F̃Λ̃i)
′(Yi −Xiβ̃ − F̃Λ̃i)

s.t. F̃′F̃ = Ir; Λ̃′COΛ̃CO = Diagonal

2. Estimate Factor loadings for each treatedunit byminimisingmean-squared
error of the predicted treated outcome in pretreatment periods

Λ̂i = argmin
Λ̃i

(Y0
i −X0

i β̂ − F̂0Λ̃i)
′(Y0

i −X0
i β̂ − F̂0Λ̃i)

′

=
(
F̂0′F̂0

)−1
F̂0′(Y0

i −X0
i β̂) i ∈ T

where 0 superscripts denote the pretreatment periods.
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3. Calculate Treated Counterfactuals based on β̂, F̂, Λ̂i

Ŷit(0) = x
′
itβ̂ + λ̂′if̂t ; i ∈ T ; t > T0

Choose the number of factors r by cross-validation. Implemented in gsynth.

4.6.9 Dynamic Treatment Effects
We may want to estimate the effects of treatment sequences (‘time-varying expo-
sures’), as inmedical settings (Robins 1986, Robins, Hernan, andBrumback (2000)).

2 period example Consider a setting with t = 1, 2 and corresponding outcomes
Yt and treatments Dt, where the treatment takes on values d1, d2 ∈ {0, 1, . . . , J},
and baseline covariates X0 and covariates at the end of the first period X1.
Letd2 := (d1, d2) ∈ {0, 1, . . . , J}×{0, 1, . . . , J}. Accordingly, Y2(d2) is the potential
outcome realised when treatment is set to sequence d2. The ATE (contrast) two
distinct treatment sequences d2 vs d′2 is

∆(d2,d
′
2) := E [Y2(d2)− Y2(d′2)]

Estimating this quantity requires a sequential selection on observables assumption

Y2(d2) ⊥⊥ D1|X0 and Y2(d2) ⊥⊥ D2|D1,X0,X1, for d1, d2 ∈ {0, 1, . . . J}
Pr (D1 = d1|X0) > 0 and Pr (D2 = d2|D1,X0,X1) > 0

Under these assumptions, dynamic treatment effects can be estimated based on
nested conditional means regressions

∆snmm(d2,d
′
2) := E [E [E [Y2|d2,X0,X1] |d1,X0]− E [E [Y2|d′2,X0,X1] |d′1,X0]]

where d2 = (d1, d2) and d′2 = (d′1, d
′
2) denote distinct treatment sequences.

or an IPW estimator

∆ipw(d2,d
′
2) := E

[
Y · 1D1=d11D2=d2

pd1(X0)pd2(D1,X0,X1)
−

Y · 1D1=d′1
1D2=d′2

pd
′
1(X0)pd

′
2(D1,X0,X1)

−
]

where pd1(X0) and pd2 are propensity scores in the two periods.
Finally, a double robust estimator is

∆dr(d2,d
′
2) = E

[
ψd2 − ψd′

2

]
where ψd2 =

1D1=d1 · 1D2=d2 ·
(
Y2 − µY2(d2,X1)

)
pd1(X0)pd2(D1,X0,X1)

+
1D1=d1 ·

(
µY2(d2,X1)− νY2(d2,X0)

)
pd1(X0)

+ νY2(d2,X0)

where

µY2(d2,X0,X1) = E [Y2|D2 = d2,X0,X1] and
νY2(d2,X0) = E [E [Y2|d′2,X0,X1] |D1 = d′1,X0]

are (nested) conditional mean outcomes.
If we assume thatD2 is conditionally independent of potential outcomes given pre-
treatment covariates X0 and D1 (implying that post-treatment X1 aren’t required
to control for confounders jointly affecting the second treatment and the outcome).
In this case, the second part of the first SOO assumption can be strengthened to
Y (d2) ⊥⊥ D2|D1,X1. This simplifies

ψd2 =
1D1=d1 · 1D2=d2 ·

(
Y2 − µY2(d2,X0)

)
pd1(X0)pd2(d1,X0)

+ µY2(d2,X0)

implemented in causalweight::dyntreatDML.

Generalisation to arbitrary panels (Blackwell and Glynn, 2018; Hernán, Brum-
back, and Robins, 2001)
LetDit denote treatment status at time t, and collect them into a t− vector for each
unit to form a Treatment History Di := (Di1, Di2, . . . , DiT ). A partial treatment
history up to time t is denoted Di,1:t. Time varying covariates are arranged anal-
ogously Xit,Xit,Xi,1:t.
Potential outcomes are defined on treatment histories and rely on the standard con-
sistency assumption / SUTVA, which assumes that the potential outcome for the
same observed history Yit := Yit(d1:t) when Di,1:t = d1:t. This generates 2t po-
tential outcomes for the outcome in period t, which permits many hypothetical
comparisons.
The estimand typically of interest the average causal effect of a treatment history

τ(d1:t,d
′
1:t) := E [Yit(d1:t)− Yit(d′1:t)]

Definepotential outcomes just intervening on the last j periods asYit(Di,1:t−j−1,dt−j:t),
which is the ‘marginal’ potential outcome if the treatment history runs its natural
course up to t− j − 1 and set the last j lags to dt−j:t.
This allows us to define a contemporaneous treatment effect (CET)
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τc(t) = E [Yit(Di,1:t−1, 1)− Yit(Di,1:t−1, 0)] = E [Yit(1)− Yit(0)]

The j−step lagged effect is defined analogously
τl(t, j) := E [Yit(Di,1:t−j−1, 1,0j)− Yit(Di,1:t−j−1, 0,0j)]

and the step response function (SRF) describes how this effect varies by time period
and distance between the shift and the outcome

τs(t, j) = E [Yit(1j)− Yit(0j)]

These effects are (clunkily) parametrised in an autoregressive distributed-lag (ADL)
models of the form

Yit = β0 + αYi,t−1 + β1Dit + β2Di,t−1 + εit

with assumption εit ⊥⊥ Di,s ∀t, s. This implies the following form for potential
outcomes

Yit(d1:t) = β0 + αYi,t−1(d1:t−1) + β1Dit + β2Di,t−1 + εit

hence, changes in dt−1 can have both a direct and indirect effect on Yit.

Identification Assumption 2 (Baseline Randomisation).

{Yit(d1:t) : t = 1, . . . , T} ⊥⊥ Di,1:t|Xi,0

This relates to linear panel models of the form

Yit = β0 + β1Dit + β2Di,t−1 + ηit

where strict exogeneity E [ηit|Di,1:T ] = E [ηit] = 0 is assumed.

Identification Assumption 3 (Sequential Ignorability).
For every treatment history d1:T and period t,

{Yis(d1:s) : s = 1, . . . , T} ⊥⊥ Di,1:t|Vit

where Vit is a set of covariates such as {Yi,t−1, Di,t−1,Xit}.
This relates to sequential exogeneity in panel models

E [εit|Di,1:t,Xi,1:tYi,1:t−1] = E [εit|Dit,Vit] = 0

Under sequential ignorability, an ADL approach would be to write the outcome
regression with time-varying covariates

Yit = β0 + αYi,t−1 + β1Dit + β2Di,t−1 +X′itδ + εit

This generates post-treatment bias because Xit may be affected by Di,1:t−1.

Defn 4.66 (Structural Nested Mean Models (SNMM)).
Define the impulse response functions (‘blip-down’ functions) as

bt(d1:t, j) := E [Yit(d1:t−j ,0j)− Yit(d1:t−j−1,0j+1)|D1:t−j = d1:t−j ]

which is the effect of a change from 0 to dt−j in terms of the treatment on the
outcome at time t, conditional on treatment history up to time t− j.
These functions are parametrised as a function of lag length

bt(d1:t, j;γ) = γ1jdt−j + γ2jdt−jdt−j−1 . . .

This then allows us to construct blipped-down / demediated outcomes

Ỹ jit = Yit −
j−1∑
s=1

γsDi,t−s

Intuitively, this transformation subtracts off the effects of j lags of treatment, creat-
ing an estimate of the counterfactual level of the outcome at time t if the treatment
had been set to 0 for j periods before t. Under sequential ignorability, the trans-
formed outcome Ỹ jit has the same expectation as the counterfactual Yit(d1:t−j ,0j),
and can be used to construct Ỹ j+1

it by modelling the relationship between Ỹ jit and
Di,t−j to estimate the lagged effect for j + 1. This is recursive, hence the ‘nested’.
Sequential g-estimation can be used to estimate effects. Suppose we’re interested
in the contemporaneous effect and the first-lagged effect and we adopt an impulse
response function bt(d1:t,j;γ) = γjdt−j for both these effects. We assume sequential
ignorability conditional on Vit := {Di,t−1, Yi,t−1,Xit}. Sequential g-estimation
proceeds as follows

1. For j = 0 regress the un-transformed outcome on {Dit, Di,t−1, Yi,t−1,Xit}
as in an ADL model. If this is correctly specified, we estimate the blip-down
parameter γ0 (contemporaneous effect) correctly.

2. We use γ̂0 to construct the one-lag blipped-down outcome Ŷ 1
it = Yit − γ̂0Dit

3. This blipped-downoutcomewould be regressed on {Di,t−1, Di,t−2, Yi,t−2,Xi,t−1}
to estimate the next blip-down parameter γ1 (the first lagged effect)

4. (repeat for further lags, standard error estimated via block-boostrap)

Defn 4.67 (Marginal Structural Models).
To specify a marginal structural model, we choose a potential outcome lag length
and write a model for the marginal model of those potential outcomes in terms of
treatment history
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E [Yit(d1:t)] = g(d1:t;β)

for example, for a contemporaneous and two lagged effects, wewriteE [Yit(dt−2:t)] =
g(dt−2:t;β), marginalising over further lags and covariates.
The average causal effect is then

τmsm := g(d1:t;β)− g(d′1:t;β)

This motivates an IPW approach where weights are constructed as

ŜWit :=

t∏
t=1

P̂(Dit|Di,t−1, γ̂)

P̂(Dit|Xit, Yi,t−1, Di,t−1, α̂)

where the denominator of each term is the product of the predicted probability of
observing unit i’s observed treatment status conditional on covariates that satisfy
conditional ignorability. Multiplying this over time produces the probability of
seeing this unit’s treatment history conditional on the past.
These weights can be used in a regression of the form

g(dt−t:2,β) = β0 + β1dt + β2dt−1 + β3dt−2

4.7 Decomposition Methods
Basic idea of decomposition

FM (y)− FF (y) =
∫

FM (y|x)fM (x)dx−
∫

FF (y|x)fF (x)dx

=

∫
[FM (y|x)− FF (y|x)]fM (x)dx+

∫
FM (y|x)[fM (x)− fF (x)]dx

4.7.1 Oaxaca-Blinder Decomposition

yA − yB = x′AβA − x′BβB = x′B(βA − βB) + (xA − xB)′βA
We consider two groups, A and B, and an outcome Y , and a vector of predictors
x. Main question for decomposition is how much of the mean outcome differ-
ence [or another summary statistic / quantile of CDF] is accounted for by group
differences in the predictors x. The Oaxaca-Blinder decomposition refers to the
following decompositions:

R = E [YA]− E [YB ] = E [xA]
′
βA − E [xB]

′
βB

Aggregate Decomposition
= (E [xA]− E [xB ])

′βA︸ ︷︷ ︸
Explained

+E [xB ]
′
(βA − βB)︸ ︷︷ ︸

Unexplained

Decomposition from B’s PoV (Threefold Decomposition)

= {E [xA]− E [xB ]}′ βB︸ ︷︷ ︸
endowments

+

discrimination︷ ︸︸ ︷
E [xB ]

′
(βA − βB)+ (E [xA]− E [xB ])

′(βA − βB)︸ ︷︷ ︸
interaction

Stipulating a non-discriminatory coefficient β∗(Twofold Decomposition)

= {E [xA]− E [xB ]}′ β∗︸ ︷︷ ︸
Explained

+

Unexplained︷ ︸︸ ︷{
E [xA]

′
(βA − β∗) + E [xB ]

′
(β∗ − βB)

}︸ ︷︷ ︸
E[xA]′ δA︸︷︷︸

:=βA−β∗

−E[xB ]′δB

Detailed Decomposition
To examine the ‘contribution’ of each variable to the observed gap, estimate

yi =

k∑
j=1

xjiβj +

k∑
j=1

dixjiδj + εi ; di :=
{
1 if i ∈ B
0 otherwise

so, βj is the coefficient for group A, and βj + δj is the coefficient for group B. A
t-test for δj is used to establish whether a variable is a source of the observed gap.
The contribution of each variable to th explained part is

c∗k =
(xAk − xBk )β̂Ak
(xA − xB)β̂A

Defn 4.68 (Oaxaca-Blinder-Kitagawa as a Regression imputation estimator).
Let outcome models be linear Yi = Xiβ1 + ν1i if Wi = 1 and Yi = Xiβ0 +
ν0i if Wi = 0 where E [ν1i] = E [ν]0i = 0.
The difference in means decomposition is
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Figure 7: Oaxaca decomposition where D1 is the ‘discrimination’ piece (Bazen,
2011). D1 6= D2 generically unless two groups have the same slope (which is
practically never the case)

E [Y |W = 1]− E [Y |W = 0] = E [X|W = 0]β1 − E [X|W = 0]β0

= E [X|W = 1] (β1 − β0) + (E [X|W = 1]− E [X|W = 0])β0

= E
[
Y 1 − Y 0|W = 1

]
+ E

[
Y 0|W = 1

]
− E

[
Y 0|W = 0

]
= τPATT︸ ︷︷ ︸

Unexplained component

+E
[
Y 0|W = 1

]
− E

[
Y 0|W = 0

]︸ ︷︷ ︸
Explained Component

Sloczynski: SATT can be estimated by running the following regression:

Yi = α+ τWi +X′iβ + ψWi(Xi −X1) + εi

Kline (2011) shows that this is ‘doubly robust’ and equivalent to a reweighting
estimator based on the weights

w(x) :=
dFx|W=1(x)

dFx|W=0(x)
=

1− ρ
ρ

e(x)

1− e(x)

where ρ := Pr (Wi = 0) is the treated share.

4.7.2 Distributional Regression
Section based on Chernozhukov, Fernández-Val, and Melly (2013). Reference pa-
pers:

• https://arxiv.org/abs/0904.0951

• https://ocw.mit.edu/courses/economics/14-382-econometrics-spring-2017/lecture-
notes/MIT14_382S17_lec7.pdf

• https://cran.r-project.org/web/packages/Counterfactual/vignettes/vignette.pdf

Let FXk denote the distribution of job-relevant characteristics (education, experi-
ence, etc.) for men when k = m and for women when k = w. Let FYj |Xj denote
the conditional distribution of wages given job-relevant characteristics for group
j ∈ {w,m}, which describes the stochastic wage schedule that a given group faces.
Using these distributions, we can constructionF<j|k>, the distribution ofwages for
group k facing group j’s wage schedule as

F⟨j|k⟩(y) =

∫
FYj |Xj (y|x)dFXk(x), y ∈ T

For example, F⟨Y0|X0⟩ is the distribution of wages for men who face men’s wage
schedule, and FY1|Y1

is the distribution of wages for women who face women’s
wage schedule, which are both observed distributions. We can also study F⟨0|1⟩,

← ToC 77

https://arxiv.org/abs/0904.0951
https://ocw.mit.edu/courses/economics/14-382-econometrics-spring-2017/lecture-notes/MIT14_382S17_lec7.pdf
https://ocw.mit.edu/courses/economics/14-382-econometrics-spring-2017/lecture-notes/MIT14_382S17_lec7.pdf
https://cran.r-project.org/web/packages/Counterfactual/vignettes/vignette.pdf


the counterfactual distribution of wage for women if they would face the men’s
wage schedule FY0|X0

.

FY ⟨0|1⟩(y) ≡
∫
X1

FY0|X0
(y|x)dFX1

(x)

is the counterfactual distribution constructed by integrating the conditional dis-
tribution of wages for men with respect to the distribution of characteristics for
women.
We can Interpret FY ⟨0|1⟩ as the distribution of wages for women in the absence of
gender discrimination, although it is predictive and cannot be interpreted as causal
without further (strong) assumptions.

F←Y ⟨1|1⟩ − F
←
Y ⟨0|0⟩ =

[
F←Y ⟨1|1⟩ − F

←
Y ⟨0|1⟩

]
︸ ︷︷ ︸

structure

+
[
F←Y ⟨0|1⟩ − F

←
Y ⟨0|0⟩

]
︸ ︷︷ ︸

composition

Assumptions for Causal Interpretation
Under conditional exogeneity / selection on observables, CE can be interpreted as
causal effects. Sec 2.3 in ECTA 2013 paper spells this out in detail. Let (Y ∗j : j ∈ J )
be the vector of potential outcomes for various values of a policy j ∈ J , and X be
a vector of covariates. Let J denote the random variable that describes the realised
policy and let Y := Y ∗J be denote the realised outcome variable. When J is not
randomly assigned, the distribution of Y |J = j may differ from the distribution
of Y ∗j . However, under conditional exogeneity, the distribution of Y |X, J = j and
Y ∗j |X agree, and the observed conditional distributions have a causal interpreta-
tion, and so do counterfactual distributions generated from these conditionals by
integrating out X .
Let FY ∗

j |J(y|k) denote the distribution of the potential outcome Y ∗j in the popu-
lation with J = k ∈ J . The causal effect of exogenously changing the policy
from l to j on the distribution of the potential outcome in the population with the
realised policy J = k is FY ∗

j |J(y|k) − FY ∗
l |J(y|k). Under conditional exogeneity,

for any j, k,∈ J , the counterfactual distribution FY ⟨j|k⟩(y) exactly corresponds to
FY ∗

j |J(y|k), and hence the causal effect of exogenously changing the policy from
l to j in the population with J = k corresponds to the CE of changing the condi-
tional distribution from l to j, that is

FY ∗
j |J(y|k)− FY ∗

l |J(y|k) = FY ⟨j|k⟩(y)− FY ⟨l|k⟩(y)

Conditional exogeneity assumption for this section:

(Y ∗j : j ∈ J q J |X

K groups that partition the sample. For each population k, ∃Xk ∈ Rd and outcome
Yk. Covariate vector is observable in all populations, but the otucome is only ob-
servatble in populations j ∈ J ⊂ K. Let FXk denote the covariate distribution
in the population k ∈ K, and FYj |Xj and QYj |Xj denote the conditional distribu-

tion and quantile functions in population j ∈ J . We denote the support of Xk by
Xk ⊂ Rdx and the region of interest Yj by Yj ⊆ R. We refer to j as the reference
population and k as the counterfactual population.
The reference and counterfactual populations in the wage example correspond to
different groups. We can also generate coutnerfactual populations by artificially
transforming a reference population. We can think ofXk as being created through
a known transformation of Xj :

Xk = gk(Xj), where gk : Xj→Xk

Counterfactual distribution and quantile functions are formed by combining the
conditional distribution in population j with the covariate distribution in popula-
tion k, namely:

FY ⟨j|k⟩(y) ≡
∫
Xk
FYj |Xj (y|x)dFXk(x), y ∈ Y|

QY ⟨j|k⟩(τ) ≡ F←Y ⟨j|k⟩(τ), τ ∈ (0, 1)

where (j, k) ∈ JK and F←Y ⟨j|k⟩(τ) = inf{y ∈ Yj : FY ⟨j|k⟩(y) ≥ τ} is the left-inverse
function of FY ⟨j|k⟩.
Themain interest lies in the quantile effect (QE) function, defined as the difference
of the two counterfactual quantile functions over a set of quantile indexes T ⊂
(0, 1)

∆(τ) = QY ⟨j|k⟩(τ)−QY ⟨j|j⟩(τ), τ ∈ T

Estimation of Conditional distribution

FYj |Xj (y|x) ≡
∫
(0,1)

1{QYj |XJ (u|x) ≤ y}du

• method = "qr" default implements

F̂Yj |Xj (y|x) = ε+

∫
(ϵ,1−ϵ)

1{x′β̂j(u) ≤ y}du

where ε is a small constant that avoids estimation of tail quantiles, and β̂(u) is the
quantile regression estimator

β̂j(u) = argminb∈Rdx
nj∑
i=1

[u− 1{Yji ≤ X ′jib}][Yji −X ′jib]

• method = "logit" implements the distribution regression estimator of the
conditional distribution with the logistic link function
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F̂Yj |Xj (y|x) = Λ(x′β̂(y))

where Λ is the standard logistic CDF and β̂(y) is the distribution regression esti-
mator

β̂(y) ≡ argmaxb∈Rdx
nj∑
i=1

[1{Yji ≤ y} log Λ(X ′ijb) + 1{Yij > y} log Λ(−X ′jib)]

4.8 Causal Directed Acyclic Graphs
based onhttp://www.stat.cmu.edu/ cshalizi/350/lectures/31/lecture-31.pdf ,Pearl
(2009), Morgan and Winship (2014), Cunningham (2020).
For an undirected graph between X,Y, and Z, there are four possible directed
graphs:

• X → Y → Z (a chain)

• X ← Y ← Z (another chain)

• X ← Y → Z (a fork on Y)

• X → Y ← Z (collision on Y)

With the fork or either chain, we have X ⊥⊥ Z|Y . However, With a collider, X 6⊥⊥
Z|Y .
Causal effect of X on Y is written Pr (Y | do(X = x)). Basic idea is condition on
adequate controls (i.e. not every observed control). Here, controlling for U is un-
necessary and would bias the estimate of Pr (Y | do(X = x)).

A YU

4.8.1 Basics / Terminology

Defn 4.69 (Backdoor Path; Confounder≈ Omitted Variable).
A backdoor path is a non-causal path from A to Y . They are ‘backdoor’ because
they flow backwards out of A: all of these paths point into A.

U

A Y
Here, A ← U → Y , where U is a common cause for treatment and the outcome.
So, U is a confounder.

A worse problem arises with the following DAG, where dotted lines indecate that
U is unobserved. Because U is unobserved, this backdoor path is open.

U

A Y

Defn 4.70 (Collider).
U

YA
Colliders, when left alone, always close a backdoor path. Conditioning on them,
however, opens a backdoor path, and yields biased estimates of the causal effect
of A on Y .

• Common colliders are post-treatment controls A→ C ← Y

• Another insidious type of collider is of the form A ← · · · → C ← · · · → Y ,
where C is typically a lagged outcome.

Defn 4.71 (Back Door Criterion).
Vector of measured controls S satisfies the backdoor criterion if (i) S blocks every
path from A to Y that has an arrow into A (i.e. blocks the back door) and (ii) no
node in S is a descendent of A. Then,

Pr (Y |do(A = a)) =
∑
s

Pr (Y |A = a, S = s)Pr (S = s)

Which is the same as the subclassification estimator. The conditional Expectation
E [Y |A = a, S = s] can be computed using a nonparametric regression / ML algo-
rithm of choice.
Defn 4.72 (Frontdoor Criterion).
M satisfies the frontdoor criterion if (i)M blocks all directed paths from A to Y ,
(ii) there are no unblocked back-door paths from A to M , and (iii) A blocks all
backdoor paths fromM to Y .
Then,

Pr (Y |do(A)) =
∑
M

Pr (M = m|A = a)︸ ︷︷ ︸
Pr (M |do(A))

∑
a′

Pr (Y |A = a′,M =M)Pr(A = a′)︸ ︷︷ ︸
Pr (Y |M,do(A))
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A M y

U

γ δ

The above DAG in words

1. The only way A influences Y is through M , so there is no arrow bypassing
M between X and Y . In other words,M intercepts all directed paths from A to
Y .

2. Relationship between A andM is not confounded by unobservables - i.e. no
back-door paths between A and M.

3. Conditional on A, the relationship betweenM and Y is not confounded, i.e.
every backdoor path betweenM and Y has to be blocked by A.

With a single mediator M that is not caused by U , the ATE can be estimated by
multiplying estimates γ̂ × δ̂ (Bellemare, Bloem, and Wexler, 2020).
The FDC estimates the ATE because it decomposes a reduced-form relationship
that is not causally identified into two causally identified relationships.
Implementation through linear regressions:

Mi = κ+ γAi + ωi (4)
Yi = α+ δMi + ψAi + νi (5)

Since E [M |A] = γ is identified, Cov [ωiAi] = 0 in 4. Cov [M,ν] = 0 in 5. Assume
ψ = 0. Then, write

τFDC = E [Y |do(A)] = δ̂ × γ̂

4.8.2 Mediation Analysis
(Imai, Keele, and Yamamoto, 2010) Pearl (2001), Robins(2003)
Consider SRSwherewe observe (Di,Mi,Xi, Yi), whereDi is a treatment indicator,
Mi is a mediator, Xi is a vector of pre-treatment controls, and Yi is the outcome.
The supports areM,X ,Y respectively. Xs are partialled out.
LetMi(d) denote potential value for the mediator under treatment status Di = d.
The outcome Yi(d,m) is the potential outcome for unit i when Di = d,Mi = m.
The observed variables can be written asMi =Mi(Di), Yi = Yi(Di,Mi(Di)).

M

YD
d, a used interchangeably for treatment.

Assumption 7 (Sequential Unconfoundedness of Treatment, Mediator).

{Yi(d,m),Mi(d)} ⊥⊥ Di|Xi = x Random assignment of D (6)
Yi(d,m) ⊥⊥Mi(d)|Di, Xi = x No outcome mediation (7)

∀d′, d ∈ {0, 1} and (m,x) ∈M×X
This requires the treatment to be conditionally independent of the potentialmedia-
tor states and outcomes given X, ruling out unobserved confounders jointly affect-
ing the treatment on the one hand and the mediator and/or the outcome on the
other hand conditional on the covariates. (5) postulates independence between
the counterfactual outcome and mediator values ‘across-worlds’.
Effectively, NeedM to be randomly assigned (approx).

Defn 4.73 (Natural Indirect Effect).

NIEi(d) ≡ δi(d) := Yi(d,Mi(1))− Yi(d,Mi(0))

Difference in Y holding treatment status constant, and varying the mediator. Sample
Average: Average Causal Mediation Effect (ACME)

δ(d) := E [δi(d)] = E [Yi(d,Mi(1))− Yi(d,Mi(0))]

Defn 4.74 (Natural Direct Effect).

NDEi(d) ≡ θi(d) := Yi(1,Mi(d))− Yi(0,Mi(d))

Difference in Y holding mediator constant, and varying the treatment.

Defn 4.75 (Total Causal Effect / Treatment Effect Decomposition).

← ToC 80



τi = Yi(1,Mi(1))− Yi(0,Mi(0))

= Yi(1,Mi(1))− Y (0,Mi(1))︸ ︷︷ ︸
θi(1)

−Yi(0,Mi(1))− Y (0,Mi(0))︸ ︷︷ ︸
δi(0)

= Yi(1,Mi(0))− Y (0,Mi(0))︸ ︷︷ ︸
θi(0)

−Yi(1,Mi(1))− Y (1,Mi(0))︸ ︷︷ ︸
δi(1)

= δi(d)︸ ︷︷ ︸
indirect effect

+ θi(1− d)︸ ︷︷ ︸
direct effect

= NDE + NIE defined on opposite treatment states

Defn 4.76 (Controlled Direct Effect (Acharya, Blackwell, and Sen, 2016)).
NDE conditions on potential mediator effects.For CDE, we set mediator at a pre-
scribed valuem.

CDEi(d, d′,m) = Yi(d,m)− Yi(d′,m) m ∈M

Difference between NDE and CDE is what value mediator is fixed at. Restated:

ψi(d, d
′,m) = Yi(d,m)− Yi(d′,m)

Effect of changing the treatment while fixing the value of the mediator at some levelm.

ψ(d, d′,m) = E [Yi(d,m)− Yi(d′,m)]

Theorem 4.28 (ATE decomposition (VanderWeele and Tchetgen-Tchetgen(2014))).
Decomposing total effect with binary mediator

τ(d, d′) = ACDE(d, d′, 0)︸ ︷︷ ︸
Direct Effect

+ANIE(d, d′)︸ ︷︷ ︸
Indirect Effect

+ E [M(a′)[CDE(d, d′, 1)− CDE(d, d′, 0)]]︸ ︷︷ ︸
Interaction

Fact 4.29 (Parametric Setup for ACME estimation).
Assume linear models for mediatorM = ψT + Um and Y = βT + γM + UY .
Then fit the following regressions

Yi = α1 + τ︸︷︷︸
Total effect

Di + εi1 (8)

Mi = α2 + ψDi + εi2 (9)
Yi = α3 + β︸︷︷︸

Direct Effect

Di + γMi + εi3 (10)

Baron and Kenny (1986) suggest testing τ = ψ = β = 0. If all nulls rejected,
Mediation effect δ = ψγ. Equivalently, mediation effect is τ − β = ψ × γ. Estimate
variance using bootstrap / delta method.

Fact 4.30 (Semiparametric Estimation).
Assume selection on observables w.r.t. D, M.
Huber(2014)
Average direct effect identified by

θ(d) = E
[(

Y ·D
Pr (D = 1|M,X)

− Y · (1−D)

1−Pr (D = 1|M,X)

)
· Pr ((D = d|M,X))

Pr (D = d|X)

]
Average Indirect Effect identified by

δ(d) = E
[

Y · 1D=d

Pr (D = d|M,X)

(
Pr (D = 1|M,X)

Pr (D = 1)
− 1−Pr (D = 1|M,X)

1−Pr (D = 1|X)

)]
implemented in causalweight::medweight.
https://cran.r-project.org/web/packages/causalweight/vignettes/bodory-huber.pdf

← ToC 81

https://cran.r-project.org/web/packages/causalweight/vignettes/bodory-huber.pdf


5 Semiparametrics and Nonparametrics
based on Tsiatis (2007), Wasserman (2006), and Kennedy (2015)

5.1 Semiparametric Theory
Observations Z1, . . . , Zn that take values in a measurable space (Z,B) with dis-
tribution P0 . A statistical model P is a collection of probability measures on the
sample space, which is assumed to contain the data distribution P0.
The general goal is estimation and inference for some target parameterψ0 = ψ(P0) ∈
Rp where ψ = ψ(P ) can be viewed

• A nonparametric model P is a collection of all probability distributions
• A parametric model is a model that can be smoothly indexed by a Euclidian

vector θ ∈ Rq with ψ ⊆ θ.
• A semiparametric model is one that contains both parametric and nonpara-

metric parts.

5.1.1 Empirical Processes Background
A stochastic process is a collection of random variables {X(t), t ∈ T } on the same
probability space indexed by an arbitrary index set T . An empirical process is a
stochastic process based on a random sample.
Defn 5.1 (empirical distribution function).

Fn(t) =
1

n

n∑
i=1

1Xi≤t

Fn(t) is unbiased and has variance

V
[
F̂n(t)

]
=

1

n2
V
[
nF̂n(t)

]
=

F(x)(1− F(x))
n

This can be generalised to an empiricalmeasure over a random sampleX1, . . . , Xn

of independent draws from a probability measure P on an arbitrary sample space
X . The empirical measure is defined as

Pn =
1

n

n∑
i=1

δXi

where δx is a dirac delta that assigns mass 1 at x and 0 otherwise.
For a measurable function f : X 7→ R, we denote Pnf = 1

n

∑n
i=1 f(Xi).

SettingX = R,Fn can be re-expressed as the empirical process {Pnf, f ∈ F} where F :=
{1x≤t, t ∈ R}.

Defn 5.2 (Empirical Process).
Given an empirical distribution Fn, the corresponding empirical process is the
rescaled gap

Zn(x) =
√
n(Fn(x)− F(x))

Theorem 5.1 (Glivenko Cantelli Theorem).
the Kolmogorov-Smirnov statistic Dn

Dn := ‖Fn − F‖∞ ≡ sup
t∈R
|Fn(t)− F(t)| a.s.→ 0

and
‖Fn − F‖∞ = Op (log n/n) = Op(

√
1/n)

A class of F measureable functions f : X 7→ R is said to be a P−Glivenko-Cantelli
class if

sup
f∈F
|Pnf − Pf |

a.s.→ 0 ; Pf :=

∫
X
f(x)P (dx)

Theorem 5.2 (Dvoretzky-Kiefer Wolfowitz (DKW) inequality).

∀ε > 0,P
[
sup
x

∣∣∣F(x)− F̂n(x)
∣∣∣ > ε

]
≤ 2 exp(−2nε2)

This allows us to construct a confidence set. For example, let ε2n = log(2/α)
2n . The

nonparametric DKW confidence band is

(F̂n − εn, F̂n + εn)

Defn 5.3 (Statistical Functional and Plug-in Estimator).
A statistical functional T (F) is any function of F. Examples include the mean, µ :=∫
xdF(x), variance σ2 := (x− µ)dF(x), and the medianm = F−1(1/2)

A plug-in estimator of θ =: T (F) is defined by θ̂n := T (F̂n).

Plugin estimator for a linear functional A functional of the form
∫
a(x)dF(x) is

called a linear functional. A plug-in estimator for it is

T (F̂n) =
∫
a(x)dF̂n(x) =

1

n

n∑
i=1

a(Xi)

Defn 5.4 (Gateaux derivative).
is defined as
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LF(x) = lim
ε→0

θ((1− ε)F+ εδx)− θ(F)
ε

The empirical influence function uses the empirical distribution function

φ(x) = lim
ε→0

θ̂(

=:F̂ϵ(x)︷ ︸︸ ︷
(1− ε)F̂n + εδx)− θ̂(F̂)

ε

The influence function LF(x) behaves like the score function in parametric estima-
tion because of the MLE analogues

• LF(x)dF(x) = 0

• V
[
T (F̂n)

]
≈
∫
L2
F(x)dF(x)/n.

Defn 5.5 (Hadamard Differentiability).
Gateaux differentiability is too week to ensure that functionals converge T (F̂) →
T (F).
A function T is Hadamard differentiable if, for any sequence ε→0, andDn satisfy-
ing supx |Dn(x)−D(x)|→0, we have

T (F+ εnDn)− T (F)
εn

→LF(T ;D)

If T is Hadamard differentiable, T (F̂) p→ T (F)

Functional Delta Method If T (F) is a linear functional,∫
LF(x)dG(x) = T (G)− T (F)

which is similar to the fundamental theorem of calculus, but for functional calcu-
lus.

√
n
(
T (F̂)− T (F)

)
d→N

0,

∫
L2(x)dF(x)︸ ︷︷ ︸

=:γ2


This allows us to construct standard errors as τ̂ /√n

5.1.2 Influence Functions
We are concerned with the statistical model where Z1, . . . , Zn are random vectors
and the density of Z is assumed to belong to the class {pZ(z;θ),θ ∈ Ω}. The pa-

rameter θ can be decomposed into (β⊤,η⊤)⊤, where βq×1 is the parameter of in-
terest and η is the nuisance parameter (which may be finite or infinite dimensional).
For simplicity, assume ηr×1, so the dimension of dim(θ) = p = q + r.

Defn 5.6 (influence function).
Reasonable estimators β̂n of β are asymptotically linear, such that there exists a ran-
dom vector φq×1(Z) such that E [φ(Z)] = 0q×1 and E

[
φ(Z)φ(Z)⊤

]
is finite and

non-singular.

√
n(β̂n − β) =

1√
n

n∑
i=1

φ(Zi) + op(1)

Equivalently,

β̂n − β0 =
1

n

n∑
i=1

φ(Z) + op(1/
√
n)

where φ has mean zero (E [φ(Z)] = 0) and finite variance (E
[
φ(Z)⊗2

]
<∞). This

is called the influence function because φ(Zi) is the influence of the i−th observa-
tion on β̂n.
By CLT, an estimator β̂ with influence function φ is asymptotically normal with

1√
n

n∑
i=1

φ(Zi)
d→N

(
0q×1,E

[
φφ⊤

])
By Slutsky’s theorem, the corresponding estimator

√
n(β̂n − β0)

d→N
(
0q×1,E

[
φφ⊤

])
Theorem 5.3 (Influence function uniqueness).
Any asymptotically linear estimator has a unique influence function (Tsiatis, 2007,
chapter 3)

Example 5.4 (Examples of Influence functions).
Consider a setting where Z1, . . . , Zn ∼ N

(
µ, σ2

)
. The maximum likelihood esti-

mators are µ̂n = 1
n

∑n
i=1 Zi and σ̂2

n = 1
n

∑n
i=1(Zi − µ̂n)2. They are RAL because

√
n(µ̂n − µ0) =

1√
n

n∑
i=1

(Zi − µ0)︸ ︷︷ ︸
φ(Zi)

Similarly,
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√
n(σ̂2

n − σ2
0) = 1/

√
n

n∑
i=1

{
(Zi − µ0)

2 − σ2
0

}︸ ︷︷ ︸
φ(Zi)

+
√
n(µ̂n − µ0)︸ ︷︷ ︸

op(1)

covariance: φ(x) = (x− E [X])(y − E [y])− Cov [X,Y ]
linear regression:

φ(x, y) =
x− E [X]

V [X]
{(y − E [Y ])− β(x− E [x])}

M-estimators solve E [g(X, θ)] = 0where g is a score function. The influence func-
tion is

φθ(x) = E [∇θg(X, θ)]−1 g(x, θ)

which nests both MLE and GMM estimators.
https://j-kahn.com/files/influencefunctions.pdf

Theorem 5.5 (Geometry of Regular Asymptotically Linear Estimators).
An estimator β̂n is said to be regular if, for each θ∗,√n(β̂n−β) has a limiting distri-
bution that does not depend on the local DGP. This rules out degenerate estimators
such as the super-efficient Hodges estimator.
Regularity allows us to write Z ∼ pZ(z, θ), θ = (β⊤, η⊤). Now define the score
vector for a single observation

Sθ(z, θ0) =
∂ log pZ(z, θ)

∂θ

∣∣∣∣
θ=θ0

which is the p-dimensional vector of derivatives of the log-likelihood with respect
to the parameters θ. This can further be partitioned

Sθ(Z, θ0) =
{
S⊤β (Z, θ0), S

⊤
η (Z, θ0)

}⊤ where

Sβ(Z, θ0) =
∂ log pZ(z, θ)

∂β

∣∣∣∣q×1
θ=θ0

Sη(Z, θ0) =
∂ log pZ(z, θ)

∂η

∣∣∣∣r×1
θ=θ0

These can be collected into a matrix of partial derivatives

Γ(θ)q×p =
∂β(θ)

∂θ

⊤

Let β̂n be a Regular, Asymptotically Linear (RAL) estimator with influence func-
tion φ(Z). Then, the following hold

E
[
φ(Z)S⊤θ (Z, θ0)

]
= Γ(θ)

E
[
φ(Z)S⊤β (Z, θ0)

]
= Iq×q

E
[
φ(Z)S⊤η (Z, θ0)

]
= 0q×r

Fact 5.6 (Converting an influence function into an estimator).
Let φ be a function satisfying the above RAL conditions, and for each β we have
an estimator η̂n(β) such that√n ‖η̂n(β)− η0‖max is bounded in probability. Define

m(Z;β, η) = φ(Z)− EZ∼p(·;β,η) [φ(Z)]

and let β̂ be the solution of
n∑
i=1

m(Zi;β, η̂n(β)) = 0

then β̂n will be an RAL estimator with influence function φ(Z).

Fact 5.7 (Robust estimators have bounded influence functions.).

Fact 5.8 (Influence Functions and Variance).
If E [φθ(x)] = 0, we can write

Cov [φθ1(x), φθ2(x)] = E [φθ1(x)φθ2(x)]

Say we have an estimate θ̂ from a random sample. We can look at this sample as a
series of ε− contaminations to the true distribution, each ofwhich puts 1

n weight on
the derivative. Then, for large enough N, we can represent the difference between
θ̂ and θ as a Taylor expansion

θ̂ = θ +
1

n

n∑
i=1

φθ(xi) + higher order terms

the higher order terms converge in probability to zero, which implies
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√
n(θ̂ − θ) = 1√

n

n∑
i=1

φθ(xi) + op(1)

Practically, one can compute variances of complicated structural problems by com-
puting the empirical equivalents of influence functions and stacking. Given esti-
mators θ1, . . . , θM and observations i = 1, . . . , N , create matrix with rows corre-
sponding to observations and columns corresponding to estimators

Φ = [φθ1 , . . . , φθN ]N×M

Since the distribution of each estimator is the same as 1√
n

∑n
i=1 φθj (xi), the vari-

ance can be computed as

V =
1

N
(Φ⊤Φ)

Fact 5.9 (M− and Z− estimation).
Distinction from Kosorok (2008)

• approximateMaximisers of data-dependent processes are knownasM-estimators.

• approximateZeroes of data-dependent processes are knownasZ-estimators.
e.g. Un(β) = Pn[X(Y −X ′β)]. Z ⊂M

Defn 5.7 (M-estimator (‘Maximum-likelihood-like’ / Extremum)).
θ̂ is an estimator that maximises a scalar objective function that is a sum ofN sub-
functions

argmax
θ∈Θ

QN (θ) =
1

N

N∑
i=1

q(wi,θ)

MLE is a type of extremum estimator. So is GMM.

5.1.3 Tangent Spaces
Assume target parameter ψ is scalar. Influence functions reside in Hilbert space
L2(P ) of measureable functions g : Z→R with Pg2 =

∫
g2dP = E

[
g(Z)2

]
< ∞

equipped with covariance inner product 〈g1, g2〉 = P 〈g1g2〉.

Defn 5.8 (Tangent Space for parametric models).
the tangent space T for parametric models indexed by the real-valued parameter
θ ∈ Rq+1 is the linear subspace of L2(P ) spanned by the score vector

T =
{
bS⊤θ (Z; θ0) : b ∈ Rq+1

}

where Sθ(Z, θ0) = ∂ log p(z;θ)
∂θ |θ=θ0 is the score-function. If we can decompose θ =

(ψ, η), we can decompose the tangent space as well and write T = Tψ ⊕Tη . In this
formulation, Tη is known as the nuisance tangent space. Influence functions for ψ
reside in the orthogonal complement of the nuisance tangent space denoted by

T ⊥η := {g ∈ L2(P ) : P (gh) = 0 ∀ h ∈ Tη}
= {g ∈ L2(P ) : h−Π(h | Tη), h ∈ L2(P )}

where Π(g|S) denotes projections of g on the space S .

• The subspace of influence functions is the set of elements ϕ ∈ T ⊥η that satisfy
P (ϕSψ) = 1.

• The efficient influence function is that with the smallest covariance P (ϕ2) and
is given by ϕeff = P (S2

eff)
−1Seff

– Seff is the efficient score Seff = Sψ −Π(Sψ|Tη) = Π(Sψ|T ⊥η ).

• All RAL estimators have influence functionsϕ that reside in T ⊥η withP (ϕSψ) =
1

Defn 5.9 (Tangent spaces for semiparametric models).
Aparametric submodelPε is indexed by a real valuedparameter ε (Pε = {Pε : ε ∈ R})
is a set of distributions contained in the larger model P , which also contains the
truth P0 ∈ Pε. A typical example of a parametric submodel is

pε(z) = p0(z) {1 + εg(z)}

where E [g(Z)] = 0 and supz |g(z)| < M, |ε| < 1/M , so pε(z) ≥ 0. The parametric
submodel is sometimes indexed by g such that Pε = Pε,g
The tangent space T for semiparametric models is defined as the closure of the
linear span of scores of the parametric submodels. IoW, we define scores on para-
metric submodels Pε as Sε(z) = ∂ log pε(z)

∂ε |ε=0, and construct parametric submodel
tangent spaces Tε =

{
b⊤Sε(Z) : b ∈ R

}
.

Similarly, the nuisance tangent space Tη is the set of scores in T that do not vary
the target parameter

Tη =

{
g ∈ T :

∂ψ(Pε,g)

∂ε
|ε=0 = 0

}
In nonparametric models, the tangent space is the whole Hilbert space of mean-
zero functions.
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As before, the efficient influence function is the influence function with the small-
est covariance and is defined as the projection ϕeff = Π(ϕ|T ). It can also be de-
fined as the pathwise derivative of the target parameter in the sense that P (ϕSε) =
∂ψ(Pε)
∂ε |ε=0.

Nonparametric Delta Method

T (F̂n)− T (F)
1

n

n∑
i=1

L2(Xi)︸ ︷︷ ︸
τ̂

/
√
n

≈ N (0, 1)

Fact 5.10 (Confidence Bands).
Let F be a class of distribution functions F, let θ be the quantity of interest, and Cn
be a set of possible values of θ which depends on the data X1, . . . , Xn.

• Cn is a finite-sample 1− α confidence set if

inf
F∈F

PF (θ ∈ Cn) ≥ 1− α ∀ n

• Cn is a uniform asymptotic 1− α confidence set if

lim inf
n→∞

inf
F∈F

PF (θ ∈ Cn) ≥ 1− α

• Cn is a pointwise asymptotic 1− α confidence set is

∀F ∈ F lim inf
n→∞

PF (θ ∈ Cn) ≥ 1− α

Finite sample confidence set�Uniform asymptotic confidence sets succ pointwise
asymptotic confidence set.
Informally, a true confidence band comprises of two functions that bracket the c.d.f.
at all points with probability 1 − α. This should be contrasted to the pointwise
bands in common use, which bracket the c.d.f. with probability 1− α at any given
point.

Defn 5.10 (Gaussian Process).
A gaussian process G indexed by a set A is a collection {G(x)}x∈A of Gaussian
random variables such that ∀x1, . . . , xk ∈ A, (G(x1), . . . , G(xk))

′ ∼ MVN. The
function m(x) := E [G(x)] is a mean function and C(x, y) := Cov [G(x), G(y)] is

the covariance function. A centered gaussian process is one whose mean function is
identically zero.

∀x, y ∈ A, E
[
|G(x)−G(y)|2

]
= C(x, x) + C(y, y)− 2C(x, y)

Example 5.11 (Brownian Motion / Wiener Process).
is a centered gaussian process indexed by [0,∞)whose covariance function is given
by

C(s, t) := min(s, t) , s, t ≥ 0

Theorem 5.12 (Donsker Theorem).
Zn → Z ≡ U(F ) ;D(R, ‖·‖∞) where U is a standard Brownian bridge process on
[0, 1], which means it is a zero-mean Gaussian process with covariance function
E [U(s)U(t)] = s ∧ t− st , s, t ∈ [0, 1]
which means for any bounded continuous function g : D(R, ‖·‖∞)→R, we have

E [g(Zn)]
d→E [g(Z)]

and

g(Zn)
d→ g(Z)

5.2 Semiparametric Theory for Causal Inference
notes fromKennedy (2015) (epi-ish notation). Treatement denoted byA (’action’)
and controls denoted by L.
Target parameter (ψ) : whichmaybe anATEE

[
Y 1 − Y 0

]
or a risk ratioE

[
Y 1
]
/E
[
Y 0
]

and so on.Assumptions

1. Consistency/SUTVA: A = a =⇒ Y = Y a.

2. Unconfoundedness: Y a ⊥⊥ A|L

3. Overlap: Pr (A = a | L = l) ≥ δ > 0 ∀ p(L = l) > 0.

Then the ATE can be written

ψ =

∫
L
(E [Y | L = l, A = 1]− E [Y | L = l, A = 0]) dFL

This is the outcome regression (econometrics), subclassification estimator (statis-
tics), g-formula(epidemiology), backdoor criterion estimator (DAGology).
We suppose the data is Z := 〈L,A, Y 〉 and its distribution P0 admits to the follow-
ing factorisation:
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p(z) = p(y | l, a) p(a | l) p(l)
In semiparametric causal settings, one typically imposes parametric assumptions
on the treatment mechanism leaving the outcome mechanism unspecified. For
example, for the ATE, one might write

p(z; η, α) = p(y | l, a; ηy)︸ ︷︷ ︸
Nonparametric

Parametric︷ ︸︸ ︷
p(a | l;α) p(l; ηl)

where α ∈ Rq but η = 〈ηy, ηl〉 represents an infinite-dimensional parameter that
does not restrict the conditional distribution of the outcome given covariates and
treatment p(y | l, a) and the marginal covariate distribution p(l).

Example 5.13 (Influence functions for causal estimands).
For IPW estimator

ψ̂IPW =
1

n

n∑
i=1

AY

π(L)
− (1−A)L

1− π(L)

The influence function is clearly

ϕIPW (Z) =
AY

π(L)
− (1−A)Y

1− π(L)
− ψ0

since ψ̂IPW − ψ0 = 1
n

∑n
i=1 ϕipw(Z) exactly.

In an observational study, π(l) needs to be estimated, and suppose we do so with
a corectly specified parametric model π(l;α) , α ∈ Rq so that α̂ solves some mo-
ment condition Pn (S(Z; α̂)) = 0. Then, we have θ̂ = (ψ̂∗IPW , α̂

⊤)⊤ which solves
Pn
(
m(Z; θ̂)

)
where

m(z; θ) =

(
ψipw(Z;ψ, α)
S(Z;α)

)
Under standard regularity conditions, we have

θ̂ − θ0 = Pn

(
E
[
∂m(Z; θ0)

∂θ

]−1
m(Z; θ0)

)
+ op(1/

√
n)

Example 5.14 (Efficient Influence function for ATE).
For ψ = E

[
Y 1 − Y 0

]
= E [µ(L, 1)− µ(L, 0)]. Under a nonparametric model where

the distribution of P is left unrestricted, the efficient influence function for ψ is
given by

ϕ(Z;ψ, η) = m1(Z; η)−m0(Z; η)− ψ

where

ma(Z, η) = ma(Z;π, µ) =
1A=a(Y − µ(L, a))

aπ(L) + (1− a)(1− π(L))
+ µ(L, a)

Suppose the estimator η̂ converges to some η = (π, µ). Then, P(m(Z, η)) = P(m(Z; η0)) =
ψ0

Given P(f(Z)) =
∫
f(z)dP to denote expectations of f(Z) for a new observation Z

and the decomposition

ψ̂ − ψ0 = (Pn − P)m(Z; η̂)− P(m(Z; η̂)−m(Z; η0)) (11)
the first term can be shown to admit to the following result

(Pn − P)m(Z; η̂) = (Pn − P)m(Z; η0) + op(1/
√
n)

so that (Pn − P)m(Z; η̂) is asymptotically equivalent to its limiting version (Pn −
P)m(Z; η0). This requires thatM = {m(; η) : η ∈ H} is a Donsker class, where H
is a function class containing the nuisance estimator η̂, or thatH itself is Donsker.
We can then expand 11 to

ψ̂ − ψ0 = (Pn − P)m(Z; η̄) + P{m(Z; η̂)−m(Z; η̄)}+ op(1/
√
n)

By the fact that π̂ is bounded away from 0, 1 and Cauchy Schwartz, the middle
term |P(m(Z; η̂)−m(Z; η))| is bounded from above by∑

a∈{0,1}

‖π0(L)− π̂(L)‖ ‖µ0(L, a)− µ̂(L, a)‖

So, if π̂ is based on a correctly specified model, we only need µ̂ to be consistent to
make the product term P(m(Z; η̂) −m(Z; η)) = op(1/

√
n) asymptotically negligi-

ble.

5.3 Nonparametric Density Estimation
Defn 5.11 (Histogram Estimator).
Given a vector of mutually exclusive bins B1, . . . , Bj that partition suppX , and
ν1, . . . , νj be the corresponding counts in each bin, the histogram estimator is de-
fined as
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f̂(x) =

n∑
i=1

νj/n

h
1x∈Bj

Defn 5.12 (Smoothing Kernel).
A Smoothing kernelK : R→R that satisfies the following properties

1. K(x) is symmetric around zero and continuous

2. Integral properties

(a)
∫
K(x)dx = 1 : integrates to one

(b)
∫
xK(x)dx = 0

(c)
∫
|K(x)| dx <∞

3. Decay. Either:

(a) K(x) = 0 if |x| ≥ x0 for some cutoff x0 OR
(b) |x|K(x)→0 as |x|→∞

4.
∫
x2K(x)dx = κwhere κ is a constant

3(a) is usually preferred over 3(b), which allows us to truncate the domain of the
function to [-1, 1] for convenience.
Higher-order Kernels are kernels whose first nonzeromoment is the pth moment.
These kernels can increase rates of convergence if f(x) is more than twice differ-
entiable, and can take negative values.

Defn 5.13 ((Rosenblatt-Parzen) Kernel Density Estimator).
Given a smoothing kernel and and a bandwidth h > 0, the kernel density estimator
is

f̂(x) =
1

n

n∑
i=1

1

h
K

(
Xi − x
h

)
E
[
f̂k(x)

]
= f(x) + O

(
h2
)
; bias decreases as h gets smaller.

V
[
f̂k(x)

]
=
f(x)

∫
K(x)2

nh
+ o(

1

nh
) ≈ f(x)

nh

∫
K(x)2dx

vanishes as nh→∞.
Higher density implies higher variance - more data in a neighbourhood makes
the density estimation problem harder.
Haerdle et al (2004) find ‘optimal’ bin-width h for n observations is

hopt =

(
24
√
π

n

)1/3

5.3.1 Conditional Density and Distribution Function Estimation
Conditional Density

ĝ(y|x) = f̂(x, y)

f̂(x)

Conditional CDF

F̂(y|x) =
1
n

∑n
i=1G(

y−yi
h0

)Kh(xi,x)

f̂(x)

where G(.) is a kernel CDF (typically Normal), h0 is a the smoothing parameter
associated with y, andKh(xi,x) is a product kernel.
This can be inverted to get the

Conditional Quantile Function

q̂α(x) = inf
{
y : F̂(y|x) ≥ α

}
=: F̂−1(α|x)

Conditional Mode
m̂(x) = max

y
ĝ(y|x)

where ĝ(y|x) is the kernel estimator of the conditional density.

5.4 Nonparametric Regression
Given a random pair (x, y) ∈ Rd × R, the regression function is

m0(x) = E [Y |X = x]

Weaim to approximate thiswith m̂(·)when estimating nonparametric regressions.

m̂(x) =

n∑
i=1

wi(x)yi

where the weights wi are estimated using different methods.

Defn 5.14 (K-Nearest Neighbours Regression).
Fix an integer k ≥ 1.
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m̂(x) =
1

k

∑
i∈Nk(x)

yi

whereNk(x) is the k-neighbourhoodofxwhich contains the indices of the k closest
points.

Defn 5.15 (Nadaraya-Watson / Kernel regression).

m̂h(x) = S′xy =

N∑
i=1

wi(x)yi

whereK is a kernel and the weights wi(x) are given by

wi(x) :=
K
(
x−xi
h

)∑n
j=1K

(
x−xj
h

)
whereK(·) is a kernel-function that assigns a value that is lower the closer xi is to
x, and h is the bandwidth. The estimate of E [Y |X = x] at x is a weighted average
of yi’s ‘near x’.
Stated differently,

m̂(x) =

∑n
i=1K(x−xih )yi∑n
i=1K(x−xih )

m̂(x) is consistent and asymptotically normal. AssumingX has density f , Its vari-
ance is

V [m̂(x)] =
σ2(x)

f(x) · nh

∫
K2(u)du+ o

(
1

nh

)
Where σ2(x) = V [Y |X = x]
the bias for this estimator is

bias[m̂h(x)] = E [m̂h(x)]−m(x) ∼ h2
(
C1

2
m′′(x) + C2m

′(x)
f ′(x)

f(x)

)
A Nadaraya-Watson estimator with a uniform kernel is called a Regressogram.

Defn 5.16 (Local Linear Regression / loess).
Define the loss function

L(β) =
n∑
i=1

(yi −m− (xi − x)′β)2K
(
x− xi
h

)

m̂(x) is obtained by regressing Y onX−x, with weights equal to
√
K(x−xih ). This

estimator is consistent for E [Y |X = x], with the same rate of convergence as NW.

NWfits a Kernel-weighted constant (0-th order polynomial) near x; LLR fits a straight
line.

5.5 Semiparametric Regression
A partially linear model is given by

yi = x′iβ + g(zi) + εi i = 1, . . . , n

where xi is a p− vector, zi is a scalar, and g(.) is not specified. Standard exogeneity
assumption E [ε|xi, zi] = 0.
Robinson (1988) estimator is √n-consistent.

Defn 5.17 (Robinson Estimator).

yi − E [yi|zi]︸ ︷︷ ︸
ỹi

= (xi − E [xi|zi])︸ ︷︷ ︸
x̃i

β + εi

where ỹi and xi are estimated using Kernel regression.

5.5.1 Index Models

Defn 5.18 (Single Index Model).

Y = g(x′β) + ε

with E [ε|x] = 0. The term x′β is called a single index because it is a scalar. g(.) is
left unspecified, hence ‘semiparametric’.

Klein and Spady’s Semiparametric Binary Model

ℓ(β, h) =

n∑
i=1

((1− yi) log(1− ĝ−i(x′iβ)) + yi log(ĝ−i(x
′
iβ) ))

5.6 Splines
Defn 5.19 (Regression Splines).
Given inputs x1, . . . , xn and responses y1, . . . , yn, fit functions f that are k−th order
splines with knots at some chosen locations t1, . . . , tp. This means expressing
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f(x) =

p+k+1∑
j=1

βjgj(x)

where β1, . . . , βp+k+1 are coefficients and g1, . . . , gp+k+1 are basis functions for k−
splines over the knots t1, . . . , tp.
This is equivalent to the standard regression problem when we define

G = gj(xi), i = 1, . . . , n , j = 1, . . . , p+ k + 1

β̂ = argmin
β∈Rp+k+1

‖y −Gβ‖22

which gives the standard OLS solution β̂ =
(
G⊤G

)−1
G⊤y. Regression splines are

linear smoothers.

Regression splines exhibit erratic boundary behaviour . One solution to this is to
force lower degrees at the extremities.

• f is of order k on each [t1, t2], . . . , [tp−1, tp]

• f is of degree (k − 1)/2 on (−∞, t1] and [tp,∞)

• f is continuous and has continuous derivatives of orders 1, . . . , k − 1

Defn 5.20 (Smoothing Splines).
Given a simple non-parametric regression problem yi = g(xi)+εi, with xi ∈ [0, 1],
the problem to be solved is

min
g∈G

n∑
i=1

(yi − g(xi))2 + λ

∫ 1

0

g′′(x)2dx︸ ︷︷ ︸
roughness penalty

The solution to the above problem is a cubic smoothing spline, which is a piece-
wise cubic polynomial: a function with continuous first and second derivatives,
whose third derivativemay take discrete jumps at designated points, called ‘knots’.
On each segment [xi, xi+1), we may write s(x) as a cubic polynomial.
Defn 5.21 (Generalised Additive Model (GAM)).
Semiparametric model of the form y = f(x) + ε, where f(x) is typically imple-
mented using basis-splines

E [y|x] =
J∑
j

gj(xij)

or ‘thin-plate’ splines. Estimated using backfitting [mgcv in R].

5.6.1 Reproducing Kernel Hilbert Spaces

Defn 5.22 (Hilbert Space).
AHilbert Space is an abstract vector space endowedwith an inner product. LetX
be an arbitrary set andH be aHilbert space of real-valued functions onX , endowed
by the inner product 〈·, ·〉H. The evaluation functional over the hilbert space of
functionsH is a linear function that evaluates each function at a point x:

Lx : f→f(x), ∀f ∈ H.

A Reproducing Kernel Hilbert space is a Hilbert space (complete inner product
space) with extra structure such that the map Lx is continuous at any f ∈ H

∃C > 0 s.t. |Lx(f)| = |f(x)| ≤ C ‖f‖H ∀f ∈ H

Example 5.15 (L2 Space).
Most common example of RKHS is L2 space

L2[0, 1] =

{
f : [0, 1]→R :

∫
f2 <∞

}
endowed with the inner product

〈f, g〉 =
∫
f(x)g(x)dx

with corresponding norm

||f || =
√
〈f, f〉 =

√∫
f2(x)dx

Defn 5.23 (Mercer Kernel).
A RKHS is defined by a Mercer kernelK(x, y) that is symmetric and positive def-
inite, which means that for any function f ,∫ ∫

K(x, y)f(x)f(y)dx dy ≥ 0

The main example is the Gaussian kernel

K(x, y) = exp

(
−‖x− y‖

2

σ2

)
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Given a kernel K, let Kx(·) be the function obtained by fixing the first coordinate
at x s.t. Kx(y) = K(x, y). For the Gaussian kernel, Kx is a Normal, centered at x.
We can create functions by taking linear combinations of the kernel. LetH0 denote
all such functions

H0 =

f :

k∑
j=1

αjKxj (x)


which can be used to define an inner product

〈f, g〉 = 〈f, g〉K =
∑
i

∑
j

αiβjK(xi, yj)

Theorem 5.16 (Representer Theorem / The Reproducing Property of RKHS).
Let f(x) =

∑
i αiKxi(x). Then,

〈f,Kx〉 =
∑
i

αiK(xi, x) = f(x)

This also implies

〈Kx,Ky〉 = K(x, y)

This implies thatKx is the representer of the evaluation functional. The completion
ofH0 with respect to ‖·‖K is denoted byHK and is called the RKHS generated by
K.

Defn 5.24 (RKHS Regression).
Define m̂ to minimise

R :=

n∑
i=1

(yi −m(xi))
2 + λ ‖m‖2K

By the representer thm, m̂(x) =
∑n
i=1 αiK(xi,x). Plugging this into the above

definition,

R = ‖Y −Kα‖2 + λα⊤Kα

The minimiser over α is

α̂ = (K+ λI)
−1
Y

and m̂(x) =
∑
j α̂jK(Xi, x)

Defn 5.25 (Support Vector Machines).
Support Vector Machines. Suppose Yi ∈ {−1,+1}. Recall the the linear SVM min-
imizes the penalized hinge loss:

J =
∑
i

[
1− Yi

(
β0 + βTXi

)]
+
+
λ

2
‖β‖22

The dual is to maximize∑
i

αi −
1

2

∑
i,j

αiαjYiYj 〈Xi, Xj〉

subject to 0 ≤ αi ≤ C The RKHS version is to minimize

J =
∑
i

[1− Yif (Xi)]+ +
λ

2
‖f‖2K

Defn 5.26 (Linear Smoothers).
Estimators of the form m̂(x) =

∑
i wi(x)Yi with weights wi(x) that don’t depend

on Yi are known as linear smoothers. Fittedvalues are µ̂ = Sy for some matrix
S ∈ Rn×n depending on inputs and tuning parameters.
The effective degrees of freedom of a linear smoother is

ν = df(µ̂) =

n∑
i=1

Sii = trS

Defn 5.27 (Wavelet).
A wavelet is a function ψ such that{

2j/2ψ(2j · −k); j, k ∈ Z
}

is an Orthonormal basis for L2 space. ψ is called a ‘mother wavelet’, which can be
constructed from a ‘father wavelet’ φ.

5.7 Gaussian Processes
Based on Williams and Rasmussen (2006), Murphy (2012), and Scholkopf and
Smola (2018).

5.7.1 Bayesian Linear Regression

Center y,X such that y = y− ȳ1N . Likelihood is p(y|X,β, σ2) = N
(
y|Xβ, σ2IN

)
.

Choose normal prior p(y|X,β, σ2) ∝ exp(− 1
2σ2 ‖y −Xβ‖2) or
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Conjugate prior is also Gaussian, which we denote by p(β) = N (β|β0,Σ0). Then,
the posterior is given by
This can be decomposed as follows

p(β|X,y, σ2) = N (β|β0,Σ0)N
(
y|Xβ, σ2IN

)
= N (β|βN ,ΣN ) Where

βN = ΣN (Σ0)
−1
β0 +

1

σ2
ΣNX′y

ΣN = σ2(σ2Σ−10 +X′X)−1

Fact 5.17 (Bayes - Ridge Equivalence).
Let likelihoodbe p(y|X,β) = N

(
Xβ, σ2I

)
and let prior on coefficientsβ ∼ N (0,Σp).

p(β|X,y) =N
(

1

σ2
(A)

−1
Xy, (A)

−1
)

where A :=σ−2XX′ +Σ−1p

The predictive distribution is

p(f∗|x∗,X,y) =
∫
p(f∗|x∗, β̃)p(β̃|X,y)dβ̃

= N
(

1

σ2
x′∗ (A)

−1
Xy,x′∗ (A)

−1
x∗

)

Realistic casewhereσ2 is unknown we can show that posterior has the form [Mur-
phy pp 237]

p(β, σ2,D) = NIG(β, σ2|βN ,ΣN , aN , bN )

βN = ΣN ((Σ0)
−1
β0 +X′y)

ΣN =
(
Σ0
−1X′X

)−1
Defn 5.28 (Kernel Trick).
Let ϕ(x) : RD→RM be a mapping from D dimensional input space to M dimen-
sional feature / basis space. Let Φ(X) be the aggregation of columns ϕ(x) for all
observations. Then, the same formulation as above applies, with X,x replaced by
ϕ,Φ, which gives the posterior predictive distribution

f∗ | x∗,X,y ∼ N (ϕ⊤∗ ΣpΦ(K + σ2
nI)
−1y,

ϕ⊤∗ Σpϕ∗ − ϕ⊤∗ ΣpΦ(K + σ2
nI)
−1Φ⊤Σpϕ∗)

whereK = Φ⊤ΣpΦ.
In the above expression, the feature space always enters in the form or Φ⊤ΣpΦ,
ϕ∗Σϕ, or ϕ⊤∗ Σϕ∗. This means we can define a kernel k(x,x′) = ϕ(x)⊤Σpϕ(x

′),
which gives us an equivalent dot-product representation k(x,x′) = ψ(x) · ψ(x′)
where ψ = Σ

1/2
p ϕ(x).

If an algorithm is defined solely in terms of inner products in input space, then it
can be ‘lifted’ into feature space by replacing the occurrences of those inner prod-
ucts by k(x,x′). This is called the kernel trick.
By replacing 〈xi, xj〉withK(xi, xj), we turn a linear procedure into a nonlinear
one without adding much computation.

Example 5.18 (Kernel Trick for Ridge Regression).
We know that the ridge coefficient vector is given by

β̂λ =
(
X⊤X+ λI

)−1
X⊤Y

It can equivalently be written as

β̂λ = X⊤
(
XX⊤ + λI

)−1
Y

where XX⊤ is a n × n matrix whose i, j elements are 〈xi,xj〉. Similarly, x⊤X⊤ is
a n−dimensional vector with i−th element 〈x,xi〉. This turns the computation of
ridge coefficients into the computation of inner products between p− dimensional
covariate vectors.
Now, replace the inner product 〈xi,xj〉 with K(xi,xj), where K(·) is a known
function. This yields

x⊤X⊤ = (K(x,X1), . . . ,K(x,Xn))

XX⊤ = K = (K(Xi,Xj))1≤i,j≤n

which turns the prediction into kernel ridge regression

Ŷ = K (K+ λI)
−1

Y

where one can use one of many kernel functions
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• linear kernel : K(xi,xj) = 〈xi,xj〉

• polynomial kernel: K(xi,xj) = (1 + 〈xi,xj〉)d, d = 2, 3, . . .

• gaussian kernel: K(xi,xj) = exp(−γ ‖xi − xj‖2), γ > 0 (also known as
radial basis kernel)

• laplacian kernel: K(xi,xj) = exp(−γ ‖xi − xj‖), γ > 0

Defn 5.29 (Gaussian Process).
A Gaussian Process is a collection of random variables, any finite number of which have
a joint Gaussian Distribution.
A GP is completely specified by its mean function m(x) and covariance function
k(x,x′). A GP of a real process f(x) is specified as follows

m(x) = E [f(x)]

k(x,x′) = E [f(x−m(x))(f(x′)−m(x′))] then
f(x) ∼ GP(m(x), k(x,x′))

Example 5.19 (Bayesian Linear Regression as a GP).
let f(x) = ψ(x)⊤β with prior β ∼ N (0,Σp). Then, the mean and covariance
functions are

E [f(x)] = ϕ(x)⊤E [β] = 0

E [f(x)f(x)′] = ϕ(x)E
[
ββ⊤

]
ϕ(x′) = ϕ(x)Σpϕ(x

′)

Square-Exponential covariance / Gaussian Kernel

Cov [f(xp), f(xq)] = k(xp,xq) = exp

(
−1

2
|xp − xq|2

)

6 Maximum Likelihood
Setup Let {Z}Ni=1 be a sequence of iid rv’s with common CDF F (z|θ∗). We want
to estimate θ∗ ∈ Θ ⊂ Rk.
Since the rv’s are IID, we can write

f(y|θ∗) =
N∏
i=1

f(yi|θ∗)

Defn 6.1 (Likelihood Function).
L: Θ→R

L(θ|y) :=
N∏
i=1

f(yi|θ)

We usually work with the log of this ℓ(θ|y) :=
∑N
i=1 log f(yi|θ), and drop the con-

ditioning on y though strictly speaking f(y,X|θ) = f(y|X|θ)f(X|θ)

Defn 6.2 (Maximum Likelihood Estimator).
is the estimator that maximises the conditional log-likelihood estimator.

θ̂MLE := argmax
θ∈Θ

L(θ) = argmax
θ∈Θ

∑
i=1

log f(Zi|θ)

solves the first-order conditions

1

N

∂L(θ)
∂θ

=
1

N

∑
i

∂ℓ(yi|xi, θ)
∂θ

= 0

Example 6.1 (Linear Regression).
conditional density:

f(yi|xi, |β, σ2) =

N∏
i=1

1√
2πσ2

exp

(
− (yi − x′iβ)2

2σ2

)
Log likelihood:

ℓ(β, σ2) = −n
2
log(2π)− n

2
log σ2 − 1

2σ2
(y −Xβ)′(y −Xβ)

= −N
2
RSS(β)− N

2
log(2πσ2) =
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Maximising this w.r.t. b, s2 yields β̂ = (X ′X)
−1
X ′y, σ̂2 =

∑n
i=1 û

2
i

N .

Defn 6.3 (Score Function).
gradient vector S(θ) := ∇ℓ(θ) = ∂ℓ(θ)

∂θ

S(z, θ) := ∂ℓ(θ)

∂θ
(z; θ)

Evaluated at θ∗, this is the efficient score.
local maximum that solves the FOCs S(z, θ) = 0, IOW

1

N

N∑
i=1

log f(Zi|θ)
∂θ

= 0

Defn 6.4 (Fisher Information / Information Matrix Equality).

I(θ) := E [S(θ)S(θ)′] = E
[
∂ℓ(θ)

∂θ

∂ℓ(θ)

∂θ′

]
= −E

[
∂2ℓ(θ)

∂θ∂θ′

]

A = B := V [si(θ
∗)] = E [si(θ

∗)si(θ
∗)′] = E

[
∂

∂θ
si(θ

∗)

]
Variance estimate V

[
θ̂
]
= 1

nA
−1;

Estimated as
ˆI(θ) = − 1

N

N∑
i=1

∂2ℓi(θ)

∂θ∂θ′

∣∣∣∣
θ=θMLE

Example 6.2 (IM for OLS).

For OLS, parameter vector θ = (β′, σ2)′) = (β′, γ)′.
Scores:

∂ℓ

∂β
=

1

γ
X ′(y −Xβ)

∂ℓ

∂γ
= − n

2γ
+

1

2γ2
(y −Xβ)′(y − xβ)︸ ︷︷ ︸

:=s

γ = s/n =
1

n

n∑
i=1

(yi − x′iβ)

Information Matrix / Variance

I(θ) =

(
1
σ2X

′X 0
0′ n

2σ4

)
=⇒ CRLB := (I(θ))

−1
=

(
σ2 (X ′X)

−1
0

0′ 2σ4

n

)

6.1 Properties of Maximum Likelihood Estimators
Property 6.3 (Consistency).

As N→∞, probability of missing the true parameter goes to zero.

P (|θ̂n − θ| > ϵ)
p→ 0 ∀ϵ > 0

Property 6.4 (Asymptotic Normality).
√
N(θ̂ − θ) d→N (0, I(θ)−1)

Equivalently,

θ̂MLE ∼a N

(
θ,−E

[
∂2ℓ(θ)

∂θ∂θ′

]−1)
conditions: (1) θ ∈ Θ , (2) ℓ is twice-differentiable

Property 6.5 (Efficiency).
Variance of MLE is the Cramer-Rao Bound; the asymptotic variance of the MLE is
at least as small as that of any other consistent estimator.

Theorem 6.6 (Cramer-Rao Inequality / Bound).
Let the pdf of the r.v. X be fX(x|θ) for some θ0 ∈ Θ. Let θ̂ be an unbiased estimator
for θ0. Suppose the derivative ∂/∂θ can be passed under the integral

∫
f(x|θ)dx

and
∫
θ(x)f(x|θ)dx and suppose the fisher information

I(θ) = −E
[
∂2 log f

∂θ∂θ′
(X|θ)

]
is finite. Then,

V
[
θ̂(X)

]
≥ I(θ0)−1

If X1, X2, . . . , Xn are iid with common density fx(x|θ), the implied bound on the
variance is NV

[
θ̂(X)

]
≥ I(θ0)−1
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Defn 6.5 (Asymptotic Efficiency).
LetX1, X2, . . . be iid random variables with common density fx(x|θ). A sequence
of estimates θ̂N , a function X1, X2, . . . , XN that satisfies

√
N(θ̂ml − θ)

d→N
(
0, I(θ)−1

)
whatever the true value of θ ∈ Θ is, is said to be asymptotically efficient.

Defn 6.6 (Semiparametric Efficiency Bound).
SupposeX1, X2, . . . are iidwith densityX ∼ f(x|θ, h(.))where h(.) is an unknown
function. Next, we pretend to know the infinite dimensional parameter h() up
to a finite dimensional parameter γ, in which we have a fully parametric finite-
dimensional parameter θ, thus we can calculate the Cramer-Rao Bound.

f(x|θ, γ) = f(x|θ, h(γ))

Partitioning the information matrix for (θ′, γ′)′ and its inverse in

I(θ, γ) =
[
Iθθ′ Iθγ′

Iγ′θ Iγγ′

]
and I(θ, γ)−1 =

[
Iθθ′ Iθγ′

Iγθ′ Iγγ′

]
The Cramer-Rao bound implies that

ASV (θ̂) ≥ Iθθ
′
= (Iθθ′ − Iθγ′ (Iγγ′)

−1 Iγθ′)−1

This is true for any parametrisation of the unknown function h(.). The lowest pos-
sible variance for any estimator for θ that does not use knowledge of h(.) has to
be at least as high as the lowest variance we can get if we know more, that is, the
Cramer-Rao bound for any parametric submodel. So, the semiparametric efficiency
bound is the largest lower-bound we can get for any parametric submodel.
Suppose we have a candidate Estimator θ̂ and a given parametrisation h(x; γ).
Then,

(Iθθ′ − Iθγ′ (Iγγ′)
−1 Iγθ′)−1 ≤ Semiparametric Efficiency Bound ≤ ASV (θ̂)

For any estimator we can calculate the left hand side, for any parametrization we
can calculate the right hand side, so if we find an estimator and a parametrization
that the two are equal we have found the efficiency bound.

Theorem 6.7 (Equivariance of the MLE).
Let τ = g(θ)where g is bijective, continuous, and differentiable. Let θ̂n be theMLE
of θ. Then, τ̂n = g(θ̂n is the MLE of τ .

Defn 6.7 (Marginal Effect ∂E[y|x]∂x ).
For a regression of the form E [y|x] = g(x′β), one can estimate multiple ‘marginal
effects’. For the special case where E [y|x] = x′β, ∂E[y|x]∂x = β, but this is not generi-
cally true.

• Average Marginal Effect (AME): := 1
N

∑
i
∂E[yi|xi]
∂xi

• Marginal Effect at Mean (MEM) ∂E[y|x]
∂x |x̄

Defn 6.8 (Factorisation Theorem / Sufficient Statistics).
Suppose t(x) is a sufficient statistic for θ. Then,∏

i

f(xi|θ) = g (t(x), θ)h(x)

θ̂(x) depends on the data x only through t(x), the sufficient statistic.

6.2 QMLE / Misspecification / Information Theory
If model is misspecified, f (·|xi, θ) 6= p0 (·|xi) ∀ θ ∈ Θ
The MLE converges to the best fitting θ for the population (pseudo-true value)

θ⋆ = argmax
θ∈Θ

plim
1

N

N∑
i=1

ℓi(θ)

For the linear exponential family, the quasi-MLE is consistent evenwhen the den-
sity is partially misspecified.

6.2.1 Robust Standard Errors

Asymptotic distribution of QMLE
√
n
(
θ̂ − θ⋆

)
d→ N

(
0, Â−1B̂Â−1

)
where

Â = −E
[
H(β̂)

]
= E

[
∂Si(θ)

∂θ′

]
|θ̂ =

1

n

n∑
i=1

∂2ℓi(θ)

∂θ∂θ′
|θ̂

B̂ = E
[
Si (θ

⋆) Si (θ
⋆)
′]
=

1

n

n∑
i=1

∂ℓi
∂θ
× ∂ℓi
∂θ′
|θ̂

Defn 6.9 (Kullback-Liebler Distance).
let f(y|θ) be the assumped joint density, and let h(y) be the true density. Then,
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KL[h(·)||f(·)] := Eh
[
log

(
h(y)

f(y|θ)

)]
=

∫ ∞
−∞

h(t) log

(
h(t)

f(t)

)
dt

Minimisedwhen ∃θ0 s.t. h(y) = f(y|θ0). QMLEminimises distance between f(y|θ)
and h(y). Notation KL(h, f) denotes ‘information lost when f is used to approxi-
mate h’.
Discrete version illustrates links to Entropy

KL[p||q] :=
J∑
j=1

pj log
pj
qj

=

J∑
j=1

pj log pj −
J∑
j=1

pj log qj = −H(p) + H(p, q)︸ ︷︷ ︸
cross entropy

KL(p||q) ≥ 0 and with equality IFF p = q.
KL ‘distance’, unlike Euclidian Distance, is not the same between f, g as g, f ; i.e.
it is directional.

Defn 6.10 (Akaike Information Criterion (AIC)).
Akaike showed that using K-Lmodel selection entails finding a good estimator for

Ey,h
[
Ex,h

[
log(f(x|θ̂(y)))

]]
where x, y are independent, random sampels from the same distribution and ex-
pectations are taken w.r.t. the true distribution h. Estimating this quantity for
each model fi is biased upwards. An approximately unbiased estimator of the
above target quantity is
For a general class of maximum-likelihood models,

AIC = −2 logL(θ̂|y) + 2K

For linear regression models, this simplifies to

AIC = n log σ̂2 + 2K ; σ̂2 =

∑n
i=1 ε̂

2

n

Defn 6.11 (Bayesian Information Criterion (BIC)).

BIC = ln

(
e′e

n

)
+
k ln(n)

n

6.3 Testing
To test the hypothesis H0 : α = 0 against the alternative, there are three classical
tests.

We partition the parameter K-vector θ into two parts (θ′0, θ′1)′ s.t. the dimensions
of the two sub-vectors s.t. K0 +K1 = K. θ1 is a nuisance parameter: its value is
not restricted under the null.
Let θ̂u := (θ̂0u, θ̂1u) be the unrestricted MLEs. If we are testing the restriction θ0 =

0, then the restricted parameter vector is θ̂R := (0, θ̂1r). IOW, test h(θ0) = 0.

Defn 6.12 (Likelihood Ratio Test).
If null is true, ℓ at restricted model ((0, θ1r) should not be much smaller than ℓ at
the unrestricted model ((θ0u, θ1u).

LR := 2× (ℓ(θ̂u)− ℓ(θ̂R))

Under the null, LR ∼ χ2
K0

(whereK0 is the number of restrictions being tested).

Defn 6.13 (Lagrange Multiplier Test / Score Test).
If the limiting ℓ is maximised at θ0 = 0, the derivative of the ℓ wrt θ0 at that point
should be close to zero.

LM := S(θ̂R)′[I−1(θ̂R)]S(θ̂R)

Under the null, LR ∼ χ2
K0

(whereK0 is the number of restrictions being tested).

Defn 6.14 (Wald Test).
Unrestricted estimates of θ0 should be close to zero.

W := N · θ̂′0u
(
Î00
)−1

θ̂0u

Where Î00 is the top-left of the information matrix (corresponding with the re-
stricted parameters). Under the null,W ∼ χ2

K0
.

alternatively,W = h(θ̂u)
′Ω−1h(θ̂u)

where h1(θ) . . . hK0
(θ) are restrictions,

Ω =

(
∂h(θ)

∂θ

)′
V [θu]

(
∂h(θ)

∂θ

)
evaluated at θ̂u.

Defn 6.15 (Pseudo-R2).
McFadden’s Pseudo-R2

R2
bin := 1− ℓ(β̂)

ℓ(ȳ)
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6.4 Binary Choice
Defn 6.16 (Linear Probability Model).
Estimate the probability using OLSPr (y = 1|x) = Xβ. V [y|x] = Xβ(1−Xβ), so
heteroskedasticity is mechanically present unless all coefficients are zero.

Defn 6.17 (Logit and Logistic Functions).

Logit(p) = log

(
p

1− p

)
Logistic(x) = 1

1 + exp(−x)
=

ex

1 + ex

Logistic regression fits logit(pi) = x′iβ, where logit is the link function that scales
x′iβ onto the probability scale. Alternatively, one can use Φ(0, 1).

Defn 6.18 (Logit Parametrisation).
For Yi ∈ {0, 1}, assume latent index model Y ∗i = X ′iβ + ϵi; Yi := 1Y ∗

i >0. Yi is
bernoulli, so L =

∏N
i=1 π

Yi
i (1− πi)1−Yi .

Symmetric CDFs. Let πi = E [Yi|Xi] = Pr (Yi = 1|Xi) = F(X ′iβ) = 1− F(−X ′iβ)

• Probit: F(u) = Φ(u)

• Logit:

– F(u) = Λ(u) = 1
1+exp(−u) =

exp(u)
1+exp(u)

– f(u) = Λ′(u) = (1− e−u)−2e−u

Model πi = Pr (y = 1|x) Marginal Effect: ∂p
∂xi

Logit Λ (x′β) =
exp(x′β)

1+exp(x′β) Λ (x′β) [1− Λ (x′β)]βj
Probit Φ(x′β) ϕ(x′β)βj
Clog-log C(x′β) = 1− exp(− exp(x′β)) exp(− exp(x′β)) exp(x′β)βj
LPM x′β βj

ℓ(β) =
1

n

∑
(Yi logF(X ′iβ) + (1− Yi) log(1− F(X ′iβ)))

Fact 6.8 (Score and QoIs for binary choice).
Let fi := f (x′iβ) ;Fi = F (x′iβ) be the density and CDF evaluated at x′iβ.

si(θ) =
fix
′
i[yi − Fi]

Fi(1− Fi)

Sample Score solves
N∑
i=1

(
yi
Fi
fixi −

1− yi
1− Fi

fixi

)
= 0

Variance:

V̂ar[β̂] =

(
N∑
i=1

f2i xix
′
i

Fi(1− Fi)

)−1
V [yi|xi] = Fi(1− Fi)
Marginal effect:

∂Pr (yi = 1|xi)

∂xi
= f (x′iβ)β

Example 6.9 (Logistic Regression).

Q(θ) = ℓ(θ) =
1

n

∑
i

(yi log Λ(x
′
iθ) + (1− yi) log[1− Λ(x′iθ)])

Since for the logistic CDF, Λ′(v) = λ(v) = Λ(v)(1 − Λ(v)), the score and hessian
can be written as

S(θ) = [yi − Λ(x′iθ)]xi

H(θ) = −Λ(x′iθ)[1− Λ(x′iθ)]xix
′
i = −λ(x′iθ)xix′i

6.5 Discrete Choice
InmanyAdditive RandomUtilityModels (ARUMs), F (ϵ1 − ϵ0) is logistic for mul-
tivariate extensions to logit. This assumes that the errors themselves are distributed
Gumbel/ type 1 extreme-value distribution

Defn 6.19 (Gumbel Distribution).

f (ϵ) = exp (−ϵ) exp (− exp(−ϵ)) −∞ < ϵ < ϵ

and F (ϵ) = exp (− exp(−ϵ)).

6.5.1 Ordered

Random utility with multiple cutoffs ϕ1 . . . ϕJ , where ϕ1 = 0, ϕJ =∞.

Defn 6.20 (Ordered Logit).
Define y∗i latent variable, and
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yi =


0 if −∞(= ψ0) < y∗i ≤ ψ1

1 if ψ1 < y∗i ≤ ψ2

...
...

J if ψJ−1 < y∗i ≤ ∞(= ψJ)

which means

Pr (yi ≤ j|xi) =
exp (ψj − x′iβ)

1 + exp
(
ψj − x⊤i β

)
Defn 6.21 (Ordered Probit).

Pr (yi ≤ j|xi) = Φ (ψj − x′iβ)⇔ Pr (y = k − 1|xi) = Φ(αk−Xβ)−Φ(αk−1−Xβ)

Both specifications yield a likelihood that is simply the product of binary logit/pro-
bit models that switch between adjacent categories for each observation.

ℓ(β, ψ|Y,X) =

N∑
i=1

J∑
j=1

1yi=j log (F (ψj −X ′iβ)− F (ψj−1X
′
iβ))

Marginal effects are of the form

∂Pr (Y = j)

∂xj

∣∣∣∣
x̄

= β̂j

(
f
(
ψ̂j − x̄′β̂

)
− f
(
ψ̂j−1 − x̄′β̂

))
6.5.2 Unordered

Multinomial distribution := p(yi) =
∏J
j=1 π

1yj=j

j

ℓ(π|Y ) =

N∑
i=1

J∑
j=1

1ij log πj

Defn 6.22 (Multinomial Logit).

πij = Pr (yi = j|xi) =
exp(x′iβ)[

1 +
∑J
j=1 exp(x

′
iβ)
] =

exp(x′iβj)∑J
k=2 exp (x

′
iβk)

where we adopt normalisation Pr (y = 0|x′iβ) = 1

[1+
∑J
j=1 exp(x′

iβ)]
for identifica-

tion.
Coefficient interpretation:

pj(xi,β)

p0(x,β)
= exp(xβj)⇔ log

[
pj(xi,β)

ph(x,β)

]
= x′i(βj − βh) ∀j, h ∈ 1, . . . J

which implies that the log-odds ratio is linear in x.

Defn 6.23 (Conditional Logit).
Permits incorporation of choice-varying predictors Xij , nests MNL.

πij = Pr (Yi = j|Xij) =
exp

(
X ′ijβ

)∑J
k=2 exp (X

′
ikβ)

Log likelihood of the form

ℓ =

n∑
i=1

(
M∑
h=1

1ij [x
′
iβh]− log

(
M∑
l=1

expx′iβl

))

Defn 6.24 (IIA).
Relative risk πij/πik independent of other choices¬{j, k}; choices are series of pair-
wise comparisons. pj(xj)/ph(xh) = exp[(xj − xh)β]. IoW ϵij ⊥⊥ ϵik for j 6= k.

Defn 6.25 (Multinomial probit).
ϵi ∼iid MVN(0,ΣJ)

πij =

∫ −Ẍ⊤
1jβ

−∞
· · ·
∫ −Ẍ⊤

Jjβ

−∞
ϕ (ϵ̈1j , . . . , ϵ̈Jj) dϵ̈1j · · · dϵ̈Jj

where Ẍkl = Xik −Xil; ϵ̈kl = ϵik − ϵil

6.6 Counts and Rates
6.6.1 Counts

Defn 6.26 (Poisson Regression).
f(y|λ) = λy exp(−λ)/y!
Poisson specification: λ = exp(x′iβ). Yields log density

log f(y|x, β) = yi exp(x
′
iβ)− x′iβ − log y!

Score:

si(θ) = − exp(x′iβ)x
′
iyix

′
i = x

′
i(yi − exp(x′iβ))

solves
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∑
x′i (yi − exp(x′iβ)) = 0

Hessian

H(β) =
∂s(β)

∂β
= − exp (x′iβ)xix

′
i =⇒ Avar(β̂) =

(
n∑
i=1

exp (x′iβ)xix
′
i

)−1
Assumes λ := exp(x′iβ) = E [Y |X] = V [Y |X].
Marginal Effect: Since E [y|x] = expx′β for poisson, ∂E[y|x]∂xj

= E [y|x]βj . Parame-
ters can be interpreted as semi elasticities, since

β =
∂E [y|x]
∂x

× 1

E [y|x]
=
∂ logE [y|x]

∂x

Defn 6.27 (Overdispersed poisson).

E (Yi|Xi) = λi = exp (X ′iβ) ; Var (Yi|Xi) = Vi = σ2λi;σ
2 > 1

Defn 6.28 (Zero Inflated Poisson (ZIP)).
define a bernoulli πi = 1w.p.θi for y = 0 observation, and specify separate models
for zero and nonzero data, with potentially different covariates on θ and λ. Yields
the following (difficult to maximise) likelihood

L =

N∏
i=1

(
θi + (1− θi) exp(−λi)

(
(1− θi)

exp(−λi)λyii
yi!

)1−πi
)

Defn 6.29 (Negative Binomial Regression).

p (yi) =
Γ
(

λ
σ2−1 + yi

)
yi!Γ

(
λ

σ2−1

) (
σ2 − 1

σ2

)yi (
σ2
) −λ
σ2−1

E [Yi] = λ;V [Y ] = λσ2.

Fact 6.10 (NB2 Likelihood).
Let µi = exp(x′iβ), ri = α/(α+ µi), qi = αµ2−p

i

ℓ =

n∑
i=1

log Γ(yi + qi)− log Γ(qi)−

log Γ(yi + 1) + qi + log ri + yi log(1− ri)

6.6.2 Rates

• Survival: S(y) := 1− F(y)

• Hazard: λ(y) = h(y) := f(y)
1−F (y) =

f(y)
S(y) ;

• Cumulative Hazard Λ(y) :=
∫ y
0
λ(s)ds = − logS(y).

Defn 6.30 (Kaplan-Meier).

Ŝ (tj) =

J∏
k=j

(
1− λ̂ (tk)

)
=

J∏
k=j

rk − dk
rk

Proportional Hazard Models
Conditional hazard rate λ(t|x) can be factored as

λ(t|x, β) = λ0(t)︸ ︷︷ ︸
baseline hazard

ϕ(x, β)︸ ︷︷ ︸
exp(x′β)

baseline hazard (= 1 for exponential and αyα−1 for weibull).
Parametric Model Hazard Survival
Exponential γ exp(−γt)
Weibull γαtα−1 exp(−γtα
Generalised Weibull γαtα−1 [1− µγtα]1/µ
Gompertz γ exp(αt) exp(−(γ/α)(eαt−1))

For survival models with censoring, Likelihood is often written as

L(θ) =
∏
i

f(ti|θ)diS(ti|θ)1−di

where di is a right-censoring indicator and ti is the observed time.

Example 6.11 (Weibull Example).
Weibull Density: f(y) = γαyα−1 exp (−γyα) , y, α, γ > 0. E [y] = γ−1/αΓ(α−1+1).
Specify γ = exp(x′β), soE [y|x] = exp(−x′β/α)Γ(α−1+1). Then, the log-likelihood
is

ℓ(θ) =
1

N

∑
i

{x′iβ + logα+ (α− 1) log yi − exp(x′iβ)y
α
i }
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FOCs are

N−1
∑
i

{1− exp(x′iβ)y
α
i }xi = 0

N−1{α−1 + log yi − exp (x′iβ) y
α
i log yi} = 0

Model needs to be correctly specified to be consistent. Unlike OLS or poisson.

6.7 Truncation and Censored Regressions
Fact 6.12 (Truncated Distribution Density).
If a c.r.v y ∼ f(y) and is truncated at c,

f(y|y > c) =
f(y)

Pr (y > c)
=

f(y)

1− F(c)

For the truncated normal distribution where y ∼ N
(
µ0, σ

2
0

)
is truncated at c,

E [y|y > c] = µ0 + σ0λ(v) , V [y|y > c] = σ2
0{1− λ(v)[λ(v)− v]}

where v = (c − µ0)/σ0 and λ(v) = ϕ(v)
1−Φ(v) is the inverse Mills ratio / Hazard

function.

6.7.1 Tobit Regression

Censored Yi s.t. y∗i = β′xi + ϵi ϵi ∼ N
(
0, σ2

)
and yi =

{
y∗i if y∗i > c

c if y∗i ≤ c
[i.e. y is

censored from below at c].
Truncated MLE maximises

logLn(θ) =

n∑
i=1

(log f(yi|xi, θ)− log [1− F(c|xi, θ)])

with f and F denoting the density and distribution of y∗ respectively.
Type-I Tobit assumes y∗ is normally distributed, which gives us the following like-
lihood

L =
∏
0

[1− Φ(x′iβ/σ)]
∏
1

σ−1ϕ[(yi − x′iβ)/σ]

6.7.2 Censored Regression

Consider a model yi = x′iβ + ϵi; ϵi|xi ∼ N
(
0, σ2

)
and yi is not observed if yi > c.

Yields log-likelihood

ℓ(yi|xi;β, σ2) =

(
−1

2
log(σ2)− 1

2

(
yi − x′iβ

σ

)2
)
− log

(
1− Φ

(
c− x′iβ
σ

))

6.8 Generalised Linear Models Theory
Semi-robust likelihoods belong to the Linear exponential Family of the following
form:

Defn 6.31 (Random Component).
Response observations yi are realisations of random variables Yi with densities of
the form

f(y|θ, ϕ) = exp

(
yθ − b(θ)
a(ϕ)

+ c(y, ϕ)

)
θ ⊂ R is called the canonical / natural parameter, ϕ ⊂ R+ is the dispersion parameter.
E [Y |θ, ϕ] = b′(θ), V [Y |θ, ϕ] = a(ϕ)b′′(θ)

f (yi) = exp

{
yiµi − 1

2µ
2
i

σ2
− y2i

2σ2
− 1

2
log
(
2πσ2

)}
Defn 6.32 (Systematic Component).
Linear predictor ηi := X ′iβ specifying the variation in Y accounted for by known
covariates.

Defn 6.33 (Link Function).
g is a transformation of the mean that addresses scaling. It is so called because it
links the expected value of the response variable E [Y |θ, ϕ] = µi = b′(θi) to the
explanatory covariates.

g(µi) = ηi = X ′iβ =⇒ µi = g−1(X ′iβ)

Since µi = b′(θi), under a canonical link ( g(µi) = θi(µi)), θi = X ′iβ.

6.8.1 ML estimation

log likelihood

L(θ, ϕ|y) =
N∑
i=1

(
yiθi − b(θi)

ai(ϕ)
+ c(yi, ϕ)

)
Score function
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S(β, y) =
N∑
i=1

∂ℓi
βj

=

N∑
i=1

∂ℓi
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

=
yi − µi
ai(ϕ)

1

V [µi]

∂g−1(ηi)

∂ηi
xij

The FoC can be written as

∂ logL(θ, ϕ|y)
∂β

= X′ (W)
−1

[y − ŷ] = 0

where W is a weight matrix (which depends on β). The fitted value

ŷ = m(x) = E [y|X = x] = g−1(x′β)

By a first-order taylor expansion, define

z = g(ŷ) + (y − ŷ)∇g(ŷ)

This gives us an update rule

β̂k+1 =
(
X (Wk)

−1
X
)−1

X (Wk)
−1
zk

repeat until convergence β̂∞.
Model Density Link
OLS Gaussian Identity
Logistic Binomial Logistic
Logistic Binomial Normal
Poisson Poisson Log

7 Machine Learning
7.1 Supervised Learning
Every Supervised ML algorithm essentially involves a function class F and a reg-
ulariser R(f) that expresses the complexity of the representation. Then, two steps

1. conditional on a level of complexity, choose best in-sample loss-minimising

function

min

n∑
i=1

L(f(xi), yi)︸ ︷︷ ︸
in-sample loss

over f ∈ F︸ ︷︷ ︸
function class

subject to R(f) ≤ c︸ ︷︷ ︸
complexity restriction

2. Estimate the ‘optimal’ level of complexity using empirical tuning

Fact 7.1 (Discriminative vs Generative ML).
Discriminative Model Generative Model

Goal Directly estimate E [y|x] Estimate Pr (x|y) to deduce Pr (y|x)
What is Learned Decision Boundary Probability Distribution of the data

Examples Regressions, SVM GDA, Naive Bayes

Defn 7.1 (Loss Functions).
L : (z, y) ∈ R × Y 7→ L(z, y) ∈ R that takes as inputs predicted value z and real
data value y and outputs how different they are.

• Least Squares: 1
2 (y − z)

2

• Logistic: log(1 + exp(−yz))

• Hinge: max(0, 1− yz)

• Cross Entropy: −[y log z + (1− y) log(1− z)]
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Table 1: Handy Dandy reference from Mullainathan and Spiess (2017, table 2)

Function class F Regulariser / Tuning Parameters R(f)

Global / Parametric Predictors
Linear β′x and generalisations Subset selection ‖β‖0 =

∑k
j=1 1βj ̸=0

LASSO ‖β‖1 =
∑k
j=1 |βj |

Ridge ‖β‖22 =
∑k
j=1 β

2
j

Elastic Net α ‖β‖1 + (1− α) ‖β‖22

Local/Nonparametric predictors
Decision / Regression trees Depth, number of nodes/leaves, minimal leaf size, information gain at splits
Random forest Number of trees, Number of variables used in aach tree, size of bootstrap sample, complexity (above)
Nearest Neighbours Number of Neighbours
Kernel Regression Kernel Bandwidth
Mixed Predictors
Neural Networks (including Deep, Convolutional) Number of layers, number of neurons per layer, connectivity between neurons
Splines Number of knots, order
Combining Predictors
Bagging: unweighted average of predictors from bootstrap draws Number of draws, size of bootstrap samples, individual tuning parameters
Boosting: linear combination of predictions of residual learning rate, number of iterations, individual tuning parameters
Ensemble: weighted combination of different predictions Ensemble weights, individual tuning parameters
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Fact 7.2 (Curse of Dimensionality).
take a unit hypercube in dimension p and we put another hypercube within it that
captures a fraction r of observations within the cube. Each edge will be ep(r) =
r1/p. For moderately high dimensions p = 10, e10(0.01) = 0.63; e10(0.1) = 0.8.
Need 80% data to cover 10% of sample.
Define d(p,N) as distance from the origin to the closest point. n = 500, p = 10 =⇒
d = 0.52 [closest point closer to the boundary than to the origin].

d(p,N) =

(
1−

(
1

2

)1/N
)1/p

7.1.1 Regularised Regression

In general, wewant to impose a penalty for model complexity in order tominimise
MSE [trade off some bias for lower variance].

Defn 7.2 (Ridge Regression).
Estimate the following regression

f(β,X,y) =

N∑
i=1

(yi −X ′iβ) + λ

J∑
j=1

β2

β̂Ridge = (X′X+ λIk)
−1

X′y ≡ β̂Ridgej =
β̂

1 + λ

where X is a standardized design matrix [s.t. all Xs have unit variance]. Let X =
UDV′ be the SVD of X.
Then, ridge coefficients can also be written as

β̂Ridgeλ = V(D2λI)−1DU′y =

p∑
j=1

dj
d2j + λ

〈Uj ,Y〉Vj

This can be used to compute the ridge coeffficient efficiently for a fine grid of λs.

• Compute SVD of X and save U,D,V

• Compute and store wj =
1
dj
〈Uj ,Y〉Vj for j = 1, . . . , p

• For each λm,m = [M ]

– compute γj =
d2j

d2j+λm

– compute β̂λm =
∑p
j=1 γjwj

The solution vector is ‘biased’ towards the leading right singular vectors of X,
which gives it the property of a ‘smoothed’ Principal Components regression.

Fact 7.3 (Degrees of Freedom for Ridge (and other semi-parametric methods)).
For Ridge regression,

dof(λ) =
∑
j

λj
λj + λ

Where λjs are the eigenvalues of the Covariance Matrix.
More generally, for any smoother matrix Ŵ, df(µ̂) = tr(Ŵ), which may not be an
integer for semi/non-parametric smoothers. In the special parametric case of OLS,
Ŵ = X (X′X)

−1
X′, so the DoF is simply k.

Defn 7.3 (Lasso Regression).
Consider the objective function

J(β,X,y) =

N∑
i=1

(yi − x′iβ) + λ

J∑
j=1

‖βj‖1

fit using sequential coordinate descent. Coefficient vector is soft-thresholded:

βlasso
j = sgn(β̂j)max

(∣∣∣β̂j∣∣∣− λ, 0)
where X is a standardized design matrix [s.t. all Xs have unit variance], and || is
the l1 norm.

In both cases, pick tuning parameter λ using cross-validation.

Defn 7.4 (Penalised Maximum Likelihood Regression).
ML analogue to LASSO. Define

θ̂ = argmin
θ∈Θ

(
−ℓ(θ|Y ,X) + λ

∥∥θP ∥∥
1

)
where ∥∥θP∥∥

1
=

|θP |∑
k

∣∣θPk ∣∣
Defn 7.5 (Elastic Net (Zou and Hastie 2005)).
Combines ridge regression and the lasso by adding a ℓ2 penalty to the LASSO’s
objective function

J(β) = ‖y −Xβ‖22 + λ1 ‖β‖1 +
λ2
2
‖β‖22
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Defn 7.6 (Principal Components LASSO (Tay, Friedman, Tibshirani 2018)).
Generalise the ℓ2 penalty to a class of penalty functions of the form

βTVZVTβ

whereZ is a diagonalmatrixwhose diagonal elements are functions of the squared
singular values.
Define the following objective function

J(β) =
1

2
‖y −Xβ‖22 + λ ‖β‖1 +

θ

2
VDd21−d2jV

Tβ

Where Dd21−d2j is a m × m diagonal matrix with diagonal entries equalling d21 −
d21, d

2
1 − d22 . . . . This penalty term gives no weight to the component of β that

aligns with the first right singular vector of X (i.e. the first principal component.
This gives it better predictive accuracy in some settings.
Comparing principal-coordinate predictions of ridge and pcLASSO:

Xβ̂Ridge =
m∑
j=1

d2j
d2j + θ

uju
T
j y

Xβ̂pcL =

m∑
j=1

d2j
d2j + θ(d21 − d2j )

uju
T
j y

The latter corresponds to a more aggressive form of shrinkage towards the leading
singular vectors.

7.1.2 Classification

Training sample (xi, yi) where y ∈ Y := {−1,+1} (can relabel to Bernoulli). A
predictorm : X→Y , where the labels are produced by an (unknown) classifier f .
Let P be an (unknown) distribution on X . The error ofmw.r.t. f is defined by

RP,f (m) = P [m(X) 6= f(X)] = P [{x ∈ X : m(x 6= f(x))}] whereX ∼ P

The empirical risk is defined as

R̂(m) =
1

n

n∑
i=1

1m(xi) ̸=yi

A perfect classifier (in the sense that RP,f (m) = 0) does not exist, so we aim for
ProbablyApproximately Correct (PAC) learners that haveRP,f (m) ≤ εw.p. 1−δ.
The space of models m is restricted to be in finite setM. It can be shown that
∀ε, δ,P, f , if n ≥ ε−1 log[(δ)−1 |M]|, then RP,f (m

∗) ≤ ε w.p. ≥ 1− δ where

m∗ ∈ argmin
m∈M

[
1

n

n∑
i=1

1m(xi)=yi

]

Defn 7.7 (Vapnik-Chervonenkis Dimension).
loosely represents the expressive capacity of a set of functions.
Consider k points {x1, . . . , xk} and the set

Ek = {m(x1), . . . ,m(xk) : form ∈M} ≡ {−1,+1}k

we say that m shatters all the points if |Ek| = 2k, i.e. all combinations are possible.
Linear functions can shatter 2 points.
The VC dimension ofM is

VC(M) := sup {k s.t.M shatters {x1, . . . , xk}}

Defn 7.8 (Support Vector Machines).
Let y ∈ {−1, 1}. A linear classifier can then be written as h(x) = sgn(H(x)) where

H(x) = a0 +

d∑
i=1

aixi

Suppose ∃ a hyperplane H(x) s.t. YiH(xi) ≥ 1 ∀i.
The hyperplane Ĥ(x) = â0 +

∑N
i=1 âixi that separates the data and maximises the

‘margin’ is given by minimising 1/2
∑d
j=1 a

2
j subject toYiH(xi) ≥ 1.

Defn 7.9 (Boosting and Sequential Learning).
Typically, the function spaceM is large and complex, so a natural idea is to learn
iteratively. Loosely, estimate a model m1 for y from X, which produces error ε1.
Next, estimatem2 for ε1 from X, which produces ε2, and so on. So, after k steps,

mk(·) = m1(·)︸ ︷︷ ︸
∼ y

+m2(·)︸ ︷︷ ︸
∼ ε1

+ . . . mk(·)︸ ︷︷ ︸
∼ εk−1

where the first error is y−m(x) and so on, and can also be seen as the gradient as-
sociated with the quadratic loss function, ε = ∇ℓ. So, an equivalent representation
is
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m(k) = m(k−1) + argmin
h∈H


n∑
i=1

ℓ

yi −m(k−1)(xi)︸ ︷︷ ︸
εk,i

, h(xi)




where H is a space of ‘weak learners’ (typically step functions). To ensure ‘slow’
learning, one typically applies a shrinkage parameter ε1 = y−αm1(x1) α ∈ (0, 1).

Arthur Charpantier’s series on the probabilistic foundations of econometrics and
machine learning cover this and more and have an excellent bibliography

• Econometrics

– https://freakonometrics.hypotheses.org/57649
– https://freakonometrics.hypotheses.org/57674
– https://freakonometrics.hypotheses.org/57693
– https://freakonometrics.hypotheses.org/57703

• ML

– https://freakonometrics.hypotheses.org/57705
– https://freakonometrics.hypotheses.org/57745
– https://freakonometrics.hypotheses.org/57782
– https://freakonometrics.hypotheses.org/57790
– https://freakonometrics.hypotheses.org/57813

• Bibliography https://freakonometrics.hypotheses.org/57737

7.1.3 Goodness of Fit for Classification

Defn 7.10 (Calibration and Discrimination). • calibration: Bin predicted proba-
bilities ŷ into bins {gk}, and within each compute Ŷ gk (average predicted
probability) and Y gk . Plot the two average against each other. In a well cali-
brated model, the binned averages trace the identity line.

• discrimination: Discrimination is a measure of whether Y = 1 observations
have high Ŷ , and correspondingly Y = 0 values have low Ŷ . Manymeasures;
listed below

Figure 8: AUC

Defn 7.11 (Confusion Matrix).
Observed Y = 1 Y = 0

Predicted positive (Ŷ > c) True Positive (TP) False Positive (FP)
Predicted negative (Ŷ < c) False Negative (FN) True Negative (TN)

Total Positive(P) Total Negative(N)

• Accuracy = (TP + TN)/(P +N) - Overall performance

• Precision = TP/(TP + FP ) - How accurate positive predictions are

• Sensitivity = Recall = True positive Rate= TP/P - Coverage of actual pos-
itive sample

• Specificity = True Negative Rate = TN/N - Coverage of actual negative
sample

• Brier Score =

1

N

∑
i

(
Ŷi − Yi

)2
=

Calibration︷ ︸︸ ︷
1

N

K∑
k

(
Ŷk − Ȳk

)2
+

Refinement︷ ︸︸ ︷
1

N

K∑
k

nk
(
Ȳk
(
1− Ȳk

))
• F1 Score = 2TP

2TP+FP+FN : hybrid metric for unbalanced classes

Fact 7.4 (Receiver Operating Curve (ROC) / Area Under the Curve (AUC)).
Is the plot of TPR vs FPR by varying the threshold c.
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Figure 9: Wikipedia table for confusion matrix
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Figure 10: Neural Network Components

Defn 7.12 (Random Forests).
Supposewe have a training set {(Xi, Yi, Di)}Ni=1, a test point x, and a tree predictor

µ̂(x) = T (x; {(Xi, Yi, Di)}Ni=1)

Equivalently,

µ̂(x) =

n∑
i=1

αi(x)Yi where αi(x) =
1xi∈L(X)

|i : xi ∈ L(x)|

where X is partitioned into leaves L(x), where leaves are constructed to maximise
heterogeneity between nodes . Do this until all leaves have 2× minimum leaf size
observations. Regression trees overfit, so we need to use cross-validation + other
tricks.
Random forests build and average many different trees T ∗ by

• Bagging / subsampling training set (Breiman)

• Selecting the splitting variable at each step fromm out of p randomly drawn
features (Amit and Geman)

τ̂(x)
1

B

B∑
b=1

T ∗b (x; {(Xi, Yi, Di)}Ni=1)

Defn 7.13 (Neural Network).
Generalised nonparametric regression with many ’layers’, with components out-
line in 10. For the ith layer of the network and jth hidden layer of the unit, we
have

z
[i]
j = w

[i]T
j x+ b

[i]
j

where w, b, z are the weight (coefficient), bias (intercept) and output respectively.

Figure 11: Activation Functions

Defn 7.14 (Activation Function).
Activation functions are used at the endof a hidden layer to introduce non-linearities
into the model. Common ones are

Neural networks frequently use the cross-entropy loss function.

Fact 7.5 (Fitting Neural Networks).
Learning rate is denoted by η, which is the pace at which the weights get updated.
This can be fixed or adaptively changed using ADAM.
Back-propagation is a method to update the weights in the neural net by taking
into account the actual output and desired output. The derivative with respect to
weightw is computed using the chain rule and is of the following form

∂L(z, y)

∂w
=
∂L(z, y)

∂a

∂a

∂z

∂z

∂w

So the weight is updated

w ← w − η ∂L(z, y)
∂w

1. Take a batch of training data

2. Perform forward propagation to compute corresponding loss

3. Perform back propagation to compute gradients

4. Use the gradients to update the weights over the network

7.2 Unsupervised Learning
There is no distinction between a label/outcome yi and predictor Xi in a wide
variety of problems. The goal of unsupervised methods is to characterise the joint
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distriution of the data X using latent factors, clusters, etc.

Defn 7.15 (Principal Components Analysis).
Original data xi in Rk. We approximate orthogonal unit vectors wl ∈ Rk and
associated scores [L ≤ k weights zil] to minimise reconstruction error

J(X,θ) =
1

n

n∑
i=1

‖xi − x̂i‖2 =
1

n

n∑
i=1

∥∥∥∥∥xi −
L∑
l=1

zilwl

∥∥∥∥∥
2

where x̂i = Wzi subject to the constraint that the smoother matrixW is orthonor-
mal. Equivalently, the objective function can be written as
J(W,Z) =

∥∥X−WZT
∥∥
Fr

where Z is N × L with zi in its rows.
The optimal solution sets eachwl to be the l-th eigenvector of the empirical covari-
ance matrix. Equivalently, Ŵ = VL, which contains the L eigenvectors with the
largest eigenvalues of empirical covariance matrix Σ̂ = 1

n

∑n
i=1 xix

′
i.

Defn 7.16 (Truncated SVD).
If we rank singular values of the data matrixX, we can construct a rank L approx-
imation, the truncated SVD

X ≈ U:,1:LS1:L,1:LV
′
:,1:L

This is identical to the optimal reconstruction X̂ = ZŴ′.

Fact 7.6 (Dimension selection for PCA).

J∑
j=L+1

λl = error(L)

The error is the sum of remaining eigenvalues of the covariance matrix. Total vari-
ance explained = (sum of included eigenvalues)/(sum of all eigenvalues)

8 Bayesian Statistics
8.1 Setup
Notation: per theMurphy textbook, some statements use notationD := {(xi, yi)}Ni=1

as shorthand for data.

Theorem 8.1 (Bayes Theorem).

f(θ|X)︸ ︷︷ ︸
posterior

=
f(X|θ)f(θ)∫
f(X|θ)f(θ)dθ

∝ L(θ)︸︷︷︸
likelihood

f(θ)︸︷︷︸
prior

Example 8.2 (Bayesian Updating Steps). 1. Use BayesRule to comeupwith a pos-
terior probability of some hypothesisHu given eventE. Your prior is P (Hu).

P (Hu|E) =
P (E|Hu)P (Hu)

P (E|Hu)P (Hu) + P (E|Hc
u)P (H

c
u)

Call the posterior probability P (H ′u).

2. Given second event E′, use posterior probability from step 1 as your prior in
the second update step.

P (Hu|E′) =
P (E′|Hu)P (H

′
u)

P (E′|Hu)P (H ′u) + P (E′|Hc
u)P ((H

′
u)
c)

Defn 8.1 (Exchangeability).
A sequence of random variables y1, . . . , yn is finitely exchangeable if their joint
density remains the same under any re-ordering or re-labeling of the indices of
the data.

p(y1, . . . , yn) = p(yz(1), . . . , yz(n))

Exchangeability justifies use of the prior: If the data are exchangeable, then there is
a parameter θ that drive the stochastic model generating the data and there exists
a density over θ that does not depend on the data itself. The data are conditionally
i.i.d., given the prior θ.

Independence vs. Exchangeability: Independence is a stronger condition than
exchangeability (it is a special case of exchangeability). Exchangeability only re-
quires that the marginal distribution of each random variable is the same, i.e.
p(y1) = p(y2). Independence requires that p(y1|y2) = p(y1). As a result, you can
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have exchangeability in situations where you do not have independence, most no-
tably sampling without replacement. If the marginal probabilities are unknown,
then we only have exchangeability (not independence) even if the samples are
drawn with replacement, due to the possibility that there is only one unit with a
particular value of y.

Fact 8.3 (Posterior Quantities of Interest).
With the full posterior, one can compute Posterior Mean, median, and mode (the
latter is sometimes called the Maximum A Posteriori estimate).
One can also compute

Defn 8.2 (Highest Posterior Density RegionR(θ)).
, which is a region such that the the parameter lies in the region with probability
1− α

1− α = Pr (θ ∈ R(θ)|y) =
∫
R(θ)

p(θ|y)dθ

Defn 8.3 (Posterior Predictive Density).
Consider out-of-sample prediction for a single observation ỹ. The posterior pre-
dictive density is

p(ỹ|y1, . . . , yn) =
∫ ∞
−∞

p(ỹ|θ, y1, . . . , yn)p(θ|y1, . . . , yn)dθ

Because ỹ is independent of y conditional on θ (exchangeability), we can simplify
this as

p(ỹ|y1, . . . , yn) =
∫ ∞
−∞

p(ỹ|θ, y1, . . . , yn)p(θ|y1, . . . , yn)dθ

=

∫ ∞
−∞

p(ỹ|θ)p(θ|y1, . . . , yn)dθ

This is just the data density for y multiplied by the posterior density for θ.

Example 8.4 (Posterior predictive density for Bernoulli trial).
Consider ỹ ∼ Bernoulli(θ). The posterior predictive density is

p(ỹ|y) =
∫ 1

0

p(ỹ|θ)p(θ|y)dθ

=

∫ 1

0

θỹ(1− θ)1−ỹp(θ|y)dθ

So if we want to know the posterior predictive probability p(ỹ = 1|θ), we can com-
pute it as

p(ỹ = 1|θ) =
∫ 1

0

θp(θ|y)dθ

= E[θ|y]

which is the posterior mean.
Defn 8.4 (Uninformative Prior vs. Informative Prior).
An uninformative prior on θ produces a posterior density that is proportional to
the likelihood (differing only by the constant of proportionality). This implies that
the mode of the posterior density is the θ that maximizes the likelihood function.
An informative prior on θ yields a posterior mean that is a precision-weighted
average of the prior mean and the MLE.
Stan dev team recommendations: https://github.com/stan-dev/stan/wiki/Prior-
Choice-Recommendations
Theorem 8.5 (Bernstein-Von Mises Theorem / Bayesian CLT).

θ|y ∼a N
(
θ̂, I(θ̂)−1

)
As N→∞, the likelihood component of the posterior becomes dominant and as
a result frequentist and bayesian inferences will be based on the same limiting
multivariate normal distribution.
Defn 8.5 (Bayesian Model Selection).
To choose between Bayesian models, we compute the posterior over models

p(m|D) = p(D|m)p(m)∑
m∈M p(m,D)

which allows us to pick the MAP model m̂ = argmax p(m|D). If we use a uniform
prior over models p(m) ∝ 1, this amounts to picking the model wich maximises

p(D|m) =

∫
p(D|θ)p(θ|m)dθ

which is called the marginal likelihood / integrated likelihood / evidence for
modelm.

8.2 Conjugate Priors and Updating
Defn 8.6 (Improper Priors).
Priors of the form f(θ) ∝ c c > 0 are improper because

∫
f(θ)dθ = ∞. Improper
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priors generally not a problem as long as resulting posterior is well defined.

Fact 8.6 (Flat priors are not invariant).
Suppose X ∼ Bernoulli (p), and we choose prior f(p) = 1. Define transformation
ψ = log(p/(1− p)). Resulting distribution of ψ is fψ(ψ) = eψ

(1+eψ)2

Defn 8.7 (Jeffreys’ Prior).
Method of constructing invariant priors.
f(θ) ∝ I(θ)1/2. For multiparameter model, f(θ) ∝ |I(θ)|1/2

Example 8.7 (Jeffreys’ Prior).
Given γ = h(θ), ∂L∂γ = ∂L

∂θ = ∂θ
∂γ and

∂2L
∂γ2

=
∂2L
∂θ2

(
∂θ

∂γ

)2

+
∂L
∂θ

∂2θ

∂γ2

Taking expectationswrt sample density sends second piece to zero (sinceE
[
∂L
∂θ

]
=

0), so

I(γ) = I(θ)
(
∂θ

∂γ

)2

=⇒ |I(γ)|1/2 = |I(θ)|1/2
∣∣∣∣∂θ∂γ

∣∣∣∣
Defn 8.8 (Conjugate Prior).
Analytically tractable expressions for the posterior are derived when sample and
prior densities form a natural conjugate pair, defined as having the property that
sample, prior, and posterior densities all lie in the same class of densities.
Exponential family is essentially the only class of densities to have natural conju-
gate priors.
A one parameter member of the exponential family has density for N obs that can
be expressed as

L(y|θ) =
∏

exp ((a(θ)) + b(y) + c (θ)u (y)) ∝ exp

(
Na(θ) + c(θ)

∑
i

u(y)

)

Example 8.8 (Beta-Binomial Updating).
Let X1, . . . , Xn ∼ Bernoulli (p), and we take prior f(p) = 1. By Bayes thm, the
posterior is of the form

f(p|xn) ∝ f(p)Ln(p) = ps(1− p)n−s = p
∑
xi(1− p)n−

∑
xi

Instead we take f(p) = Beta (α, β). Uniform prior is a special case with α = β = 1.
In general, the posterior is of the form

f(p|xn) = Γ(n+ 2)

Γ(s+ 1)Γ(n− s+ 1)
p
∑
xi(1− p)n−

∑
xi

p|xn ∼ Beta
(∑

xi + 1, n−
∑

xi + 1
)

∼ Beta (α′, β′)

rbeta(n, shape1, shape2)

Quantity Formula

Posterior Mean α′

α′ + β′
=

∑
xi + 1∑

xi + 1 + n−
∑
xi + 1

=

∑
xi + 1

n+ 2

Posterior mode α′ − 1

α′ + β′ − 2
=

∑
xi
n

Posterior variance α′β′

(α′ + β′)2(α′ + β′ + 1)

Posterior predictive distribution ∼ Beta-Binomial(n, a, b)
∼ Beta-Binomial(n, α+

∑
xi, β + n−

∑
xi)

library(extraDistr)
rbbinom(n, size, alpha, beta)

Example 8.9 (How to find Beta hyper-parameters using a prior proportion and vari-
ance).
Suppose we have a proportion from a previous study θ0, with variance V (θ0;α, β).
Then we can create a constant

γ =
θ0(1− θ0)
V (θ0;α, β)

− 1

And compute the hyper-parameters α and β for our prior distribution as

α = γθ0

β = γ(1− θ0)

Surprisingly this works! See Jackman p.55 for a worked out example.
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Example 8.10 (Gamma-Poisson Updating).
Let Y1, . . . , Yn ∼ Poisson(λ). This means that

p(y|λ) =
N∏
i=1

exp(−λ)λyi
yi!

∝ λ
∑
yi exp(−nλ)

We specifiy a Gamma prior on λ, which has density

p(λ; a, b) =
ba

Γ(a)
λa−1 exp(−bλ)

So then the posterior for λ is

p(λ|y) ∝ p(λ)p(y|λ)
∝ λa−1 exp(−bλ)λ

∑
yi exp(−nλ)

= λ
∑
yi+a−1 exp(−λ(b+ n))

∼ Gamma(
∑

yi + a, b+ n)

∼ Gamma(a′, b′)
rgamma(n, shape, rate)

A flat prior is a = b = 0.

Quantity Formula

Posterior Mean a′

b′
=

∑
yi + a

b+ n

Posterior mode a′ − 1

b′
=

∑
yi + a− 1

b+ n

Posterior variance a′

(b′)2
=

∑
yi + a

(b+ n)2

Posterior predictive distribution ∼ Negative Binomial(y, θ)
∼ Negative Binomial(a, 1− 1

b+ 1
)

rnbinom(rnbinom(n, size, prob)

Example 8.11 (Dirichlet-Multinomial Updating).

p(θ|α1, . . . αk) ∝
K∏
j=1

θ
αj−1
j

p(y|θ) ∝
K∏
j=1

θ
yj
j

where yj is the count of observations in category j. For 3 categories, the posterior
is:

p(θ1, θ2, 1− θ1 − θ2|y) ∝ θα1+y1−1
1 θα2+y2−1

2 (1− θ1 − θ2)α3+y3−1

∼ Dirichlet(α1 + y1, α2 + y2, α3 + y3)

Example 8.12 (Normal-Normal updating).
y ∼ N

(
µ, σ2

)
., where σ2 is known but mean µ is not known. The joint density of

y is

L(y|θ) =
N∏
i=1

(2πσ2)−1/2 exp

(
− (yi − θ)2

2σ2

)
∝ exp

(
− N

2σ2
(ȳ − θ)2

)
Given a normal prior θ ∼ N

(
µ, τ2

)
=⇒ f(µ) ∝ exp

(
− (θ−µ)2

2τ2

)
, we can write the

posterior density of the form

f(θ|y) ∝ exp

(
− N

2σ2
(θ − ȳ)2

)
exp

(
(θ − µ)2

2τ2

)
∝ exp

(
−1

2

(
(θ − µ1)

2

τ21

))
where µ1 = τ21 (Nȳ/σ

2 + µτ2) and τ21 = (N/σ2 + 1/τ2)−1. Posterior mean is a
weighted sum of prior mean µ and sample mean ȳ with weights that reflect the
precision of the likelihood via Nσ2 and prior τ2.

Three cases (ref. Jackman p.80-94):

1. Variance known, mean unknown. Model:

µ ∼ N (µ0, σ
2
0)

y ∼ N (µ, σ2)
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Quantity Formula

Posterior Mean
µ0(

1
σ2
0
) + ȳ( nσ2 )

1
σ2
0
+ n

σ2

= y
nσ2

0

nσ2
0 + σ2

+ µ0
σ2

nσ2
0 + σ2

Posterior variance
(

1

σ2
0

+
n

σ2

)−1
=

σ2
0σ

2

σ2 + nσ2
0

Posterior predictive distribution ∼ N (µ̃, σ̃2)

µ̃ =
n0µ0 + nȳ

n0 + n

σ̃2 = σ2 +

(
1

σ2
0

+
n

σ2

)−1

2. Variance and mean both unknown. Prior densities:

p(µ, σ2) = p(µ|σ2)p(σ2)

p(µ|σ2) ∼ Normal(µ0, σ
2/n0)

p(σ2) ∼ Scaled-Invese-χ2(ν0/2, ν0σ
2
0/2)

Conditional posterior densities:

µ|σ2, y ∼ N (µ1, σ
2/n1)

σ2|y ∼ Scaled-Invese-χ2(ν1/2, ν1σ
2
1/2)

where

n1 = n0 + n

µ1 =
n0µ0 + nȳ

n1
ν1 = ν0 + n

ν1σ
2
1 = v0σ

2
0 +

N∑
i=1

(yi − ȳ)2 +
n0n

n0 + n
(µ0 − ȳ)2

Marginal posterior density of µ:

p(µ) ∼ Student-T(µ1,
√
σ2
1/n1, v1)

∼ brms::rstudent_t(n, df, mu = 0, sigma = 1)

where

n1 = n0 + n

µ1 =
n0µ0 + nȳ

n1

ν1 = ν0 + n

σ2
1 = S1/ν1

S1 = ν0σ
2
0 + (n− 1)

N∑
i=1

(yi − ȳ)2 +
n0n

n1
(ȳ − µ0)

2

Posterior predictive distribution for ỹ:

p(ỹ|y) ∼ Student-T(µ1, σ1
√

(n1 + 1)/n1, v1)

where

n1 = n0 + n

µ1 =
n0µ0 + nȳ

n1

ν1 = ν0 + n

σ2
1 = S1/ν1

S1 = ν0σ
2
0 + (n− 1)

N∑
i=1

(yi − ȳ)2 +
n0n

n1
(ȳ − µ0)

2

3. Improper reference prior. Prior densities:

p(µ, σ2) ∝ 1/σ2
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Posterior densities

µ|σ2, y ∼ N (ȳ, σ2/n)

σ2|y ∼ Scaled-Invese-χ2(
n− 1

2
,

∑N
i=1(yi − ȳ)2

2
)

which implies

µ− ȳ√
S/((n− 1)n)

∼ tn−1

Posterior predictive distribution

p(ỹ|y) ∼ Student-T(ȳ, s
√
n+ 1

n
, n− 1)

where

s2 =
1

n− 1

n∑
i=1

(y − ȳ)2

ȳ =
1

n

n∑
i=1

yi

Fact 8.13 (Simulation from Posterior).
Posterior can often be approximated by simulation.

• Draw θ1, . . . , θB ∼ p(θ|xn)

• Histogram of θ1, . . . , θB approximates posterior density p(θ|xn)

Methods for this: Markov-Chain Monte-Carlo, Metropolis-Hastings, Hamilto-
nian Monte-Carlo

Fact 8.14 (Conjugacy for Discrete Distributions).

Likelihood Conjugate prior Posterior hyperparameters

Bern (p) Beta (α, β) α+

n∑
i=1

xi, β + n−
n∑
i=1

xi

Bin (p) Beta (α, β) α+

n∑
i=1

xi, β +

n∑
i=1

Ni −
n∑
i=1

xi

NBin (p) Beta (α, β) α+ rn, β +

n∑
i=1

xi

Po (λ) Gamma (α, β) α+

n∑
i=1

xi, β + n

Multinomial(p) Dir (α) α+

n∑
i=1

x(i)

Fact 8.15 (Conjugacy for Continuous Distributions).
Likelihood Conjugate prior Posterior hyperparameters

Unif (0, θ) Pareto(xm, k) max
{
x(n), xm

}
, k + n

Exp (λ) Gamma (α, β) α+ n, β +

n∑
i=1

xi

N
(
µ, σ2

c

)
N
(
µ0, σ

2
0

) (
µ0

σ2
0

+

∑n
i=1 xi
σ2
c

)
/

(
1

σ2
0

+
n

σ2
c

)
,(

1

σ2
0

+
n

σ2
c

)−1
N
(
µc, σ

2
)

Scaled Inverse
Chi-square(ν, σ2

0)
ν + n, νσ

2
0 +

∑n
i=1(xi − µ)2

ν + n

N
(
µ, σ2

)
Normal-
scaled Inverse
Gamma(λ, ν, α, β)

νλ+ nx̄

ν + n
, ν + n, α +

n

2
,

β +
1

2

n∑
i=1

(xi − x̄)2 +
γ(x̄− λ)2

2(n+ γ)

8.3 Computation / Markov Chains
Defn 8.9 (Stochastic Process {Xt : t ∈ T}).
is a collection of random variables.

Defn 8.10 (Markov Chains).
The process {Xn : n ∈ T} is a Markov Chain if
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Pr (Xn = X|X0, . . . , Xn−1) = Pr (Xn = x|Xn−1)

Defn 8.11 (Monte Carlo Integration).
First rewrite the integral to be evaluated I =

∫ b
a
h(x)dx as follows

I =

∫ b

a

h(x)dx =

∫ b

a

w(x)f(x)dx

where w(x) = h(x)(b − a) and f(x) = 1
b−1 . Since f is the probability density for

a uniform r.v. over (a, b), we can write I = Ef [w(X)] where X ∼ U [a, b]. If we
generate X1, . . . , XN ∼ U [a, b], by LLN,

Î =
1

N

N∑
i=1

w(Xi)
p→ E [w(X)] = I

Defn 8.12 (Reversibility / Detailed Balance).
The goal is the generate sequences θ1,θ2, . . . from f(θ|y). AnMCMC scheme will
generate samples from the conditional if

P (θj |θj−1)f(θj−1|y) = P (θj−1|θj)f(θj |y)

where P (θi|θj) is the pdf of θi given θj . The LHS is the joint pdf of θj ,θj−1 from
the chain, if θj−1 is from f(θ|y). Integrating RHS over dθj−1 yields f(θj |y), so
the result states that given θj−1 is from the correct posterior distribution, the chain
generates θj also from the posterior f(θ|y).

Defn 8.13 (Gibbs Sampling).
Basic idea - turn high dimensional problem into several one-dimensional prob-
lems. Suppose (X,Y ) has joint density fX,Y (x, y). Suppose it is possible to sim-
ulate from conditional distributions fX|Y (x|y) and fY |X(y|x). Let (X0, Y0) be start-
ing values. Assumingwehavedrawn (X0, Y0), . . . , (Xi, Yi), we generate (Xi+1, Yi+1)
as follows

• Xn+1 ∼ fX|Y (x|Yn)

• Yn+1 ∼ fY |X(y|Xn+1)

• . . . for multiple parameters

Example 8.16 (Gibbs for Univariate Normal).
. Let yi iid∼ N

(
µ, σ2

)
. Define precision τ = 1/σ2

• Likelihood: f (y|µ, τ) ∼ τn/2 exp
(
1
2τ
∑n
i=1(yi − µ)2

)

• (Noninformative) Prior: πµ, τ ∼ τ

Posterior Distribution

π (µ, τ |y) ∼ τ (n/2)+1 exp

(
−1

2
τ

n∑
i=1

(yi − µ)2
)

full conditionals:

• π(µ|τ, y) = N
(
ȳ, (nτ)−1

)
• π(τ |µ, y) = Γ

(
n
2 ,

1
n

∑n
i=1(yi − µ)2

)
However, it is typically impossible to write out or sample from full-conditionals.

Defn 8.14 (Metropolis Algorithm).
Let q(y|x) be an arbitrary, friendly distribution we can sample from. The condi-
tional density q(y|x) is called the proposal distribution. MH creates a sequence of
observationsX0, . . . as follows ChooseX0 arbitrarily. Suppose we have generated
X0, X1, . . . , Xi. Generate Xi+1 as follows

• Generate proposal Y ∼ q(y|Xi)

• Evaluate r := r(Xi, Y ) where

r(x, y) = min

{
f(y)

f(x)

q(x|y)
q(y|x)

, 1

}
• Set

Xi+1 =

{
Y w.p r
Xi w.p 1− r

Defn 8.15 (Expectation Maximisation).
Let xi be observed and zi missing. The goal is to maximise the log-likelihood of
the observed data

ℓ(θ) =

n∑
i=1

log p(xi|θ) =
n∑
i=1

[∑
zi

p(xi, zi|θ)

]
Cannot push log inside the sum because of unobserved variables. EM tackles the
problemas follows. Define complete data log likelihood as ℓc(θ) :=

∑n
i=1 log p(xi, zi|θ).

This cannot be computed, since zi is unknown.
Instead, define Q(θ,θt−1) = E

[
ℓc(θ|D,θt−1)

]
where t is the iteration number and

Q is called the auxiliary function.

← ToC 114



• Expectation (E) Step: Compute Q(θ,θt−1), which is an expectation wrt old
params θt−1.

• Maximisation (M) Step: Optimise the Q function wrt θ.
Computeθt = argmaxθ Q(θ,θt−1). ForMAPestimation, θt = argmaxθ Q(θ,θt−1)+
log p(θ)

Example 8.17 (EM for probit regression).
Probit has the form p(yi = 1|zi) = 1zi>0 where zi ∼ N (x′iβ, 1) is the latent vari-
able. The complete data log likelihood, assuming a N (0,Σ0) prior on β.

ℓ(z,β|Σ0) = log p(y|z) + logN (z|Xβ, I) + logN (β|0,Σ0)

=

n∑
i=1

log p(yi|zi)−
1

2
(z −Xβ)′(z −Xβ)− 1

2
β′ (Σ0)

−1
β + const

The posterior in the E step is a truncated Gaussian

p(zi|xi,β) =

{
µi +

ϕ(µi)
Φ(µi)

if yi = 1

µi − ϕ(µi)
Φ(µi)

if yi = 0

where µi = x′iβ. In theM step, we estimate β using ridge, where µ = E [z].

β̂ =
(
(Σ0)

−1
+X′X

)−1
X′µ

8.4 Hierarchical Models
Defn 8.16 (Heirarchical Priors).
Parameters in a prior are modeled as having a distribution that depends on hyper-
parameters. This results in joint posteriors of the form

f(θ, τ |y) ∝ L(y|θ)︸ ︷︷ ︸
likelihood

f(θ|τ)︸ ︷︷ ︸
parameter prior

f(τ)︸︷︷︸
hyperparameter prior

Represented by the graphical model τ → θ→D.
We are typically interested in the marginal posterior of θ, which is obtained by
integrating the joint posterior w.r.t τ .

By treating τ as a latent variable, we allowdata-poor observations to borrow strength
from data rich ones.

8.4.1 Empirical Bayes

In hierarchical models, we need to compute the posterior on multiple layers of
latent variables. For example, for a two-level model, we need

p(η,θ|D) ∝ p(D|θ)p(θ|η)p(η)

We can employ a computational shortcut by approximating the posterior on the
hyper-parameterswith a point-estimate p(η|D) ≈ δη̂(η), where η̂ = argmax p(η|D).
Since η is usually much smaller than θ in dimensionality, we can safely use a uni-
form prior on η. Then, the estimate becomes

η̂ = argmax p(D|η) = argmax

[∫
p(D|θ)p(θ|η)dθ

]
︸ ︷︷ ︸

marginal likelihood

This violates the principle that the prior should be chosen independently of the
data, but is a cheap computational trick. This produces a hierarchy of Bayesian
methods in increasing order of the number of integrals performed.

Example 8.18 (Cancer Rates across cities).
Suppose we measure the number of people in various citiesNi and the number of
peoplewhodied of cancer xi. We assume xi ∼ Bin (Ni, θi) andwant to estimate the
cancer rates θi. The MLE solution would be to either estimate them all separately,
or estimate a single θ for all cities.
The hierarchical approach is tomodel θi ∼ Beta (a, b), andwrite a joint distribution

p(D,θ,η|N) = p(η)

N∏
i=1

Bin (xi|Ni, θi)Beta (θi,η)

analytically integrate out θi

=

N∏
i=1

∫
Bin (xi|Ni, θi)Beta (θi,η) dθi

=

N∏
i=1

Beta (a+ xi, b+Ni − xi)
Beta (a, b)

where η := (a, b). We can also put covariates on θi = f(x′iβ).

← ToC 115



8.4.2 Hierarchy of Bayesianity

Method Definition

Maximum Likelihood θ̂ = argmax
θ

p(D|θ)

MAP Estimation θ̂ = argmax
θ

p(D|θ)p(θ|η)

Empirical Bayes η̂ = argmax
η

∫
p(D|θ)p(θ|η)dθ = argmax

η
p(D|η)

MAP-II η̂ = argmax
η

=

∫
p(D|θ)p(θ|η)p(η)dθ = argmax

η
p(D|η)p(η)

Full Bayes p(θ,η|D) ∝ p(D|θ)p(θ|η)p(η)

8.5 Graphical Models
Defn 8.17 (Chain rule of probability).
Any joint distribution can be represented as follows

p(x1:v) = p(x1)p(x2|x1)p(x3|x2, x1) . . . p(xv|x1:V−1)

where V is the number of variables [and we have dropped the parameter vector
θ]. It follows that

The joint distribution p(x) = p(x1, . . . , xK) can be written as

p(x) =

K∏
k=1

p(xk|Pak)

where Pak denotes the parent nodes of xk, which are nodes that have arrows point-
ing to xk.

Defn 8.18 (Conditional Independence).
X and Y are said to be conditionally independent iff the conditional joint can be
written as the product of the conditional marginal.

X ⊥⊥ Y |Z ⇔ p(X,Y |Z) = p(X|Z)p(Y |Z)

Defn 8.19 (d-separation).
If the condition A ⊥⊥ B|C, it must be the case that all paths are blocked. All paths
are blocked iff

• Arrows on the path meet either head to tail or tail to tail at the node, and the
note is in the set C

• Arrows meet head to head at the node, and neither the node nor any of its
descendents is in the set C

8.5.1 Empirical Bayes

Example 8.19 (James-Stein Estimator for batting averages (Efron and Morris)).
We suppose that each player’s MLE value pi (his batting average in the first 90
tries) is a binomial proportion,

pi ∼ Bi (90, Pi) /90

Here Pi is his true average, how hewould perform over an infinite number of tries;
TRUTH i is itself a binomial proportion, taken over an average of 370 more tries
per player.
At this point there are two ways to proceed. The simplest uses a normal approxi-
mation to (7.17)

pi∼̇N
(
Pi, σ

2
0

)
where σ2

0 is the binomial variance

σ2
0 = p̄(1− p̄)/90

with p̄ = 0.254 the average of the pi ’s. Letting xi = pi/σ0, applying (7.13), and
transforming back to p̂JSi = σ0µ̂

JS
i , gives James-Stein estimates

p̂JSi = p̄+

[
1− (N − 3)σ2

0∑
(pi − p̄)2

]
(pi − p̄)

A second approach begins with the arcsin transformation

xi = 2(n+ 0.5)1/2 sin−1

[(
npi + 0.375

n+ 0.75

)1/2
]
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9 Dependent Data: Time series and spatial statistics
9.1 Time Series
A time series is a sequence of data points {wt}Tt=1 observed over time. In a random
sample, points are iid, so the joint distribution f(w1, . . . , wT ) =

∏T
t=1 f(wt). In

time series, this is clearly violated, since observations that are temporally close to
each other tend to be more similar.

Defn 9.1 (Stochastic Process).
is a sequence of random variables {. . . , Y−1, Y0, Y1, . . .} that are indexed w.r.t the
elements in a set of indices {Yt : t ∈ T }. Hypothetical repeated realisations of a
stochastic process look like{

w
(1)
t , w

(2)
t , . . . , w

(n)
t

}∞
t=−∞

The index set T may be either countable, in which case we get a discrete time process
or an uncountable, in which case we get a continous time process.

State Space We assume ∃ a set Y ∈ R s.t. ∀t ∈ T , Yt ∈ Y . Then, Y is called the
State Space of the stochastic process.

Defn 9.2 (Martingales).
Consider a random process {Yt}∞t=1 and an increasing sequence of information
sets {Ft}∞t=1 i.e. collection of σ−fields s.t. F0 ⊂ F1 . . .F∞ ⊂ F . If Yt belongs
to the information set Ft and is absolutely integrable [i.e. yt ∈ L0(Ft) ∩ L1(F)],
and E [Yt+1|Ft] = Yt ∀t < ∞ then {Yt}∞t=0 is called a martingale. In words, the
conditional expected value of the next observation, given all the past observations,
is equal to the most recent observation.

Defn 9.3 (Autocovariance).
The autocovariance of Yt is the covariance between Yt and its jth lagged value

γjt := E [Yt − µt] [Yt−j − µt−j ]

the variance covariance matrix of y = {yt} is given by

V [y] =


γ0 γ1 . . . γT−1
γ1 γ0 . . . . . .
... . . . . . .

...
γT−1 . . . γ1 γ0


the jth order correlation coefficient ρj := γj/γ0.

Defn 9.4 (Stationarity≡ I(0)).
Arandomprocess is said to be stationary if the distribution functions of (Xt1 , Xt2 . . . )
and (Xt1+j , Xt2+j . . . ) are the same ∀t1, . . . , tk, h ∈ Z.
A process is said to be covariance (or weakly) stationary if

1. E [Yt] = µ ∀ t ∈ T

2. γjt = E [Yt − µt] [Yt−j − µt−j ] = γj ∀t ∈ T

i.e. neither the mean nor the autocovariances depend on the date t; stationary
expectation, variance, and covariance. Most relevant variables aren’t stationary,
but their detrended or first-differenced versions may be.

Defn 9.5 (Markov Process).
If X0, X1, . . . is a Markov Process,

Pr (Xn+1 ≤ x|X1, . . . , Xn) = Pr (Xn+1 ≤ x|Xn)

that is, the conditional distribution ofXn+1 givenX1, . . . , Xn does not depend on
X1, . . . , Xn−1.

Markov Chain A Markov chain is simply a Markov process in which the state-
space is a countable set. Since aMarkov chain is amarkov process, the conditional
distribution of Xt+1|X1, . . . , Xt depends only on Xt. The conditional distribution
is often represented by a Transition matrix where

Pt,t+1
ij = Pr (Xt+1 = j|Xt = i) ; i, j = 1, . . . J

IfP is the same ∀t, we say the Markov chain has stationary transition probabilities.

Defn 9.6 (Ergodic Processes).
A stationary process is ergodic if any two variables positioned far apart in the se-
quence are almost independently distributed.
{xt} is ergodic if, for any two bounded functions f(.) in k+1 variables and g(.) in
l + 1 variables,

lim
N→∞

|E [f(xt, . . . , xt+k)g(xt+N , . . . , xt+l+N )]| −

|E [f(xt, . . . , xt+k)]| |E [g(xt+N , . . . , xt+l+N )]| = 0

i.e. limj→∞ γj = 0
Sufficient condition for ergodicity is xt be covariance stationary and

∑∞
j=0 |γj | <

∞
Ergodic processes have the following property
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V

[
T∑
t=1

xt

]
=

T−1∑
j=1−T

(T − |j|)γj

this result implies that

lim
T→∞

V

[
1√
T

T∑
t=1

xt

]
=

∞∑
j=−∞

γj <∞

This permits us to swap is for ts and derive Asymptotic theory with dependent
observations, such as LLN and CLT.

Defn 9.7 (Brownian Motion).
A family of r.v.s {Xt} indexed by a continuous variable t over [0,∞) is a Brownian
Motion iff

1. X(0) = 0

2.
{
X(si + ti)−X(Si)

}
over an arbitrary collection of disjoint intervals (si, si+

ti are independent r.v.s

3. ∀ s, t ≥ 0, X(s+ t)−X(s) ∼ N (0, t)

Defn 9.8 (White Noise).
White noise is a sequence {εt} whose elements have mean zero and variance σ2,
and for which εt’s are uncorrelated over time

1. E [εt] = 0

2. E
[
ε2t
]
= σ2

3. E [εtεt−j ] = 0 ∀ j 6= 0

Defn 9.9 (Moving average : MA(q)).
A moving average of order q, MA(q) is a weighted average of the q most recent
values of a white noise defined as

Yt = µ+ εt + θ1εt−1 + · · ·+ θq + εt−q

Defn 9.10 (Autoregressive : AR(p)).
An autoregressive process of order p, AR(p) is given by Yt as a linear combination
of p lags of itself and one white noise

Yt = µ+ ϕ1Yt−1 + · · ·+ ϕpYt−p + εt

Defn 9.11 (Autoregressive Moving Average: ARMA(p, q)).
ARMA(p, q) combines AR(p) and MA(q)

Yt = µ+ εt + εt + θ1εt−1 + · · ·+ θq + εt−q︸ ︷︷ ︸
MA(q)

+ϕ1Yt−1 + · · ·+ ϕpYt−p︸ ︷︷ ︸
AR(p)

Theorem 9.1 (Wold Theorem).
Consider AR(1): Yt = ρYt−1+εt. Since this holds at t, it holds at t−1 =⇒ Yt−1 =
ρYt−2 + εt−1. Substitute into original to get Yt = ρ(ρYt−2 + εt−1) + εt. Repeat ad
infinitum to obtain, as long as ρ < 1

Yt =

∞∑
s=0

ρsεt−s

In other words, AR(1) ≡MA(∞) ; they are different representations of the same
underlying stochastic process.
Wold Representation: All covariance-stationary time series processes can be rep-
resented by / decomposed into a deterministic component and aMA(∞)

Defn 9.12 (Time Trends).
In a stationary process, E [xt] = µ, which is seldom true. A less restrictive assump-
tion that allows for nonstationarity is to specify the mean as a function of time.

E [xt] = α+ βt specify xt = α+ βt+ εt; ε stationary

Defn 9.13 (Randomwalk≡ I(1)).
is a a process such that E [xt|xt−1, xt−2, . . . ] = xt−1.
xt = xt−1+ εt, εt ∼ N

(
0, σ2

)
= AR(1) process with ϕ = 1 =:Unit Root. Rewrite

as

xt = xt−1 + εt = x0 +

t∑
j

εj

Random walk with drift

xt = xt−1 + δ + εt = δt+ εt + εt−1 . . . ε1 + x0 = x0 + δt+

t∑
j

εj

Defn 9.14 (Unit Root Tests).
For the following model xt = ρxt−1 + εt, εt ∼ N

(
0, σ2

)
= AR(1)

test ρ = 1. Distribution of ρ̂ under the null ρ = 1 is non-standard: CLT not valid.
test to use: Dickey Fuller, Augmented Dickey Fuller, Phillips-Perron.
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Defn 9.15 (Cointigration).
Let yt ∼ I(1)∧ xt ∼ I(1). yt and xt are said to be cointegrated if ∃ψ s.t. yt −ψxt ∼
I(0). For example, let

yt = βxt + εt

xt = xt−1 + υt

where (εt, υt) is white noise. Then, yt, xt ∼ I(1), but yt − βxt ∼ I(0), with cointe-
gration vector a = (1,−β).

Defn 9.16 (Hodrick-Prescott (HP) filter).
decomposes an observed time series Xt, t = 1, 2, . . . , n into a trend Xt and a sta-
tionary component X̃t = Xt −Xt so that the trend

{
Xt

}n
t=1

minimises

1

n

n∑
t=1

(Xt −Xt)
2 + w

1

n

n−1∑
t=2

(
(Xt+1 −Xt)− (Xt −Xt−1)

)2
︸ ︷︷ ︸

Penalty for incorporating fluctuations

w is a tuning parameter. In quarterly data, w = 1600.

9.1.1 Regression with time series

Basic assumption in conventionalOLSwith time series isE [yt|x1, . . . , xT ] = E [yt|xt] =
x′tβ. Equivalently, yt = x′tβ + εt E [εt|X] = 0 whereX = (x1, . . . , xT )

′. The second
classical assumption is E

[
ε2t |x

]
= σ2 ∀t;E [εtεt−j ] = 0 ∀ t, j.

E [ut, ut−j |X] 6= 0 is called autocorrelation. Fix: Newey-West HAC consistent
variance estimator ’meat’

V̂ = Γ̂0 +

m∑
i=1

(
1− j

m+ 1

)
(Γ̂j + Γ̂′j) where Γ̂j =

1

T − j

T∑
t=j+1

ε̂j ε̂t−jxtx
′
t−j

with variance estimated the normal way

Ŵ =

(
1

T

T∑
t=1

xtx
′
t

)−1
V̂

(
1

T

T∑
t=1

xtx
′
t

)−1
Defn 9.17 (Error Correction Mechanism).

Consider the model

yt = δ + αyt−1β0xt + β1xt−1 + εt

Subtract yt−1 and add −β0xt−1 + β0xt−1 to the l.h.s. we get

yt − yt−1 = δ − (1− α)yt−1 + β0(xt − xt−1) + (β0 + β1)xt−1 + εt

and

∆yt = δ + β0∆xt − (1− α)(yt−1 − γxt−1) + εt

where γ is the long run effect

γ =
β0 + β1
1− α

Defn 9.18 (Testing for trend-breaks - sequential Chow Test).
AQuandt Likelihood ratio test begins with no knowledge of when the trend break
occurs [although researchers typically knowof the timing for substantive reasons],
and sequentially estimates the following model

∆Yt = log Yt − log Yt−1 = α+ δ0Dt(τ) + εt

where∆Yt is the first difference of the outcome, andDt(τ) is an indicator variable
equal to zero for all years before τ and one for all subsequent years. The researcher
varies τ and tests the null that δ0 = 0, and the largest F-statistic is used to determine
the best possible break point. Use Andrews (2003) critical values to account for
multiple-testing.

9.2 Spatial Statistics
Defn 9.19 (Spatial Stochastic Process, Autocorrelation).
A spatial stochastic process is a collection of random variables y(u) indexed by
location u:

{
yi, i ∈ D ⊂ Rd

}
, where D is either a continuous surface of a finite set

of discrete locations.
For each location u, y(u) is a random variable, and thus needs to bemodeled. Basic
approach is to assume E [y(u)] ,V [y(u)] exist, and decompose

y(u) = m(u)︸ ︷︷ ︸
mean function

+ e(u)︸︷︷︸
error

mean functionm(u) = E [y(u)] and stochastic error process e(u) s.t. E [e(u)] = 0.
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9.2.1 Kriging - modeling m(u)

Main reference: Christensen (2019, ch 8)

Defn 9.20 (Universal Kriging).
Assume linear structure form(u). p known functions of u, x1(u), . . . , xp(u) s.t.

m(u) =

p∑
j=1

βjxj(u)

A special case of this is the Ordinary Kriging model where

m(u) = µ

for unknown µ. The most basic model is Simple Kriging where

m(u) = µ0

with known µ0.

Fact 9.2 (BLP of spatial data: Kriging).
Assume the universal kriging model m(u) =

∑p
j βjxj(u) holds, we have data on

locations u1, . . . , un, and that we wish to predict the value of y(u0). The model can
be written

Y = Xβ + e

E [e] = 0

Cov [e] = Σ = [σij ] = σ(ui, uj) i, j = 1, . . . , n

Let ΣY 0 :=

σ10...
σn0


The best linear unbiased predictor of y0 is

ŷ0 = x′0β̂ + δ′(Y −Xβ̂)

where β̂ =
(
X ′Σ−1X

)−1
X ′Σ−1Y and δ = Σ−1ΣY 0.

9.2.2 Spatial Autocorrelation: Modelling e(u)

Spatial Autocorrelation is expressed as

σ(u,w) := Cov [y(u), y(w)] = Cov [e(u), e(w)] = σ(w, u)

= E [y(u)y(w)]− E [y(u)]E [y(w)] 6= 0 ∀i 6= j

Covariance is often modelled in terms of an unknown parameter θ, in which case
we write σ(u,w;θ). Assumptions made about e(u) include

1. second-order stationary

2. strictly stationary

3. intrinsically stationary

4. increment stationary

5. isotropic

Covariance functions can be modelled 3 basic ways:

1. Specify a particular functional form on the stochastic process generating the
random variables {yi, i ∈ D}, from where covariance structure follows

2. Model the covariance structure directly, typically as a function of a small
number of parameters

3. Leave covariance unspecified and estimate it nonparametrically

Defn 9.21 (Stationarity).
A process y(u) is said to be strictly stationary if ∀k, locations u1, . . . , uk, and Borel
sets C1, . . . , Ck , and any vector h ∈ Rd,

Pr (y(u1) ∈ C1, . . . , y(uk) ∈ Ck) = Pr (y(u1 + h) ∈ C1, . . . , y(uk + h) ∈ Ck) (12)

i.e. the joint density is translation invariant. In particular,m(u) = m(u+ h), so

m(u) = µ (13)
Also, σ(u,w) = σ(u+ h,w + h). Let h = −w, so σ(u,w) = σ(u− w, 0), and so the
covariance function is a function of u− w alone. To make this explicit, we write

σ(u,w) = σ(u− w) = σ(h) (14)
If y(u) is strictly stationary and the joint distribution of all the random variables in
12 is multivariate gaussian, the process is called a Gaussian Process.

← ToC 120



A second-order (weak) stationary process satisfies 13 and 14, but may or may not
satisfy 12.
An increment-stationary process satisfies 13 and

Pr (y(u2)− y(u1) ∈ C1, . . . , y(uk)− y(uk−1) ∈ Ck) = (15)
Pr (y(u2 + h)− y(u1 + h) ∈ C1, . . . , y(uk + h)− y(uk−1 + h) ∈ Ck) (16)

Brownian motion is increment-stationary but not stationary.

Defn 9.22 ((Semi-)Variogram).
These are defined directly on increment-stationary processes. For a process satis-
fying 13, the semivariogram is defined

γ(u,w) =
1

2
E [y(u)− y(w)]2 =

1

2
V [y(u)− y(w)]

= {V [y(u)] + V [y(w)]− 2Cov [y(w), y(u)]}
= {σ(u, u) + σ(w,w)− 2σ(w, u)}

The variogram is 2γ(u,w). For an increment-stationary process, γ(u,w) = γ(u +
h,w + h) ∀ h, and we write

γ(u,w) = γ(u− w, 0) = γ(u− w) (17)
An intrinsically-stationaryprocess satisfies 13 and 17. All second-order stationary
processes are intrinsically stationary, but not vice versa.

Fact 9.3 (Semivariogram estimation).
For a linear model, stipulate a nonnegative definate weighting matrix, and fit
Y = Xβ + e ,E [e] = 0 ;Cov [e] = Σ0

to obtain residuals ê0 = Y −Xβ̂. For any vector h, there is a finite number Nh of
pairs of observations yi, yj for which ui − uj = h. For each of these pairs, list the
corresponding residual pairs, (ê0i, ê0i(h)), i = 1, . . . , Nh. If Nh ≥ 1, the traditional
empirical covariance estimator is

σ̂(h) = σ̂(−h) = 1

Nh

Nh∑
i=1

êiêi(h)

The traditional empirical semivariogram estimator in ordinary kriging (no covari-
ates) is

γ̂(h) =
1

2Nh

Nh∑
i=1

(yi − yi(h))2

Defn 9.23 (Isotropy).
A second-order stationary process is said to be isotropic if

σ(u− w) = σ(||u− w||)

An intrinsically stationary process is isotropic if

γ(u− w) = γ(||u− w||)

Defn 9.24 (Spatial Autoregressive Processes).

y − µι = ρW(y − µι) + ε = (I− ρW)
−1

+ ε

where W is a N ×N weight matrix. a spatial lag for yi

Wyi =
∑
j

wijyj

Defn 9.25 (Direct Representation of Spatial Autocorrelation).
A parsimonious specification of a small number of parameters for the covariance
matrix is typically presumed.

Cov [εi, εj ] = σ2f(dij , φ)

where εi, εj are residuals, σ2 is the error variance, dij is the distance between i, j,
and f is a distance decay function such that ∂f∂d < 0 and |f(dij , φ)| ≤ 1, with φ ∈ Φ
being a p× 1 vector.

Defn 9.26 (Moran’s I).
The generalised Moran’s I is a weighted, scaled cross-product

I :=
n
∑n
i=1

∑
j ̸=i wij(yi − y)(yj − y)∑n

i=1

∑
j ̸=i wij

∑
i(yi − y)2

Its expected value is −1n−1 .
A test forMoran’s I involves shuffling the locations of points and computing I S times.
This produces a randomization distribution under H0.
A Monte-carlo P-value is

p̂ =
1 +

∑S
s=1 1I∗s≥Iobs
S + 1
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9.2.3 Spatial Linear Regression

A simple spatial regression is

y = ρWy +Xβ + ε

the solution is

β̂ =
(
XX⊤

)−1
X(⊤I− ρW)y

Its reduced form is

y = (I− ρW)
−1

Xβ + (I− ρW)
−1
ε

The spatial lag term induces correlation between the error and explanatory vari-
ables, and thus must be treated as an endogenous variable.
A spatial error model is simply an linear model with a non-spherical but typically
parametric structure in the error covariance matrix.

y = Xβ + λWξ + η︸ ︷︷ ︸
Composite error ε

, η ∼ N
(
0, σ2I

)
E [εε′] = Ω(θ)

Example 9.4 (Kelly (2020)’s ’Direct’ standard errors).
A covariance function decomposes into a systematic part and idiosyncratic noise
as follows

Σij = σ2C(‖i− j‖ ,π) + τ21ij ≡ σ2CUU + τ2I

where C is a correlation function, ‖i− j‖ is the distance between points i, j.
Kelly recommends using a Whittle-Matern function defined next. These parame-
ters can be fitted on the error distribution to estimate the covariance matrix.

Defn 9.27 (Covariance Function).
A covariance function Cov (Y (x), Y (x′)) describes the joint variability between a
stochastic process Y (·) at two locations x and x′. This covariance function is vital
in spatial prediction. The fields package includes common parametric covariance
families (e.g. exponential and Matern) as well as nonparametric models (e.g. ra-
dial and tensor basis functions).
WhenmodelingCov (Y (x), Y (x′)) ,we are often forcedmake simplifying assump-
tions.

• Stationarity assumes we can represent the covariance function as

Cov(Y (x+ h), Y (x)) = C(h)

for some function C : Rd → R where dim(x) = d.

• - Isotropy assumes we can represent the covariance function as

Cov(Y (x+ h), Y (x)) = C(‖h‖)

for some function C : R→ R, where ‖ · ‖ is a vector norm.

Exponential :

Cov (Y (x), Y (x′)) = C(r) = ρe−r/θ + σ21x=x′

Matern:

Cov (Y (x), Y (x′)) = C(r) = ρ

(
21−ν

Γ(ν)

(r
θ

)ν
Kν

(r
θ

))
+ σ21x=x′

whereKν is a modified Bessel function of the second kind, of order ν
Matern covariance depends on (ρ, θ, ν, σ2), while exponential depends on ρ, θ, σ2),
where

• θ: is the range of the process at which observations become uncorrelated

• ρ : marginal variance / ’sil’

• σ2 : small scale variation such as measurement error

• ν : smoothness

Fact 9.5 (Workhorse Spatial Regression).

y = Xγ +

AC in Y︷ ︸︸ ︷
βWy+

AC in X︷ ︸︸ ︷
WXθ+

AC in errors︷ ︸︸ ︷
Wνλ +ε

Here, W is a weight matrix (typically row-standardised), so WM is a spatial lag.
In spatial econometrics, the above form nests many popular regressions

• Spatially Autoregressive (SAR) Model : λ = θ = 0

• Spatially lagged x : β = λ = 0

• Spatial Durbin Model : λ = 0
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• Spatial Error model : β = λ = 0

Fact 9.6 (The Reflection Problem).
In the Social Interactions Literature (e.g. Manski (1993)), the above expression is
written in the form of conditional expectations

yi = x′iγ + E [y|wi]
′
Endogenous︷︸︸︷

β +E [xi|wi]
′
Contextual︷︸︸︷
θ +E [ν|wi]

′
λ︸︷︷︸

Correlated

+εi

in practice, the expectations are replaced with empirical counterparts Ê(y|wi) =
Wy and so on, so the estimation steps are isomorphic.
Define unobservables as υ = Wν + ε, and assume they are uncorrelated with
observables x; that is, there is no sorting and no omitted spatial variables. Then,
we can write

y = Xγ +Wyβ +WXθ + υ

Premultiplying by Wy gives

Wy = WXγ +WWyβ +WWXθ +Wυ

This shows that Gy is correlated with υ, i.e. E [υ|Wy] 6= 0, and least square esti-
mates of the above regression are biased.
If we assume W is idempotent (by constructing a block-diagonal, transitive ma-
trix), we can simplify the above expression to

Wy = WX
γ + θ

1 − β
+Wυ/(1− β) Plugging in definition for Wy

y = X γ/(1− β)︸ ︷︷ ︸
γ̃

+WX (γβ + θ)/(1− β)︸ ︷︷ ︸
θ̃

+ υ +Wυβ/(1− β)︸ ︷︷ ︸
υ̃

In summary, β, θ cannot be separately identified from the composite parameters
β̃, θ̃. This is the reflection problem of (Manski, 1993).

9.2.4 Spatial Modelling

Based on Rue and Held (2005) and various lecture notes.
Defn 9.28 (Conditional / Markov Independence).
x1, x2 are conditionally independent given x3 if, for a given value of x3, learning
x2 gives one no additional information about x1. The density representation is
therefore

f (x) = f (x1|x3) f (x2|x3) f (x3)

which is a simplification of the general representation.

f (x) = f (x1|x2, x3) f (x2|x3) f (x3)
Theorem 9.7 (Factorisation Criterion for Conditional Independence).

x ⊥⊥ y|z ⇔ f (x, y, z) = g(x, z)h(y, z)

for some functions f, g , and ∀z with f (z) > 0

Example 9.8 (AR1 GMRF).

xt = ϕxt−1 + εt ; ε
iid∼ N (0, 1) , |ϕ| < 1

This can be re-expressed as

xt|x1, . . . , xt−1 ∼ N (ϕxt−1, 1) ∀t = 2, . . . , n

So, for xs , xt , 1 ≤ s < t ≤ n,

xs ⊥⊥ xt| {xs+1, . . . , xt−1} if t− s > 1

In addition to the conditional distribution, also assume themarginal distribution of
x1

iid∼ N
(
0, 1/(1− ϕ)2

)
, which is the stationary distribution of this process. Then,

the join distribution of x is

f (x) = f (x1) f (x2|x1) . . . , f (xn|xn−1)

=
1

(2π)n/2
|Q|1/2 exp

(
−1

2
x′Qx

)
where Q is a precision matrix of the form

Q =


1 −ϕ
−ϕ 1 + ϕ2 −ϕ

. . . . . . . . .
−ϕ 1 + ϕ2 −ϕ

−ϕ 1


This tridiagonal form is due to the fact that xi ⊥⊥ xj if |i− j| > 1 given the rest
of the sequence. This is generally true for any GMRF: Qij = 0 , i 6= j =⇒ xi ⊥⊥
xj | {xk : k 6= i, j}.
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While the conditional independence structure is readily apparent from the preci-
sion matrix, it isn’t evident in the covariance matrixΣ = Q−1, which is completely
dense with entries

σij =
1

1− ϕ2
ϕ|i−j|

Entries of the covariance matrix Σ only give direct information about the marginal
dependence structure, not the conditional one.

Defn 9.29 (Spatial Gaussian Process (GP)).
A spatial process Y (s) s ∈ D ⊂ R2 is said to follow a Gaussian Process if any real-
isation Y = (Y (s)1, . . . , Y (s)n)

′ at the finite number of locations s1, . . . , sn follows
an N− variate Gaussian. More precisely, let µ(s : D→R denote a mean func-
tion returning a mean at location s (typically assumed to be linear in covariates
X(s) = (1, X1(s), . . . , Xp(s))

′) and C(s1, s2) : D2→R+ denote a covariance func-
tion. Then, Y (s) follows a spatial Gaussian process, and Y has a density

fY (y) =

(
1√
2π

)
|Σ|−1/2 exp

{
−1

2
(y− µ)′ (Σ)

−1
(y− µ)

}
Where µ = (µ(s1), . . . , µ(sN ))′ is the mean vector and Σ = {C(si, sj)}ij is the
N ×N covariance matrix. Evaluating this density requires O(N3) operations and
O(N2)memory, whichmeans it does not scalewellwith large datasets. SeeHeaton
et al. (2019) for overview of alternatives.

Defn 9.30 (Conditional Autoregressions (Besag 1974)).
Let x be associated with some property of points (typically location), with no nat-
ural ordering of the indices. The joint density of a zero-mean GMRF is specified
by each of the n full-conditionals

xi|x−i ∼ N

∑
j:j ̸=i

βijxj , (κ)
−1
i


these are called CAR models. The associated precision matrix is

Q = Qij =

{
κi i = j

−κiβij i 6= j

which is symmetric and positive-definite.

Defn 9.31 (Gaussian Markov Random Field (GMRF)).
A random vector x = (x1, . . . , xn)

′ ∈ Rn is called a GMRF wrt a labelled graph
G = (V, E) with mean µ and precision matrix Q > 0 iff its density has the form

f (x) = (2π)−n/2 |Q|1/2 exp
(
−1

2
(x− µ)′Q(x− µ)

)
and Qij 6= 0 ⇔ {i, j} ∈ E∀i 6= j. If Q is completely dense, G is completely con-
nected. In spatial settings, Q is typically sparse [depending on how neighbours
are defined.]
Key summary quantities

•
E [xi|x−i] = µi −

1

Qii

∑
j:j∼i

Qij(xj − µj)

• Prec(xi,x−i) = Qii and

Corr(xi, xj |x−ij) =
−Qij√
QiiQjj

, i 6= j

Fact 9.9 (Markov Properties of GMRFs).
Let x be a GMRF wrt G = (V, E). The following are equivalent

1. Pairwise Markov Property: xi⊥xj |x−ij if {i, j} 6∈ E ∧ i 6= j

2. Local Markov Property; xi⊥x{i,ne(i)}|xne(i) ∀i ∈ V

3. GlobalMarkov: xA⊥xB |xC for disjoint setsA,B,C whereC separatesA,B
and A and B are nonempty.

Defn 9.32 (Linear Gaussian Process Models).
let the spatial process at location s ∈ D be

Z(s) = X(s)β + w(s) , ∀s ∈ D

where X(s) collects a p− vectors of covariates for site s, and β is a p-vector of
coefficients. Spatial dependence can be imposed by modelling {w(s) : s ∈ D} as a
zero-mean stationary Gaussian Process. Distributionally, this implies that for any
s1, . . . , sn ∈ D, if we let w = (w(s1), . . . , w(sn))

′, and Θ be the parameters of the
model

w|Θ ∼ N (0,Σ(Θ))

whereΣ(Θ) is the covariance matrix of a n-dimensional normal density. We need
Σ(Θ) to be Symmetric, PD for this distribution to be proper.
Special cases:
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• Exponential Covariance Matrix: Θ = (ψ, ϕ, κ) Σ(Θ) = ψI + κH(ϕ), where
the i, jth element of H(ϕ) = exp(−‖si − sj‖ /ϕ). The ‘nugget’ ψ is the vari-
ance of the non-spatial error, κ dictates the scale, and ϕ dictates the range of
the spatial dependence.

• Matern Covariance: Θ = (ψ, κ, ϕ, ν) > 0 for distance x := ‖si − sj‖.

Cov [x;ϕ, ψ, κ, ν] =
{

κ
2ν−1Γ(ν) (2

√
νx/ϕ)νKν(2

√
νx/ϕ) if x > 0

ψ + κ if x = 0

whereKν(x) is a modified Bessel function of order ν.

Defn 9.33 (Linear GMRF Models).
Specifying Σ directly can be awkward when dealing with irregular spatial data
[i.e. every real use case].
So, random effects w are modelled conditionally. Let w−i denote the vector of w
excluding w(si). Model w(si) in terms of its full-conditional.

w(si)|w−i,Θ ∼ N

 n∑
j=1

cijw(sj), κ
−1
i

 , i = 1, . . . , n

where cij describes the neighbourhood structure.

1. Besag (1974) proved that ifQ is symmetric PD, with κi in the diagonals and
−κicij in the off-diagonals. w|Θ ∼ N

(
0,Q−1

)
. Simplest version assumes

common precision parameter κi = τ .

2. Intrinsic GMRF: f(w|Θ) ∼ τ (N−1)/2 exp(−w′Q(τ)w). When cij = 1 for
neighbours (i.e. adjacency matrix instead of distances), it simplifies further
to

(w|Θ) ∼ τ (N−1)/2 exp

−1

2

∑
i∼j

(w(si)− w(sj))2


Defn 9.34 (Gaussian Process Spatial GLMs).
Let {Z(s) : s ∈ D} and {w(s : s ∈ D)} be two spatial processes onD ⊂ Rd(d ∈ Z+).
AssumeZ(si)s are conditional independent given randomeffectsw(s1), . . . , w(sn),
and that Z(si) follow some common distributional form, and

E [Z(si)|w] = µ(si) ∀i = 1, . . . n

Let η(s) = h(µ(s)) for some known link function h(·) e.g. h(x) = log
(

x
1−x

)
for

logit. Assume linear form for projection

η(s) = X(s)β+w(s). Spatial dependence viaw|Θ ∼ N (0,Σ(Θ)), whereΣ is often
Matern.
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A Mathematical Background
A.1 Proof Techniques

1. Direct Proof / modus ponens: If R is a true statement and R =⇒ S is a
true conditional statement, then S is a true statement. Direct proofs typically
involve backwards-forwards reasoning - take all statements that follow from R
that might relate to S, list them in R. Then, take all statements that follow
from S, list them in S . Then, look for statements r, s ∈ R × S that have a
straightforward proof, and write proof of the form R =⇒ r =⇒ s =⇒ S.

2. Contrapositive: Since every conditional statement is equivalent to its con-
trapositive, proving ¬Q =⇒ ¬P is equivalent to proving P =⇒ Q.

3. Proof by contradiction: Assume P is true, and assume Q is false [i.e. ¬Q is
true], and show that ¬Q =⇒ S (using P and other possible intermediate
results) where S is known to be false. Conclude that ¬Qmust be false, so Q
must be true, and we have proved that P =⇒ Q.

4. Induction [only applies to statements pertaining to well ordered sets] N

• Assume a base case - P (0) is a true statement
• Prove whenever P (k) is true, P (k + 1) is true
• Therefore P (n) is true for every n ∈ N

A.2 Set Theory
A set is a collection of objects. E.g. R,Q,Z,N.
Set operations:

• Intersection : A ∩B

• Union : A ∪B

• Difference: A \B := {x : x ∈ A ∧ x /∈ B}

• cartesian product: A×B := {(a, b) : a ∈ A ∧ b ∈ B}

Defn A.1 (Power set).
Set of all subsets of S is itself a set. Denoted as P(S)

|C| > |R| > |Q| > |Z| > |N|

Figure 12: Types of Relations

A.2.1 Relations

Given two sets X and Y , any subset of their Cartesian product X × Y is called a
binary relation. For any pair of elements (x, y) ∈ R ⊆ RX × Y =⇒ xRy.
Properties of binary relations:

• reflexive xRx ∀ x ∈ X

• transitive if xRy ∧ yRz =⇒ xRz

• symmetric If xRy =⇒ yRx

• antisymmetric If xRy ∧ yRx =⇒ x = y

• asymmetric if xRy =⇒ ¬(yRx)

• complete if either xRy or yRx or both ∀x, y, z ∈ X

Defn A.2 (Equivalence Relations).
An equivalence relation R on a set X is a relation that is reflexive, transitive, and
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symmetric. Given an equivalence relation∼, the set of elements that are related to
a given element a :

∼ (a) := {x ∈ X : x ∼ a}

is called the equivalence class of a. e.g. Indifference ∼ preference relation is an
equivalence relation, but the preference relation� is not because it isn’t symmetric.

Defn A.3 (Order Relations).
A relation that is reflexive and transitive but not symmetric is called an order re-
lation: x � y. This is also called a weak order. � is not an order relation because it
is not reflexive (and is called a strong order). Every order relation also induces an
equivalence relation: x ∼ y ⇔ x � y ∧ y � x

An ordered set (X,�) consists of a setX together with an order relation� defined
on X.

A.2.2 Intervals and Contour Sets

Given an ordered set and two elements a, b ∈ X s.t. b � a, we can define

• The open interval (a, b) : set of all elements strictly between a and b.

• The closed interval [a, b] : set of all elements between a and b s.t. [a, b]{x ∈
X : a ≼ x ≼ b}

Analogously, for arbitrary ordered sets, (X,�) we can define

• Upper contour set � (a) := {x ∈ X : x � a} : set of all elements that follow
or dominate a

• Lower contour set ≼ (a) := {x ∈ X : x ≼ a} : set of all elements that preced
a in the order �

A partial order is a relation that is reflexive, transitive, and antisymmetric.

Defn A.4 (Meet and Join).
The join of a partially ordered setS is the supremum and is denoted

∨
S . max(a, b)

is sometimes written a ∨ b.
The meet of a poset is the infimum and is denoted

∧
S . min(a, b) is sometimes

written a ∧ b.

A.2.3 Algebra

Defn A.5 (Groups).
A set G and an operation ⊗ : G × G→G defined on G. Then G := (G,⊗) is called a
group if the following conditions hold:

1. Closure of G under ⊗: ∀x, y ∈ G, x⊗ y ∈ G

2. Associativity: ∀x, y, z ∈ G, (x⊗ y)⊗ z = x⊗ (y ⊗ z)

3. Neutral element: ∃e ∈ G∀x ∈ G s.t. x⊗ e = e⊗ x = x

4. Inverse element: ∀x ∈ G, ∃y ∈ G : x⊗ y = e ∧ y ⊗ x = e.

5. if additionally ∀x, y ∈ G : x ⊗ y = y ⊗ x, then G is an Abelian/Commutative
group

(Z,+), (Rm×n,+)(R\{0}, .) are all groups

Defn A.6 (Vector Spaces).
A real valued vector space V = (V,+, ·) is a vector space with two operations

+ : V × V→V
· : R× V→V

Where

1. (V,+) is an Abelian Group

2. Distributivity

• ∀λ ∈ R,x,y ∈ V : λ · (x+ y) = λ · x+ λ · y
• ∀λ, ψ ∈ R,x ∈ V : (λ+ ψ) · x = λ · x+ ψ · x

3. Associativity : ∀λ, ψ ∈ R,x ∈ V : λ · (ψ · x) = (λψ) · x

4. Neutral Item wrt outer operation: ∀x ∈ V : 1 · x = x

A.3 Analysis and Topology
Preliminaries:
Vectors : x := (x1, · · · , xk), where xi ∈ R
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A.3.1 Metric Spaces

Defn A.7 (Euclidian Distance).

d2(x, y) := ‖x− y‖2 :=

(
k∑
i=1

(xi − yi)2
)1/2

Requirements for a metric(e.g. d2 : R2 × R→R ∀x, y, v ∈ Rk):

• d2(x, y) = 0⇔ x = y : a point is at zero distance from itself

• d2(x, y) = d2(y, x) : distance is symmetric

• d2(x, y) ≤ d2(x, v) + d2(v, y) : triangle inequality

We can generalise this definition to arbitrary nonempty sets S.

Defn A.8 (Metric Spaces).
Ametric space is a nonempty set S and a metric of distance ρ : S×S→R∀x, y, v ∈
S s.t.

• ρ(x, y) = 0⇔ x = y

• ρ(x, y) = ρ(y, x)

• ρ(x, y) ≤ ρ(x, v) + ρ(v, y)

For example, (Rk, d2) is a metric space. Many additional metric spaces in Rk are
generated by a norm.

Defn A.9 (Norm).
A norm on X ⊆ Rk is a mapping X 3 x 7→ ‖x‖ ∈ R s.t. ∀x, y ∈ Rk and γ ∈ R
satisfying

• Nonnegativity: ‖x‖ ≥ 0 ∀x inX

• Non degeneracy: ‖x‖ = 0⇔ x = 0

• Homogeneity: ‖γx‖ = |γ| ‖x‖

• Triangle Inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Each norm ‖.‖ on Rk generates a metric ρ on Rk via ρ(x, y) := ‖x− y‖.
E.g. ‖x‖2 := (

∑k
i=1 x

2
i )

1/2 generates euclidian distance d2.
The pair (X, ‖·‖) consisting of a vector space X together with a norm ‖·‖ is called
a normed linear space.

Defn A.10 (Banach Space).
A banach space(X, ‖·‖) is a normed linear space that is a complete(in the Cauchy-
convergence sense) metric space with respect to the metric derived from its norm.

Defn A.11 (p-norm).
Also known as Minkowski Norm
A class of norms that includes ‖.‖2 as a special case is the ‖.‖p defined by

‖x‖p :=

(
k∑
i=1

|xi|p
)1/p

x ∈ Rk

‖.‖ps give rise to a class ofmetric spaces (Rk, dp)where dp(x, y) := ‖x− y‖p ∀x, y ∈
Rk.

Examples:

• 1: Taxicab

• 2: Euclidian

• ∞: Chebychev

Defn A.12 (Frobinius Norm).
Frobinius Norm of a matrix A is

‖A‖Fr =

√√√√ M∑
i=1

N∑
j

a2ij =
√

trace(A′A)

Defn A.13 (Sup, Inf).
a, b ∈ R, [a, b] denotes the set of real numbers satisfying a ≤ x ≤ b. ( or ) denotes a
strict inequality (i.e. closed from above or below).
If S ⊂ R is bounded from above, ∃y s.t. x ≤ y ∀x ∈ S .. Then y is the least upper
bound or supremum of sup {x : x ∈ S}. If S is not bounded from above, we write
supx∈S =∞.
Similarly, the greatest lower bound of a set or infimum is denoted infx∈S(x)∨inf {x : x ∈ S}

Defn A.14 (Sequences, Liminf, Limsup).
Asequencex1, x2, . . . xn is denoted by {xi}∞i=1 or {xi}when the range of the indices
is clear.
Let {xi} be an infinite sequence of real numbers and ∃S s.t. (1)∀ε > 0, ∃N s.t. ∀n >
N, xn < S + ε and (2)∀ε > 0 andM > 0, ∃n > M s.t. xn > S − ε. Then, S is the
lim sup {xn}.
If {xn} is not Bounded from above, lim supxn =∞.
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Defn A.15 (Cauchy Criterion).
A sequence (xn) in a metric space (S, ρ) is said to be a Cauchy sequence if, ∀ϵ >
0, ∃N ∈ N s.t. ρ(xj , xk) < ϵ whenever j, k ≥ N (intuitively, points in a Cauchy
sequence get tighter together).

Let (xn) be a sequence of vectors in Rk. Suppose for any ϵ > 0, ∃n ∈ N s.t. ∀p, q >
n, ρ(xp, xq) < ϵ. Then, (xn) has a limit.
More basic definition: {an}∞n=1→A if ∀ϵ > 0, ∃N s.t. ∀n ≥ N, |an −A| < ϵ

• {anbn}→AB

• {an + bn}→A+B

Sequences
Let S = (S, ρ) be a metric space. A sequence (xn) ⊂ S is said to converge to
x ∈ S > 0, ∃N ∈ N s.t. n ≥ N =⇒ ρ(xn, x) < ϵ.

Theorem A.1.
A sequence in (S, ρ) can have at most one limit

Defn A.16 (ϵ ball).
centered on x ∈ S with radius ϵ > 0 is the set

B(ϵ, x) := {z ∈ S : ρ(z, x) < ϵ}

Set Definitions

Defn A.17 (Bounded Set).
A subset E of S is called bounded if E ⊂ B(n, x) for some x ∈ S and some suitably
large n ∈ N (intuition - some arbitrarily large ϵ ball can fit E inside it).
A sequence (xn) in S is called bounded if its range {xn : n ∈ N} is a bounded set.

Defn A.18 (Closed Set).
A set F ⊂ S is closed IFF for every convergent sequence contained in F , the limit
of the sequence is also in F .
A closed set contains all its limit points. That is , if (xk) is a convergent sequence
of points in S, then limk→∞ xk is in S as well.

Defn A.19 (Open Set).
A subset of an arbitrary metric space S is open iff its complement is closed, and
closed iff its complement is open.
A set S ∈ Rk is called open if, ∀x ∈ S∃ϵ > 0 s.t. y ∈ B(ϵ, x), ρ(x, y) < ϵ is in S.

If F is a closed, bounded subset of (R, ‖.‖), then supF ∈ F .

• A set S ⊂ Rk is open iff its complement is closed.

• the union of any number of open sets is open

• the intersection of a finite number of open sets is open.

• the intersection of any number of closed sets is closed

• the union of a finite number of closed sets is closed.

Defn A.20 (Boundary and Closure).
A point x ∈ S is called an interior point of S if the set {y : ρ(y, x) < ϵ} is contained
in S for all ϵ > 0 sufficiently small. A point is called a boundary point if {y :
ρ(y, x) < ϵ}∩Sc is non-empty for all ϵ > 0 sufficiently small. The set of all boundary
points in A is denoted by ∂A.
The closure of a set S is the set S combined with all points that are the limits of
sequence of points in S.
Defn A.21 (Complete Set).
A subset A ⊂ S is said to be complete iff every cauchy sequence in A converges to
some point in A.
Defn A.22 (Compact Set).
The set K ⊂ S is called compact if every sequence contained in K has a subse-
quence that converges to a point inK.
Defn A.23 (Convex Set).
A set S ⊂ Rk is called convex if, ∀λ ∈ [0, 1] and a, a′ ∈ S, we have λ+(1−λ)a′ ∈ S.
(i.e. all convex combinations of two points in a set are also in the set).
Theorem A.2 (Bolzano-Weierstrass).
Every bounded sequence in euclidian space (Rk, d2) has at least one convergent
subsequence.
Theorem A.3 (Heine-Borel).
A subset (Rk, d2) is precompact in the same iff it is bounded and compact.
IOW : Compact⇔ Closed ∧ Bounded
Theorem A.4.
All metrics on Rk induced by a norm are equivalent.

A.4 Functions
A function f from set A to B, written as A 3 x 7→ f(x) ∈ B or f : A→B is a rule
associating every element in A to one and only one element in B. The point b is
alsowritten as f(a), and is called the image of a under f . ForD ⊂ B, the set f−1(D)
is the set of all points in A that map into D under F, and is called the preimage of D
under F. f−1(D) := {a ∈ A : f(a) ∈ D}
a function f : A→B is called
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• injective / one-to-one if distinct elements of A are always mapped into distinct
elements of B

• surjective / onto if every element of B is the image under f of at least one point
in A

• bijective if a function is both injective and surjective

Defn A.24 (Continuous functions).
A real valued function f onRk is continous at point a if ∀ϵ > 0, ∃δ > 0 s.t. ρ(x, a) <
δ =⇒ |f(x)− f(a)| < ϵ.
Equivalently, limx→a f(x) = f(a)
A function is said to be continuous on the set S ⊂ Rk if, ∀a ∈ S ∧ ∀ϵ > 0, ∃δ >
0 s.t. ∀{x : ρ(x, a) < δ}, |f(x)− f(a)| < ϵ. Equivalently, in limx→a f(x), we require
the sequence of points that converge to a to be entirely in S.

• The sum of two continuous functions is continuous

• The product of two continuous functions is continuous

• The quotient of two continuous functions is continuous at any point where
the denominator is nonzero

Defn A.25 (ϵ, δ definition of limit).

lim
x→c

f(x) = L⇐⇒ ∀ε > 0, ∃δ > 0, s.t. 0 < |x− c| < δ ⇒ |f(x)− L| < ε

Defn A.26 (Lipshitz Continuity).
Given two metric spaces (X , ρX), (Y, ρY ), a function f : X→Y is called Lipshitz
continuous if ∃K ∈ R s.t. ∀x1, x2 ∈ X ,

ρY (f(x1), f(x2)) ≤ KρX(x1, x2)

such aK is referred to as a Lipshitz constant for the function f .
A Real valued function f : R→R is Lipschitz if ∃K > 0 such that

|f(x1)− f(x2)| ≤ K|x1 − x2|

This limits how fast a function can change. Every function that has bounded first-
derivatives is Lipshitz continuous. A differentiable function is Lipshitz if and
only if it has a bounded derivative.

Defn A.27 (Holder Continuity).
A function defined on X is said to be Holder of order α > 0 if ∃M ≥ 0 such that

ρY (f(x), f(y)) ≤MρX(x, y)α ∀x, y ∈ X

this is also called Uniform Lipshitz.

Theorem A.5 (Continuity).
A function f S→Y is continuous iff the preimage f−1(G) of every open set G ⊂ Y
is open in S.

Defn A.28 (Continuous function).
f is continuous if ∀ϵ > 0, ∃δ > 0 s.t. |x− x0| < δ ∀ x =⇒ |f(x)− f(x0)| < ϵ.

Theorem A.6.
Let function f S→Y , where S, Y are metric spaces and f is continuous. If K ⊂ S
is compact, then so is f(K), the image ofK under f .

Example A.7 (Gamma Function).

Γ[α] :=

∫ ∞
0

tα−1e−tdt =

∫ 1

0

(log(1/t))
α−1

dt

Beta function : B(α, β) = Γ(α) · Γ(β)/Γ(α+ β)

Theorem A.8 (Weirstrass Maximum Theorem).
Let f : k→R, whereK ⊂ (S, ρ) (an arbitrary metric space). If f is continuous and
K is compact, then f attains its supremum and infimum onK.
In case of continuous functions on compact domains, optima always exist.

Defn A.29 (Differentiability).
The function f : R→R is differentiable at x0 if

∃ limR(x) =
(f(x)− f(x0))

(x− x0)
= f ′(x0)

, i.e. (f(x)− f(x0))/(x− x0) has a limit as x→x0.
The derivative of f at x0 is this limit and is denoted f ′(x0) or ∂f∂x |x=x0

Fact A.9 (Restrictiveness of Function Classes).
Differentiability ⊂ Continuity ⊂ ∃ Limit i.e. not all functions with limits are
continuous, not all continuous functions are differentiable.
More generally,
Continuously Differentiable ⊂ Lipshitz Continuous ⊂ α− Holder Continuous
⊂ Uniformly Continuous ⊂ Continuous

Fact A.10 (Properties of differentiable functions).

• Linearity: f, g : X→Y are differentiable at x, then f + g and αf are differ-
entiable at x with ∇ (f + g) (x) = ∇ f (x) +∇ g (x); ∇αf (x) = α∇ f (x)
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• Chain Rule: g · f differentiable with ∇ g · f (x) = ∇ g (f(x)) · ∇ f (x)

Theorem A.11 (Rolle’s theorem).
Let f : [a, b]→R, f is continuous and differentiable. f(a) = f(b) =⇒ ∃c ∈
[a, b] s.t. f ′(c) = 0.

Theorem A.12 (Mean Value theorem).
f : [a, b]→R, f is continuous and differentiable. Then,

f ′(c) =
f(b)− f(a)

b− a
Defn A.30 (Epigraph of a function).
The epigraph of a function f is epif := {(x, t) :} f(x) ≤ t (i.e. area above the
function).

Defn A.31 (Concavity and Convexity for Real-valued functions).
Let f : [a, b]→R, x, y ∈ [a, b]; t ∈ (0, 1). Then,

• F is convex if f((1− t)x+ ty) ≤ (1− t)f(x)+ tf(x). f ′′ ≥ 0: i.e. the epigraph
of f is a convex set.

• F is concave if f((1− t)x+ ty) ≥ (1− t)f(x) + tf(x). f ′′ ≤ 0

A.4.1 Fixed Points

Defn A.32 (Fixed Point).
Let T : S→S, where S is any set. An x∗ ∈ S is called a fixed point of T on S if
Tx∗ = x∗.

If S ⊂ R, then fixed points of T are those points in S where T meets the 45 degree
line.

Theorem A.13 (Brouwer’s Fixed Point Theorem).
Consider the space (Rk, d), where d is themetric induced by any norm. LetS ⊂ Rk,
and let T : S→S. If T is continuous and S is both compact and convex, then T has
at least one fixed point in S.

Defn A.33 (Mapping Categories).
Let (S, ρ) be a metric space. T : S→S is a map. it is called

• nonexpansive if ρ(Tx, Ty) ≤ ρ(x, y) ∀x, y ∈ S

• contracting if ρ(Tx, Ty) < ρ(x, y) ∀x, y ∈ S, x 6= y

• uniformly contracting with modulus λ ∈ [0, 1) if ρ(Tx, Ty) < λρ(x, y) ∀x, y ∈
S, x 6= y

Theorem A.14 (Hahn-Banach Fixed Point Theorem).
Let T : S→S, where (S, ρ) is a complete metric space. If T is a uniform contraction
on S with modulus λ, then T has a unique fixed point x∗ ∈ S. Moreover for every
x ∈ S and n ∈ N, we have ρ(Tnx, x∗) ≤ λnρ(x, x∗) =⇒ Tnx→x∗ as n→∞

A.5 Measure
Defn A.34 (σ− field / Event Space).
A σ-algebra (also σ-field) is a collection F of subsets of Ω that

• Ω ∈ F ∧ ∅ ∈ F : includes Ω itself and the null set

• A ∈ F =⇒ Ω−A =: AC ∈ F : is closed under complement

• A1, A2, · · · ∈ F =⇒
⋃∞
i=1Ai ∈ F : is closed under countable unions.

This is effectively the definition of the event space S for a sample space Ω.

Defn A.35 (Measure).
A measure µ on a set X assigns a nonnegative value µ(A) to many subsets of X .
For a collection F subsets of Ω, a measure is a map

µ : F→[0,∞]

Given A ∈ F , µ(A) is a measure of the ‘size’ of set A.
A function µ on a σ− field A of X is a measure of

• Null empty-set: µ(∅) = 0

• Non-Negativity: ∀A ∈ A, 0 ≤ µ(A) ≤ ∞ =⇒ µ : A→[0,∞]

• Countable Additivity: IfA1, A2, . . . are disjoint elements ofA (i.e. Ai∩Aj =
∅ ∀i 6= j),

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai)

Existence ensured by Caratheodory’s Extension Theorem.

Examples of measures µ:

• If X is countable, let µ(A) = #A = number of points in A. This counting
measure can be defined for any subset A ⊂ X , then the σ− field A is the
collection of all subsets of X =: X = 2X , the power set of X .

• If X = Rk, define µ(A) =
∫
. . .A

∫
dx1 . . . dxk
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Defn A.36 (Borel Set).
Given a topology on Ω, a Borel σ-field is a σ field generated by the family of open
subsets of Ω, i.e. the smallest σ field that contains all the open sets.
The Lebesguemeasure of a setA can be defined implicitly for any set B in a σ− field
B called theBorel sets ofRn. B is the smallest σ− field that contains all ‘rectangles’

(a1, b1)× · · · × (an, bn) := {x ∈ Rn : ai < xi < bi, i = 1, . . . , n}

Example A.15 (Uncountable Sample Spaces).
Suppose Ω = R. We say that I ⊂ R is a bounded interval if ∃a, b, a < b s.t. I ∈
{[a, b], (a, b), (a, b], [a, b)}. Define C1 := {I ⊂ R, I is a bounded interval}, the small-
estσ− algebra that contains C1 is denoted byB1 and is called the Borelianσ−algebra
Thus, a countable union of open intervals belongs to the Borelean σ-algebra. Since
every open subset of R can be written as a countable union of open intervals, it is
therefore also a Borelean set. The closed subsets are Borelean since a closed set is
the complement of an open set.
Defn A.37 (Lebesgue Measure).
Basic problem: how to assign each subset of Rk, i.e. each element of P(Rk) a real
number that will represent its ‘size’.
With Rn, n = 1, 2, 3, µ(A) is the length, area, or volume of A, respectively. µ is a
Lebesgue measure on Rk.
Defn A.38 (Measure Space).
If A is a σ−field of subsets of X , the pair (X ,A) is called a measurable space, and
if µ is a measure on A, the triple (X ,A, µ) is called a measure space.
Defn A.39 (Probability Space).
Ameasure µ is called a probability measure if µ(X ) = 1, and then the triple (X ,A, µ)
is called a probability space.
Defn A.40 (Measurable functions).
If (X ,A) is a measurable space and f is a real-valued function on X , f if measure-
able if

f−1(B) := {x ∈ X : f(x) ∈ B} ∈ A

for every Borel set B.

A.6 Integration
An integral is amap assigning a number to a function, where the number is viewed
as the area/volume ‘under’ the function. Given a measure space (Ω,F , µ) and a
measureable function f : Ω→R, an integral

∫
fdµ is a map from f to number such

that the following three properties hold

• If f ≥ 0, then
∫
fdµ ≥ 0

• ∀a ∈ R,
∫
aϕdµ = a

∫
ϕdµ

•
∫
(f + g)dµ =

∫
fdµ+

∫
gdµ

Defn A.41 (Riemann Sums).
Suppose f is a bounded function defined on [a, b]. An increasing sequence P :=
{a = x0 < x1 < x2 < · · · < xn = b} defines a partition of the interval. The mesh
size of the partition is defined to be

|P | = max {|xi − xi−1| : i = 1, . . . , N}

To each partition we associate two approximations of the area under the graph of
f , by the rules

U(f, P ) :=

N∑
j=1

sup
x∈[xj−1,xj ]

f(x)(xj − xj−1)

L(f, P ) :=

N∑
j=1

inf
x∈[xj−1,xj ]

f(x)(xj − xj−1)

these are called the upper and lower Riemann Sums For any partition, U(f, P ) ≥
L(f, P ).

Defn A.42 (Riemann Integrability).
A bounded function f defined on an interval [a, b] is said to be Riemann integrable
if

inf
P
U(f, P ) = sup

P
L(f, P );

∫ b

a

f(x)dx =: Reimann Integral

Suppose f is piecewise continuous, defined on [a, b]. Then, f is Reimann integrable
and ∫ b

a

f(x)dx = lim
N→∞

N∑
j=1

f

(
a+

j

N
(b− a)

)
b− a
N

Theorem A.16 (Fundamental Theorem of Calculus).
If f is continuous on [a, b] then F (x) :=

∫ x
a
f(t)dt is differentiable on the open

interval (a, b) and F ′(x) = f(x) ∀x ∈ (a, b). F is called the anti-derivative.∫ b

a

f(t)dt = F (b)− F (a)
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Defn A.43 (Indicator Function).
Given a measurable space (Ω,F) and a set E ∈ F , we define an indicator function
fe : Ω→R defined by

fE(ω) = 1ω∈E

This function is measurable.

Defn A.44 (Integration of Simple Functions).
Any function f of the form f(ω)

∑n
i=1 ai1ω∈Ei ∀ai ∈ R∧ E1, . . .En ∈ F constitutes

a finite partition of Ω. A countable sum of measurable functions is measurable,
which implies that f is measurable. Then we define∫

fdµ :=

n∑
i=1

aiµ(Ei)

Defn A.45 (Lebesgue Integral / Integration of Measurable Functions).
For any measurable function f , define f+ := max {f, 0} and f− := max {−f, 0},
which are also measurable. We also have f = f+ − f− and |f | = f+ − f−. When
either

∫
f−dµ or

∫
f−dµ is finite, we define the integral∫

fdµ :=

∫
f+dµ−

∫
f−dµ

When both
∫
f−dµ and

∫
f−dµ are finite, we say f is integrable w.r.t. µ. Lebesgue

integrals intuitively slice the function horizontally, while Reimann integrals slice
vertically.

A.7 Probability Theory
Defn A.46 (Kolmogorov Axioms).
The triple (Ω,S, P ) is a probability space if it satisfies the following

• Unitarity: Pr (Ω) = 1

• Non Negativity: ∀s ∈ S,Pr (a) ≥ 0 Pr (a) ∈ R ∧Pr (a) <∞

• Countable Additivity: If A1, A2, . . . ,∈ S are pairwise disjoint[i.e. ∀i 6= j, Ai ∩
Aj = ∅], Then

P
( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai)

Other properties for any event A,B

• A ⊂ B =⇒ Pr (A) ≤ Pr (B)

• Pr (A) ≤ 1

• Pr (A) = 1−Pr (Ac)

• Pr (∅) = 0

Stated differently:

Defn A.47 (Probability).
Let P be a probability measure on ameasurable space (E ,B), so (E ,B, P ) is a prob-
ability space. Sets B ∈ B are called events, points e ∈ E are called outcomes, and
P (B) is called the probability of B.
Let (E ,B) be a measurable space. Let P : B→[0, 1] be a ‘set’ function mapping the
σ− algebra of subsets of E into the real line. We say P is a probability measure if,
for events A,B ∈ E ,

1. 0 ≤ Pr (A) ≤ 1: Events range from never happening to always happening

2. Pr (E) = 1: Something must happen

3. Pr (∅) = 0: Nothing never happens

4. Pr (A) +Pr (Ac) = 1: A must either happen or not happen

5. Pr (∪∞n=1An) =
∑∞
n=1 Pr (An): σ− additivity for countable disjoint events

• Boole’s Inequality Pr (∪∞n=1An) ≤
∑∞
n=1 for any sequence of events

6. Monotonicity: for events A,B;A ⊆ B =⇒ Pr (A) ≤ Pr (B)

Defn A.48 (Random Variable).
A measurable function X : Ω→R s.t. ∀r ∈ R, {ω ∈ Ω : X(ω) ≤ r} ∈ E (event
space) is called a random variable. In other words, a random variable is a function
from the sample space to the real line R, and the probability of its value being in a
given interval is well defined.

Defn A.49 (Probability Distribution).
The probability measure PX living on (R,B(R)) such that for any A ∈ B(R),

PX(A) = P ({e ∈ E : X(e) ∈ A}) =: P (X ∈ A)

for Borel sets A is called the distribution of X . The notation X ∼ Q is used to
indicate that X has distribution Q =⇒ PX = Q.
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Defn A.50 (Cumulative Distribution Function).
Map F : R→[0, 1] such that

FX(x) = P (X ≤ x) = P ({e ∈ E : X(e) ≤ x}) =: Px((−∞, x])

for x ∈ R
Properties of CDF F (u)

• Boundary property: limu→−∞ F (u) = 0, limu→∞ F (u) = 1

• Nondecreasing: F (x) ≤ F (y) if x ≤ y

• Right continuous: limu↓x F (u) = F (x)

A.7.1 Densities

Theorem A.17 (Radon-Nikodym).
If a finite measure P is absolutely continuous wrt a σ− finite measure µ, then ∃ a
nonnegative measurable function f s.t.

P (A) =

∫
A

fdµ =:

∫
f1Adµ

The function f in this theorem is called the Radon-Nikodym derivative of P with
respect to µ, or the density of P with respect to µ, denoted

f =
dP

dµ

Defn A.51 (Absolutely Continuous Random Variables).
If a random variable has density p wrt Lebesgue measure on R, then X or its dis-
tribution PX is called absolutely continuous with density p. Then, from R-N ,

FX(x) = P (X ≤ x) = PX((−∞, x]) =
∫ x

−∞
p(u)du

Using the fundamental theorem of calculus, p can be found from the CDF FX by
differentiation, p(x) = F ′X(x).

Defn A.52 (Discrete Random Variables:).
Let X0 be a countable subset of R. The measure µ := µ(B) = #(X ∩ B) for borel
sets B is also called counting measure on X0. Then,∫

fdµ =
∑
x∈X0

f(x)

Suppose X is a random variable s.t. P (X ∈ X0) = PX(X0 = 1). Then, X is called
a discrete random variable.
The density p of PX w.r.t. µ satisfies

P (X ∈ A) = PX(A) =

∫
A

pdµ =
∑
x∈X0

p(x)1A(x)

In particular, if A = {y} s.t. y ∈ X0, then X ∈ A⇔ X = y, and so

P (X = y) =
∑
x∈X0

p(x)1{y}(x) = p(y)

The density p is called the mass function for X.

A.7.2 Moments

Defn A.53 (Expectation:).
If X is a random variable on a probability space (E ,B, P ), then the expectation of
X ∼ PX (i.e. density p), is defined as

E [X] :=

∫
XdP =

∫
xdPX(x) =

∫
xp(x)d(x)

For discrete RV X with P (X ∈ X0) = 1 for a countable set X0, if µ is counting
measure on X0, and p is the mass function given by p(x) = P (X = x),

E [X] :=

∫
xdPX(x) =

∫
xp(x)dµ(x) =

∑
x∈X0

xp(x)

Defn A.54 (Variance).
The variance of a random variable X with finite expectation is defined as

V [X] = E [X − E [X]]
2

If X is absolutely continuous with density p,

V [X] =

∫
(x− E [X])2p(x)dx

If X is discrete with mass function p,

V [X] =
∑
x∈X0

(x− E [X])2p(x)
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A.7.3 Random vectors

If X1, . . . , Xn are random variables, then the function X : E→Rn defined by

X(e) =

X1(e)
...

Xn(e)

 , e ∈ E

is called a random vector. The definitions above extend naturally to random vectors,
e.g. the distribution PX of X is

PX(B) = P (X ∈ B) := P ({e ∈ E : X(e) ∈ B})

for Borel sets B ∈ Rn. The expectation of a random vector X is the vector of
expectations

E [X] =

E [X1]
...

E [Xn]


A random vector is said to be absolutely continuous if the CDF can be written as

F (x1, x2, . . . , xn) =

∫ x1

−∞

∫ x2

−∞
· · ·
∫ xn

−∞
f(z1, . . . , zn)dz1 . . . dzn

Defn A.55 (Random Matrices).
A matrixW is called a random matrix if the entriesWij are random variables.

Defn A.56 (Covariance).
The covariance of a random vectorX is the matrix of covariances of the variables in
X

[Cov(X)]ij = Cov(Xi, Xj)

If µ = E [X] and (X − µ)′ is the transpose of the mean deviation, then

Cov(Xi, Xj) := E [Xi − µi] (Xjµj) = E [(X − µ)(X − µ)′]ij
so

Cov(X) = E [(X − µ)(X − µ)′] = E [XX ′]− µµ′

A.7.4 Product Measures and Independence

Let (X ,A, µ) and (Y,B, ν) be measure spaces. Then ∃ a unique product measure
µ× ν on (X ×Y ,A∨B) such that (µ× ν)(A×B) = µ(A)ν(B) ∀A ∈ A, B ∈ B. The

σ-fieldA∨B is defined formally as the smallest σ− field containing all sets A×B
with A ∈ A , B ∈ B.

Theorem A.18 (Fubini).
Integration against the product measure µ × ν can be accomplished by iterated
integration against µ and ν, in either order∫

d(µ× ν) =
∫ [∫

f(x, y)dν(y)

]
dµ(x) =

∫ [∫
f(x, y)dµ(x)

]
dν(y)

Defn A.57 (Independence of random variables).
Suppose Xi : Ω→R, 1 ≤ i ≤ m are random variables.
X1, X2, . . . , Xm are indepepndent for all B1, B2, . . . , Bm Borel subsets of R, it is
true that

Pr (Xi ∈ Bi, ∀i 1 ≤ i ≤ m) = Pr (X1 ∈ B1) . . .Pr (Xm ∈ Bm)

A.7.5 Conditional Expectations

Defn A.58 (Conditional Probability).
Given two r.v.s X,Y with finite second moments, E [Y |X] is defined as a σ(X)−
measurable functionm(X) such that

m(.) argmin
h

EP [Y −m(X)]
2

For continuousX,Y ∈ R2 with pdf f(x, y), For any y∗ ∈ R, the conditional proba-
bility of the event {Y ≤ y∗} := PY |X(Y ≤ y∗|x) is defined as a function satisfying∫ x∗

−∞
PY |X(Y ≤ y∗|x)fX(dx) = PXY (X ≤ x∗, Y ≤ y∗) ∀x∗ ∈ R

The conditional CDF is

FY |X(y∗) = PY |X(Y ≤ y∗|x) =
∫ y∗

−∞

f(x, y)

fX(x)︸ ︷︷ ︸
conditional density f(y|x)

dy

Defn A.59 (Bounded Lipshitz Distance).
Let X ∼ FX ;Y ∼ FY . Define the the class of ‘Bounded Lipshitz functions’ with
Lipshitz constant 1 as

BL(1) :=

{
h : R→R s.t. |h(x)− h(x)| ≤ |x− y| ∧ sup

x∈R
|h(x)| ≤ 1

}
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Then the Bounded Lipshitz Distance is

dBL(FX , FY ) := sup
h∈BL(1)

|EFX [h(X)]− EFY [h(Y )]|

FX and FY are said to be ‘close’ if dBL(FX , FY ) is small.

A.7.6 Order Statistics

Fact A.19 (Distribution of Order Statistics).
Suppose X1, X2, . . . , Xn are IID r.v.s with distribution Fx (). To each ω ∈ Ω define
max {X1, . . . , Xn} (ω) = max {X1(ω), . . . , Xn(ω)}. We want the distribution F of
max {X1, . . . , Xn}

G(r) = Pr ({ω ∈ Ω;max {X1, . . . , Xn} ≤ r})

= Pr (∩ni=1[Xi ≤ r]) =
N∏
i=1

Pr (Xi ≤ r)

=

N∏
i=1

F (r) = Fn(r)

If F has a density, G has a density too

g(r) = G′(r) = nFn−1(r)f (r)

More generally, the distribution function of X(m) is given by F(m)(
F(m)(t) =

∑n
i=m

niF(t)i(1− F(t))n−i ,−∞ < t <∞

)
Severini (2005, chap 7).

Example A.20 (Max of n iid U [0, 1] vars).
has a distribution with denisty g(r) = nrn−1

Example A.21 (Distribution of second highest value Y 2 ).
(Useful for Vickrey auctions)

FY 2 (r) = Fm(r) +m(1− F(r))Fm−1(r)
fY 2 (r) = m(m− 1)(1− F(r))Fm−2(r)f(r)

A.8 Linear Functions and Linear Algebra
A.8.1 Linear Functions

Defn A.60 (Linear Function / Homomorphism).
A function f : X→Y between two linear spaces X,Y is linear if it preserves the
linearity of sets X and Y through the following properties (∀ x1,x2 ∈ X)

• Additivity f(x1 + x2) = f(x1) + f(x2)

• Homogeneity f(αx1) = αf(x1)

• f : V→W linear and bijective is called an isomorphism

• A linear function that maps onto R is called a linear functional.

• A linear function that maps onto itself is called a linear operator / automor-
phism.

Every linear function mapping from a finite-dimensional domainX can be rep-
resented by a matrix.

Fact A.22 (Typology of Linear functions).
Linear Functions f(αx1 + (1− α)x2) = αf(x1 + (1− α)f(x2) Imply

• Additivity : f(x1 + x2 = f(x1) + f(x2) generalises to

– Convex Functions f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) gener-
alises to

– Quasiconvex functions f(αx1 + (1− α)x2) ≤ min(f(x1,x2)

• Homogeneity: f(αx) = αf(x) generalises to

– Homogeneous functions f(αx) = αkf(x) , α > 0 generalises to
– Homothetic functions f(x1) = f(x2) =⇒ f(αx1) = f(αx2) α > 0

Defn A.61 (Inner Product / Dot Product).
An inner product on a vector space V is a mapping 〈·, ·〉 : V × V→R that satisfies,
∀x, y, z ∈ V ∧ a inR

• 〈x, x〉 ≥ 0 and 〈x, x〉 = 0⇔ x = 0

• 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉

• 〈x, ay〉 = a 〈x, y〉

• 〈x, y〉 = 〈y, x〉
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x′y = 〈x,y〉 :=
n∑
i=1

xiyi

This generalises to an inner product of two functionals u, v : R→R where

〈u, v〉 =
∫ b

a

u(x)v(x)dx

An inner product defines a norm ‖v‖ =
√
〈v, v〉. This gives us a restatement of

the Cauchy-Schwartz inequality |〈x, y〉| ≤ ‖x‖ ‖y‖

Defn A.62 (Orthogonal / Orthonormal Vectors).

1. 〈x, y〉 = 0 =⇒ x⊥y (Orthogonality). Furthermore, if ‖x‖ = 1 = ‖y‖, then
they are said to be orthonormal.

2. 〈x, y〉 = ±1 =⇒ x parallel to y

Defn A.63 (Symmetric, Positive Definite Matrices).
A ∈ Rn×n is symmetric, positive definite if ∀x ∈ V : x′Ax > 0.

Defn A.64 (Hadamard Product).
For conformable matrices A and B with identical dimensions, the element-wise
product

cij = aij × bij ∀i, j ∈ dim(A) ≡ A�B

is called the hadamard product.

Defn A.65 (Euclidian Norm).
Euclidian norm of a vector x ∈ RN is defined as

‖x‖ :=
√
〈x,x〉

Fact A.23 (Angle between two vectors ).
Angle between u and v is given by

cos θ =
〈u,v〉
‖u‖ ‖v‖

Theorem A.24 (Cauchy-Schwarz Inequality).
‖〈x, y〉‖ ≤ ‖x‖ ‖y‖

Defn A.66 (Trace).

Trace(A) =
N∑
n=1

ann

For conformable matrices A,B; tr(AB) = tr(BA)

Defn A.67 (Eigenvalues and Eigenvectors).
For a square matrix A, scalar λ and vector x that satisfies Ax = λx constitute an
eigenvalue and eigenvector respectively.

Defn A.68 (Orthogonal / Orthonormal Matrix).
A square matrix A ∈ Rn×n is orthogonal iff its columns are orthonormal so that

AA′ = I = A′A =⇒ A−1 = A′

Defn A.69 (Kernel, Rank Nullity).

For Φ : V→W , we define the kernel/null space as

ker(Φ) := Φ−1(0W ) = {v ∈ V : Φ(v) = 0W }

and the image/range

Im(Φ) := Φ(V ) = {w ∈W |∃v ∈ V : Φ(v) = w}

The dimension of the image is called the rank of Φ. The dimension of the kernel
is called the nullity of Φ. If X is finite dimensional,

rank Φ+ nullity Φ = dimX

This is the rank-nullity result
A linear function Φ has full rank if rankΦ(X) = min{rankX, rankY }

Defn A.70.
Nonsingular Matrices
A matrix A ∈ Rn×n with columns a1, . . . an is non-singular or one-to-one if

A is one-to-one⇔ a1, . . . an is a basis⇔ kerA = {0}

A.8.2 Projection

Defn A.71 (Projection).
Let V be a vector space and U ⊆ V is a subspace of V . A linear mapping π : V→U
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is called a projection if π2 = π ◦ π = π. Since homeomorphisms can be expressed
by a transformation matrix, projections can be represented as a projection matrix
Pπ with the property P2

π = P. Projection matrices are always symmetric.

Example A.25 (Projection onto general subspaces).
We look at orthogonal projections of vectors y ∈ Rn onto lower dimensional sub-
spaces X ⊆ Rn with dim(X) = m ≥ 1. Assume (x1, . . . ,xm) is an ordered basis
of X . Therefore, any projection πU (x) =

∑m
i=1 λixi = Xλ. The problem, then, is

to find λ1, . . . , λm coordinates of the projection (with respect to basis X) where
πU (x) = Bλ given X = [x1, . . . ,xm] ∈ Rn×m and λ = [λ1, . . . , λm]

T ∈ Rm. The
solution is the familiar OLS coef vector

λ = (X′X)−1X′y

where (X′X)
−1

X′ is also called the pseudo-inverse ofB, which can be computed
as long as (X′X)

−1 is full rank.
The projection matrix is therefore

Pπ = X (X′X)
−1

X′

Defn A.72 (Gram-Schmidt Orthogonalisation).
Anybasis (b1, . . . , bn) of ann−dimensional vector spaceV can be transformed into
an orthogonal/orthonormal basis (u1, . . . ,un)where span[b1, . . . , bn] = span[u1, . . . ,un]
as follows

u1 := b1

uk := bk − πspan[u1,...,uk−1](bk) k = 2, . . . , n

where the kth basis vector bk is projected onto the subspace spanned by the first
k − 1 constructed orthogonal vectors u1, . . . ,uk−1.
This is the same as FWL Theorem, but older.

A.8.3 Matrix Decompositions

Defn A.73 (Spectral / Eigenvalue Decomposition).
A square matrixA admits to an eigen-decomposition if it can be factorised asA =
QΛQ−1 where

• Q is a n× nmatrix whose ith column is the eigenvector qi of A (orthogonal
matrix)

• Λ is a diagonal matrix with corresponding eigenvalues Λii = λi

Fact A.26 (Orthogonal Matrices).
If Q,N are N ×N orthogonal matrices

• QT = Q−1 is also orthogonal

• QN is orthogonal

• det(Q) ∈ {−1, 1}

Defn A.74 (Cholesky Decomposition).
If A is positive definite, then it admits to

• A = RTR where R is non-singular upper triangular

• A = LLT where L is non-singular lower triangular

Defn A.75 (QR Decomposition).
If A is a N ×K matrix with full column rank, ∃ a factorisation A = QR where

• Q is an orthogonal matrix

• R isK ×K upper triangular and nonsingular (invertible)

Example A.27 (QR Decomposition for OLS).
β̂ = (X′X)

−1
X′y is often numerically unstable, so we can define X = QR. The,

the OLS estimate can be written as β̂ = (R)
−1

Q′y. The homoscedastic variance is
V
[
β̂
]
= σ2 (X′X)

−1
= (R′R)

−1
σ2.

Using the same decomposition, ŷ = Xβ̂ = QQ′y.

Defn A.76 (Singular Value Decomposition).
Any n× pmatrix Z may be written as

Z = UΣV′

where U is a n × n orthogonal matrix, V is a p × p orthogonal matrix, and Σ is a
n× p diagnonal matrix with non-negative elements.

Example A.28 (SVD of covariance matrix equivalence with spectral decomposition).
For a square covariance matrix X′X, if X = USV′, then

X′X = VSTUTUSVT = VDV′

where D = S2 contains the square singular values. In other words,

U = evec(XX′), V = evec(X′X), S2 = eval(X′X) = eval(XX′)
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A.8.4 Matrix Identities

For conformable matrices A,B,C,

A(B+C) = AB+AC

A+B⊤ = A⊤ +B⊤

AB⊤ = B⊤A⊤

(AB)
−1

= (B)
−1

(A)
−1

trace(ABC) = trace(CBA) = trace(BCA)

A.8.5 Partitioned Matrices

Defn A.77 (Partitioned Matrices).
It can be useful to partition a matrix as follows

X =

X11 · · · X1n

... . . . ...
Xm1 · · · Xmn

 =

[
X11 X12

X21 X22

]

Multiplying a partitioned matrix with a stacked vector c

Xc =

[
X11 X12

X21 X22

] [
c1
c2

]
=

[
X11c1 +X12c2
X21c1 +X22c2

]
Fact A.29 (Inverse of 2× 2 partitioned matrix).[

X11 X12

X21 X22

]−1
=

[
X−111 +X−111 X12F2X21 (X11)

−1 − (X11)
−1
X12F2

−F2X21 (X11)
−1

F2

]
where F2 =

(
X22 −X21 (X11)

−1
X12

)−1
A.9 Function Spaces
Almost all of this is based on / stolen from Larry Wasserman
http://www.stat.cmu.edu/ larry/=sml/functionspaces.pdf andRacine, Su, andUl-
lah (2013).

Defn A.78 (Function spaces).
Let U be any set, let bU be the collection of all bounded functions s.t. f : U→R (i.e.
supx∈U |f(x)| <∞ and let

d∞(f, g) := ‖f − g‖∞ := sup
x∈U
|f(x)− g(x)|

Spaces of functions can be treated as linear vector spaces
Defn A.79 (Inner Product and Norm in function spaces).

〈f, g〉 =
∫
f(x)g(x)dx

which leads to a norm for functions

‖f‖22 =

∫
f2(x)dx

Defn A.80 (Eigenvalues and Eigenfunctions).
An operator O is a higher-order function that maps from one function to another.
A derivative and integral are both operators.
Operators can have eigenvalues and eigenfunctions such that

Of = λf

exp ax is an eigenfunction for both differentiation and integration.
Defn A.81 (Hilbert SpaceH).
is a complete (:= every Cauchy sequence in the space converges to a point in it),
inner product space. Equivalently, it is a vector space endowed with an inner product
and an associated norm and metric such that every Cauchy sequence has a limit inH.
Intuitively, it means it doesn’t have any ‘holes’ in it (Q is not a complete space
because

√
2 is missing from it).

Every Hilbert space is a Banach space but the reverse is not true in general. In a
hilbert space, ‖fn − f‖→0 as n→∞.
If V is a hilbert space and L is a closed subspace then ∀v, ∃y ∈ L called a projection
of v onto L that minimises ‖v − z‖ over z ∈ L. The set of elements orthogonal
every z ∈ L is denoted L⊥. Every v ∈ L can be written as v = w+ z where z is the
projection of v onto L and w ∈ L⊥.
Example A.30 (R).
, the set of random variables defined on a common probability space {Σ,F , µ}
is a Hilbert space with inner product 〈X,Y 〉 = E [XY ], associated norm ‖X‖ =√
E [X2] and metric ‖X − Y ‖.

Example A.31 (L2(w)).
the space of Borel-measurable real functions f on R given density w(x) satisfying∫∞
−∞ f(x)2w(x)dx < ∞ and associated norm ‖f‖ =

√
〈f, f〉 and metric ‖f − g‖ is

a hilbert space.
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Defn A.82 (Orthogonal / Direct Sum).
If L and M are spaces such that every ℓ ∈ L is orthogonal to every m ∈ M , then
we define the orthogonal sum as

L⊕M = {l +m : l ∈ L,m ∈M}

A set of vectors {et, t ∈ T} is orthonormal if 〈es, et〉 = 0when s 6= t and ‖et‖ = 1∀T .
This is also called an orthonormal basis. Every hilbert space has an orthonor-
mal basis. A Hilbert space is said to be separable if there exists a countable
orthonormal basis.

A.9.1 Lp spaces

Let F be a collection of functions [a, b] 7→ R. The Lp norm on F is defined by

‖f‖p =

(∫ b

a

|f(x)|p dx

)1/p

For p =∞, we define the sup norm ‖f‖∞ =
∑
x |f(x)|.

The space Lp(a, b) is defined as

Lp(a, b) :=
{
f : [a, b]→R : ‖f‖p <∞

}
Every Lp space is a Banach Space.

• Cauchy Schwartz:
(∫
f(x)g(x)dx

)2 ≤ ∫ f2(x)dx ∫ g2(x)dx
• Minkowski : ‖f + g‖p ≤ ‖f‖p + ‖g‖p where p > 1

• Holder: ‖fg‖1 ≤ ‖f‖p ‖g‖q where (1/p) + (1/q) = 1

Example A.32 (L2 space).
Functions where ‖f‖22 <∞ are said to be square-integrable, and the space of square-
integrable functions is called L2. Many familiar results from vector spaces carries
over into L2.
L2(a, b) is a Hilbertspace. The inner product between two functions f, g ∈ L2(a, b)

is
∫ b
a
f(x)g(x)dx and the norm of f is ‖f‖2 =

∫ b
a
f2(x)dx. With this inner product,

L2(a, b) is a separable Hilbert space; that is, we can find a countable orthonormal
basis ϕ1, ϕ2, . . . ; , that is ‖ϕj‖ = 1 ∀j, and

∫ b
a
ϕi(x)ϕj(x) = 0 ∀i 6= j. It follows that

if f ∈ L2(a, b),

f(x) =

∞∑
j=1

θjϕj(x) where θj =
∫ b

a

f(x)ϕj(x)dx

are the coefficients. Parseval’s identity
∫ b
a
f2(x)dx =

∑∞
j=1 θ

2
j .

The span of L2 is 
∞∑
j=1

ajϕj(x) : a1, . . . , an ∈ R


Theprojection of f =

∑∞
j=1 θjϕj(x) onto the span {ϕ1, . . . , ϕn} is fn =

∑n
j=1 θjϕj(x),

which we call the n-term linear approximation of f .

Defn A.83 (Bases in function space).
A sequence of functions ψ1, . . . can be considered a basis. An orthonormal basis
is one that admits to

f =

∞∑
j=1

〈f, ψj〉ψj

Mononomials 1, x, x2, . . . are a basis for L2 on [0, 1] and R, but they aren’t orthog-
onal.

Example A.33 (Famous Bases).
A popular basis for L2 on [0, 1] are the sines and cosines, which may be written
as ϕ1 = 1, ϕ2k = sin 2kπx , ϕ2k+1 = cos 2kπx. Coefficients in this expansion are
referred to as the Fourier transform of the original function.
A cosine basis on [0, 1] is

ϕ0(x) = 1, ϕj(x) =
√
2 cos(2πjx) , j = 1, 2, . . .

Legendre basis on (−1, 1) is

P0(x) = 1, P1(x) = x, P2(x) =
1

2

(
3x2 − 1

)
, P3(x) =

1

2

(
5x3 − 3x

)
, . . .

The Haar basis on [0,1] consists of functions{
ϕ(x), ψjk(x) : j = 0, 1, . . . , k = 0, 1, . . . , 2j − 1

}
where

ϕ(x) =

{
1 if 0 ≤ x < 1
0 otherwise
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ψjk(x) = 2j/2ψ
(
2jx− k

)
and

ψ(x) =


−1 if 0 ≤ x ≤ 1

2

1 if 1
2
< x ≤ 1

This is a doubly indexed set of functions so when f is expanded in this basis we
write

f(x) = αϕ(x) +

∞∑
j=1

2j−1∑
k=1

βjkψjk(x)

where α =
∫ 1

0
f(x)ϕ(x)dx and βjk =

∫ 1

0
f(x)ψjk(x)dx. The Haar basis is an exam-

ple of a wavelet basis.

Defn A.84 (Holder Spaces).
Let β be a positive integer. Let T ⊂ R. The Holder space H(β, L) is the set of
functions g : T → R such that∣∣∣g(β−1)(y)− g(β−1)(x)∣∣∣ ≤ L|x− y|, for all x, y ∈ T

The special case β = 1 is sometimes called the Lipschitz space. If β = 2 then we
have

|g′(x)− g′(y)| ≤ L|x− y|, for all x, y
Roughly speaking, thismeans that the functions have bounded second derivatives.

Multivariate version There is also amultivariate version ofHolder spaces. Let T ⊂
Rd. Given a vector s = (s1, . . . , sd) , define |s| = s1 + · · · + sd, s! = s1! · · · sd!, xs =
xs11 · · ·x

sd
d and

Ds =
∂s1+···+sd

∂xs11 · · · ∂x
sd
d

The Hölder class H(β, L) is the set of functions g : T → R such that

|Dsg(x)−Dsg(y)| ≤ L‖x− y‖β−|s|

for all x, y and all s such that |s| = β − 1

Defn A.85 (Sobolev Space).
A Sobolev space is a space of functions possessing sufficiently many derivatives
for some application domain. Formally,

Let f be integrable on every bounded interval. Then f is weakly differentiable if
there exists a function f ′ that is integrable on every bounded interval, such that∫ y
x
f ′(s)ds = f(y)− f(x) whenever x ≤ y.We call f ′ the weak derivative of f. Let

Djf denote the jth weak derivative of f
The Sobolev space of orderm is defined by

Wm,p = {f ∈ Lp(0, 1) : ‖Dmf‖ ∈ Lp(0, 1)}

The Sobolev ball of orderm and radius c is defined by

Wm,p(c) =
{
f : f ∈Wm,p, ‖Dmf‖p ≤ c

}
Defn A.86 (Mercer Kernel and Theorem).
AMercer kernel is a continuous functionK : [a, b]× [a, b]→ R such thatK(x, y) =
K(y, x), and such thatK is positive semidefinite, meaning that

n∑
i=1

n∑
j=1

K (xi, xj) cicj ≥ 0

for all finite sets of points x1, . . . , xn ∈ [a, b] and all real numbers c1, . . . , cn. The
function

K(x, y) =

m−1∑
k=1

1

k!
xkyk +

∫ x∧y

0

(x− u)m−1(y − u)m−1

(m− 1)!2
du

is an example of a Mercer kernel. The most commonly used kernel is the Gaussian
kernel

K(x, y) = e−
∥x−y∥2

σ2

Defn A.87 (Reproducing Kernel Hilbert Spaces).
Given a kernelK, letKx(·) be the function obtained by fixing the first coordinate.
That is, Kx(y) = K(x, y). For the Gaussian kernel, Kx is a Normal, centered at x.
We can create functions by taking liner combinations of the kernel:

f(x) =

k∑
j=1

αjKxj (x)
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LetH0 denote all such functions:

H0 =

f :

k∑
j=1

αjKxj (x)


Given two such functions f(x) =

∑k
j=1 αjKxj (x) and g(x) =

∑m
j=1 βjKyj (x) we

define an inner product

〈f, g〉 = 〈f, g〉K =
∑
i

∑
j

αiβjK (xi, yj)

In general, f( and g) might be representable in more than one way. You can check
that 〈f, g〉K is independent of how f( or g) is represented. The inner product de-
fines a norm:

‖f‖K =
√
〈f, f, 〉 =

√∑
j

∑
k

αjαkK (xj , xk) =
√
αTKα

where α = (α1, . . . , αk)
T and K is the k × k matrix with Kjk = K (xj , xk)

The Reproducing Property .
Let f(x) =

∑
i αiKxi(x). Note the following crucial property:

〈f,Kx〉 =
∑
i

αiK (xi, x) = f(x)

This follows from the definition of 〈f, g〉 where we take g = Kx. This implies that

〈Kx,Kx〉 = K(x, x)

This is called the reproducing property. It also implies that Kx is the representer
of the evaluation functional.
The completion of H0 with respect to ‖ · ‖K is denoted by HK and is called the
RKHS generated byK.
Evaluation Functionals. A key property of RKHS’s is the behavior of the evaluation
functional. The evaluation functional δx assigns a real number to each function. It
is defined by δxf = f(x). In general, the evaluation functional is not continuous.
This means we can have fn → f but δxfn does not converge to δxf. For example,
let f(x) = 0 and fn(x) =

√
nI
(
x < 1/n2

)
. Then ‖fn − f‖ = 1/

√
n → 0. But

δ0fn =
√
n which does not converge to δ0f = 0. Intuitively, this is because Hilbert

spaces can contain very unsmooth functions.

But in an RKHS, the evaluation functional is continuous. Intuitively, this means
that the functions in the space are well-behaved. To see this, suppose that fn → f.
Then

δxfn = 〈fnKx〉 → 〈fKx〉 = f(x) = δxf

so the evaluation functional is continuous.
A Hilbert space is a RKHS if and only if the evaluation functionals are contin-
uous.

Theorem A.34 (Representer Theorem).
Let ℓ be a loss functiondepending on (X1, Y1) , . . . , (Xn, Yn) andon f (X1) , . . . , f (Xn) .

Let f̂ minimize
ℓ+ g

(
‖f‖2K

)
where g is any monotone increasing function. Then f̂ has the form

f̂(x) =

n∑
i=1

αiK (xi, x)

for some α1, . . . , αn

A.10 Calculus and Optimisation
A.10.1 Calculus

Defn A.88 (Derivative).
The derivative of a function f at point x, when defined, is the tangent to the func-
tion at x.

∂f

∂x
= lim
h→0

f(x+ h)− f(x)
h

Defn A.89 (Gradient, Jacobian, Hessian).
For function f : Rm→R, we define the

∇xf =


∂f
∂x1
∂f
∂x2...
∂f
∂xn


which collects the partial derivatives in a column vector.
The matrix of partial derivatives of f is called the Hessian, denoted by H(x)
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H(x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

... . . . ...
∂2f

∂xn∂x1
. . . . . . ∂2f

∂x2
n


For a vector-valued function f : Rn→Rm, we can construct the Jacobian, which
collects allm× n partial derivatives.

∂f

∂x
=


∇f1(x)
∇f2(x)

...
∇fm(x)

 =


∂
∂x1

f1(x)
∂
∂x2

f1(x) . . . ∂
∂xn

f1(x)
∂
∂x1

f2(x)
∂
∂x2

f2(x) . . . ∂
∂xn

f2(x)

. . .
∂
∂x1

fm(x) ∂
∂x2

fm(x) . . . ∂
∂xn

fm(x)


Theorem A.35 (Taylor’s theorem).
f : R→R admits to Taylor expansion around a such that

f(x) = f(a) +
f ′(a)

1!
(x− a) + f ′′(a)

2!
(x− a)2 · · · =

∞∑
n=0

fn(a)

n!
(x− a)n

For a functionwithmultiple arguments f : Rk→R, the second-order Taylor expan-
sion around the point x0 is

f(x) ≈ f(x0) + (x− x0) · ∇f(x0) +
1

2
(x− x0)H(x)(x− x0)

Fact A.36 (Sufficient Conditions for Local Maxima and Minima).
Let f(x) have continuous first and second order partial derivatives in the ε− neigh-
bourhood of the optimum x0.

• If ∇f(x0) = 0 and H(x0) is positive definite, then x0 is a local minimum.

• If ∇f(x0) = 0 and H(x0) is negative definite, then x0 is a local maximum.

Theorem A.37 (Generalised (Everett) Lagrange Multiplier Theorem).
Let λ1, . . . , λm be nonnegative real numbers, and suppose x0 maximises the La-
grangianM(x,λ)

M(x,λ) = f(x)−
m∑
j=1

λjgj(x)

Then, x0 maximises f(x) subject to constraints (x ∈ S)

gj(x) ≤ gj(x0) , j = 1, . . .m

Theorem A.38 (Inverse Function Theorem).
If φ : U→Rd is differentiable at a and Dφa is invertible, then ∃U ′, V ′ such that
a ∈ U ′ ⊆ U,φ(a) ∈ V ′ ∧ φ : U ′→V ′ is bijective. Further, the inverse function
ψ : V ′→U ′ is differentiable.

Theorem A.39 (Implicit function theorem).
LetU ⊆ Rd+1 be a domain and f : U→R be a differentiable function. If x ∈ Rd∧y ∈
R, we’ll concatenate the two vectors and write (x, y) ∈ Rd+1.
Suppose c = f(a, b), and ∂yf(a, b) 6= 0. Then, ∃U ′ 3 a∧ differentiable function
g : U ′→R s.t. g(a) = b ∧ f(x, g(x)) = c ∀ x ∈ U ′.
Further, ∃V ′ 3 b s.t. {(x, y)|x ∈ U ′, y ∈ V ′, f(x, y) = c} = {(g, g(x))|x ∈ U ′}. IoW,
∀x ∈ U ′, f(x, y) = c has a unique solution y = g(x) ∈ V ′.

Fact A.40 (Differentiating implicit fns using tangent planes).
Let f : R2→R be differentiable and consider the implicitly defined curve

Γ :=
{
(x, y) ∈ R2|f(x, y) = c

}
(i.e. a level set of f). Pick (a, b) ∈ Γ, suppose ∂yf(a, b) 6= 0. By IFT, we know y−
coordinate of this curve can locally be expressed as a differentiable function of x.
Directly differentiating f(x, y) = c w.r.t. x gives

∂xf + ∂yf
dy

dx
= 0⇔ dy

dx
=
−∂xf(a, b)
∂yf(a, b)

← ToC 143



Differentiation Rules

Function Rules f(x) f ′(x)

xa axa−1

ex ex

log x
1

x

Linear Rule (af + bg) a
∂f

∂x
+ b

∂g

∂x

Product Rule (f · g)′ f ′(x)g(x) + f(x)g′(x)

Quotient Rule f/g
f ′(x)g(x)− f(x)g′(x)

(g(x))2

Chain Rule f(g(x))
∂f

∂g

∂g

∂x

Matrix Derivatives Let a,x ∈ Rn, and A be a conformable matrix

• ∂a′x
∂x = a

• ∂a′x
∂x′ = a′

• —

• ∂
∂x′Ax = A

• ∂
∂xAx = A′

• ∂
∂xx

′Ax = (A+A′)x

• ∂
∂Ax

′Ax = xx′

• ∂
∂A log |A| = (A′)

−1

General Results from Optimisation Theory Luenberger (1997) and Rustagi (2014)

• Projection Theorem - In Rk, the shortest line from a point to the plane is
funished by the perpendicular from the point to the plane. Core idea carries
through to higher dimensions and infinite-dimensional Hilbert Space

• Hahn-Banach Theorem: given a sphere and a point not in the sphere, there
exists a hyperplane separating the point and the sphere.

• Duality: The shortest distance from a point to a convex set is equal to the
maximum of the distances from the point to a hyperplane separating the
point from the convex set.

• Differentials: Set derivative of the objective function to zero.

A.10.2 Linear Programming

Maximise

max
x

Z = c⊤x

subject to

Ax ≤ b

x ≥ 0

where x ∈ Rn is the choice vector, c ∈ Rn is a given vector, A ∈ Rm×n is a known
matrix of constants, and b ∈ Rm is a vector of constants.

Defn A.90 (Standard form of Linear programs).
By introducingm slack variables y1, . . . , ym, y = (y1, . . . , ym)⊤ for every inequality
with y ≥ 0, we can convert every linear programming into its standard form

min
x

Z = (c⊤x⊤ + 0⊤y) subject to

Ax+ Iy = b

x ≥ 0,y ≥ 0

Defn A.91 (Primal and Dual).
Primal

min
x

c⊤x s.t.

Ax ≥ b
x ≥ 0

Dual
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max
y

b⊤y s.t.

A⊤y ≤ c
y ≥ 0 ,y ∈ Rn+m

Theorem A.41 (Duality Theorem).
A feasible solution x0 to the primal is optimal IFF there exists a feasible solution
y0 to the dual problem such that

c⊤x0 = b⊤y0

Dantzig’s Simplex method, Karmarkar’s Algorithm.

A.10.3 Nonlinear Optimisation

minimise[maximise] f(x) s.t.
gi(x) ≤ ai i = 1, . . . , k

x ≥ 0

Saddle Point Suppose we have x,y ∈ Rn and ϕ(·) is a real valued function. Then,
(x0,y0),x0 ≥ 0,y0 ≥ 0 is a saddle-point of ϕ(x,y) if

ϕ(x0,y) ≤ ϕ(x0,y0) ≤ ϕ(x,y0)

∀x,y ≥ 0.

ϕ(x0,y0) = min
x

max
y

ϕ(x,y)

ϕ(x0,y0) = max
y

min
x

ϕ(x,y)

Defn A.92 (Quadratic Program).

Q = a⊤x− 1

2
x⊤Bx s.t.

C⊤x ≤ d

x ≥ 0

where a ∈ Rn, B ∈ Rn×n is symmetric, positive definite, C ∈ Rn×k is a matrix of
constraints, and d ∈ Rk.

Constrained Maximisation

Fact A.42 (General Proposition).
Wewant tomaximise f(x) subject to g(x) = c (implicitly defined by S := {g = c}).
Suppose ∇g 6= 0∀x ∈ S. If f attains a constrained local maximum (or minimum)
at a on the surface S, ∃λ ∈ R s.t. ∇f(a) = λ∇g(a).

Generic problem of the form

Defn A.93 (Lagrangian).

max
x1,x2∈Rn

f(x1, x2) s.t. g(x1, x2) = b

First, write
L(x1, x2, λ) = f(x1, x2) + λ [g(x1, x2)− b]

differentiating wrt x1, x2, λ yields FOCs

[x1] :
∂L
∂x1

= f1(x1, x2) + λg1(x1, x2) = 0

[x2] :
∂L
∂x2

= f2(x1, x2) + λg2(x1, x2) = 0

[λ] :
∂L
∂λ

= g(x1, x2)− b = 0

which gives us three (potentially nonlinear) equationswith three unknowns (x1, x2, λ),
that can be solved simultaneously.
To check sufficiency, the second-order condition analogue is the determinant of the
bordered hessian matrix

BH(x1, x2, λ) =

 0 −g1(x1, x2) −g2(x1, x2)
−g1(x1, x2) f11(x1, x2) f12(x1, x2)
−g2(x1, x2) f21(x1, x2) f22(x1, x2)


If detBH > 0, then it is negative definite, which implies that the (x∗1, x∗2) that solves
the system is indeed a local maximum.

Defn A.94 (Hessian, Definiteness).
TheHessian for of aC2 [twice differentiable] function f : Rnd→R is defined by the
matrix
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Hf =


∂1∂1f ∂2∂1f . . . ∂d∂1f
∂1∂2f ∂2∂2f . . . ∂d∂2f

...
... . . .

...
∂1∂df ∂2∂df . . . ∂d∂df


• If (Av) · v ≤ 0 ∀v ∈ Rd, A is said to be negative semi-definite.

• If (Av) · v < 0 ∀v ∈ Rd, A is said to be negative definite.

• If (Av) · v ≥ 0 ∀v ∈ Rd, A is said to be positive semi-definite.

• If (Av) · v > 0 ∀v ∈ Rd, A is said to be positive definite.

Numerical Optimisation

Root-finding We want to evaluate the roots of the equation

y = f(x) = 0, x ∈ R

Assume the inverse of f , denoted f−1 exists.

x = f−1(y) = g(y)

Finding the root of f(x) = 0 is equivalent to evaluating g(0) = x.
Canonical newton-raphson is

xi+1 = xi −
f (xi)

f ′ (xi)

Quasi-Newton General version of update rule:

θk+1 = θk − λk ·Ak
∂ℓ

∂θ
(θk)

Step length λ = 1 for both N-R and BHHH.

Defn A.95 (Newton Raphson).
set Ak = (H(θ))−1

Update rule:

xi+1 = xi −
f ′ (xi)

f ′′ (xi)

For Log-likelihood,

θk+1 = θk −
(

∂2ℓ

∂θ∂θ′
(θk)

)−1
∂ℓ

∂θ
(θk) ≡ θk − (H(θk))

−1 s(θk)

Defn A.96 (Berndt-Hall-Hall-Hausman (BHHH)).
Uses Information-matrix equality. Set Ak = 1

N (S(θk)S(θk)
′) to be outer product of

scores

Ak :=

(
1

N

N∑
i=1

∂ℓ

∂θ
(θk)

∂ℓ

∂θ′
(θk)

)−1
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