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2 Probability and Mathematical Statistics

2.1 Basic Concepts and Distribution Theory

Defn 2.1 (Probability).

Given a measurable space (2, F), if P [Q2] = 1, P[] is called a probability measure
and so (€2, F, P) is a probability space. Sets f € F are called events, points w € Q
are called outcomes, and P(f) is called the probability of f.

Defn 2.2 (Kolmogorov Axioms).
The triple (2, S, P) is a probability space if it satisfies the following

e Unitarity: Pr () =1
e Non Negativity: Vs € S,Pr(a) > 0Pr(a) e RAPr(a) < o
e Countable Additivity: If Ay, A,, ..., € S are pairwise disjoint[i.e. Vi # j, A; N

A; = 0], Then
P (U Ai> = P(A))

Other properties for any event A, B
e ACB = Pr(A) <Pr(B)
e Pr(4)<1
o Pr(4)=1—-Pr(4°
e Pr(0)=0

Fact 2.1 (Properties of Probability).
Forevents A, B € £,

1. 0 < Pr(A) < 1: Events range from never happening to always happening
2. Pr (&) = 1: Something must happen

3. Pr(0) = 0: Nothing never happens

4. Pr(A) + Pr(A°) = 1: A must either happen or not happen

Defn 2.3 (Random Variable).

X :Q—-Rst Vo € R {w: X(w) <z} € F, where Q is the sample space and F is
the event space.

i.e. a RV is a mapping/function from the sample space (or per some authors, event
space) to the real line.

<+~ ToC

Example 2.2 (Continuous Random Variable).

e Sample space is R
e Event space is B(R): the Borel o-algebra on the real line

e P, defined so that VA € B(R),

P.(A) = P,(we€ Q:x(w) € A) =: P,(z7'(A))
Defn 2.4 (Demorgan’s Laws, Conditional Probability).
e DM: (AN B) = (AU BY)%; (AU B) = (A° N B9)“

e Inclusion-Exclusion Rule: (AUB) = (A°NBY)¢ = P(A)+P(B)—P(ANDB)
e Conditional Probability: P(A|B) = P(AN B)/P(B)

Theorem 2.3 (Bayes Rule).
_ P(BJA)P(A)
P(A|B) = B
Equivalently,
f(|0) i(@
f(0lz) = f(x‘e)lf(e) S likelihood prior
Jorco I(2]6")f(07)d0 f(x)
—~

data

Defn 2.5 (Statistical Independence).
All B& P(ANB) = P(A)P(B),P(A|B) = P(A)

2.2 Densities and Distributions

Defn 2.6 ((Cumulative) Distribution Function).
F : R—[0,1]

F(z) =Pr(X <z) = / p(x)dx
Similarly, F(z—) := Pr (X < z),so Pr (X = z) =F(z) — F(z—).
Properties of CDFs:



1. Bounded on [0, 1]: lim,; o F(z) = 1;lim,; oo =0

2. Nondecreasing: if z; < x3, then F(z1) < F(x2)

3. Right Continuous: lim;_,o+ F(z + h) = F(z)

4. limy 0+ F(x — h) =F(z—) =F(z) - Pr (X =z) =Pr (X < z)
Suppose F'(z) exists Vo € R and

/OO F'(z)dr < oo

— 00

then F is absolutely continuous with density function F’ = f (-)

The sample analogue of the CDF is the Empirical CDF (ECDF). An ECDF for X1, . ..

R is

~ 1 <
F() = Fa(e) = = 3 Txca
i=1

for —oo < 2 < oo.

Defn 2.7 (Probability Density / mass Function).
A density is f : R—R such that

which defines the density / PMF

f(z):= F'(z) =Pr(X =u2)
—— —_———
Continuous Version Discrete version

wherever F'(+) exists.
Since F is nondecreasing, f is nonnegative and must have

/Zf(:p)daz =1

Fact 2.4 (Integration w.r.t. a distribution function).

Suppose X is a random-variable with distribution function F. Then we expect that

for any set A C R
Pr(Xe A = / dF(x)

A
This is a Lebesgue-Stieltjes integral of X (w) with respect to measure P.
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If X has an absolutely continuous distribution, this integral simplifies to the famil-
iar form of a Riemann-Stieltjes integral

F(z) = [ ; dF(t) = 1 OO F(t)dt

and more generally

| s = [ g@r @

— 00 — 00

Defn 2.8 (Quantile Function / Inverse-CDF).

Since real valued R.V. can be characterised by its F s.t. F (z) := Pr (X < z), we can
, X,, €invert it. In other words, we can ask for the point z,, s.t. Pr (X < z,) = 7 for any

7 € [0, 1]. This defines the quantile function

Q: (0,1)—=R where

Qu(r) = F\(7) == inf {z : F (2) = 7}
is called the rth quantile of F. The associated loss-function is the check function
pr(u) = ul(r — Tuzo) = Lusor [ul + Luso(1 = 7)1

If the distribution of Y is continuous, one can show that the 7—th quantile of the
distribution of Y; =: ), minimises the distance between Y; and y € R, where the
distance is defined as the check function.
Properties of quantile functions

1. QF(z)) <z,-co <z <

2. F(Q(t) 2t ,0<t <1

3. Q) <z & TF(x) >t

4. If F~! exists, then Q(¢) = F~1(¢t)

5. if t1 < t2,Q(t1) < Q(t2)

Fact 2.5 (Equivariance of quantiles under monotone transformations).
Let ¢(.) be a nondecreasing function. Then, forar.v. Y,

Q-[g(Y)] = g[Q-(Y)]

i.e. the quantiles of g(Y") coincide with transformed quantiles of Y.
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Figure 1: CDF and Quantile function. Rotate and flip CDF to get QF

Fact 2.6 (Lorenz Curve).

let Y be a positive random variable (e.g. income) with distribution function Fy
and mean ;1 < oo; then the Lorenz curve mayb be written in terms of the quantile
function Qy (1)

At) = #_1/0 Qy (T)dT

which describes the proportion of total wealth owned by the poorest ¢ proportion
of the population. Gini’s mean difference (“gini coefficient’) can be expressed as

1
7:1—2/ A(t)dt
0

which is twice the area between the 45° line and the Lorenz curve.

2.2.1 Multivariate Distributions

Defn 2.9 (Random Vectors).

A p—random vector is a map X : Q—R?, X(w) := (X1 (w),...,Xp(w)) such that
each X; is a random variable.

Joint CDF of X is

F(x) =P X <x|:=P[X; <z,...,X, < )

If X is continuous, the joint pdf is

<+~ ToC

f o F(X
)= B Bz,
The marginals of FF and f are
Fx, (x;) =P[X; <z;] =F(oo0,...,00,24,00,...,00)
0
fx, (z;) == a—xlFX (x;) = /RW_1 f(x)dx_;

The conditional CDF and PDF of X |(Xa, ..., X,) are defined as

Fx,x_, (21) ==P[X1 <a|Xy =x_4]

i

fx,x =x_, (21) = m

Defn 2.10 (Marginalization of f(z, y)).

nmzﬁfmw@

Defn 2.11 (Conditional Distribution).

flyle) =
To get marginal for z, we can integrate out y.
£o@) = [ (el )y

Defn 2.12 (Independent Random Variables).
twor.v.s X and Y are said to be independent if

o Joint density can be factored into marginals: fx v (X,Y) = fo(X)f,(Y)

e Cov[X,Y]=0
e p(X,Y)=0
e VIX+Y]|=V[X]+V[Y]



2.3 Moments

For a random variable = with support [z, Z]

Defn 2.13 (N-th raw moment).

Defn 2.14 (N-th central moment).
== E [(X — E[X])]

Defn 2.15 (Expectation and Variance).

The expectation is the Lebesgue-Stieltjes integral of r.v. X (w) with respect to mea-
sure PP.

Common notation for expectation includes

o E[X]
o EX

o JoX(w)dP(w)
o Jo X(w)dP(dw)
o [XdP

E[X] ::/ zdF(x) = xf (z) dz
z If Absolute Continuity holds z

V[X] ::/x(X —E(X))%dx
— E[(X - EX)?] = E(X?) - (EX)?
Defn 2.16 (Variance Covariance Matrix).
For vector-valued RVs, this translates to
V[X] = E(XX') — E(X)E(X)’
Cov [X,Y] = E[(X —EX)(Y —EY)] = E[XY] - E[X]E[Y]

Defn 2.17 (Skewness and Kurtosis).

<+~ ToC

E[(X — )’
Skewness = v := %
RV
Kurtosis = k := w _3
o

Fact 2.7 (Linear functions of a vector valued RV).
For any (well-behaved) vector rv &, Cov [Ax + b] = AX A’ where X is the covari-
ance matrix of the random vector x.
For Normal quantities where X ~ N (pu, X),
Az +y~N(Ap+y AXA))
Y2 L N(0,T)
(. — )7z — p) ~ s,
Theorem 2.8 (Law of the Uncoscious Statistician (LOTUS)).
letY = r(X) is a transformation of a random variable X. Then,

EY]=E[r(X)] = /T(x)dF(x) = /r(x)f(:z:)dx

Example 2.9 (Properties of combinations of RV).

e EaX +bY] =aE [X]+ DE[y] ; Expectation is a linear operator

- B2 aiXy)] = 32, aiE [Xi]
- E[(IL X)) = [L E[X)]
— For p—random vector X, E[AX + b] = AE [X] + b for ¢ x p matrix A
and b € R¢
e Variance
- V]aX] = a®V [X]
- V[aX +bY] = a®V [X] + b*V [Y] + 2abCov [X, Y]
- Cov[X, X]| =V[X]
- Ya,b,c,d € R, Cov [aX + ¢,bY +d] = abCov [X, Y]
- Cov[X +W,Y + Z] = Cov [X,Y]+Cov [X, Z]+Cov [W,Y]|+Cov [W, Z]

— For random vector X, V[AX + b] = AV [X] AT for ¢ x p matrix A and
b ¢ R?



Defn 2.18 (Moment Generating Function).
If X is nonnegative, we know E [exp(tX)] < ooVt < 0. Then, we define the Laplace
Transform

L(t) =Elexp(—tX)]; t >t

Since this is limited to nonnegative RVs, one generalises them to Moment Gener-
ating Functions

Mx (1) = E [exp(tX)]

e.g. Standard Normal MGF ¢! /2
For a given r.v. with MGF M, (%), |t| < § for some ¢ > 0, E [X™] exists and is finite
vn=1,2,... and

and E[X™] = M{"(0).
Moments from MGF The kth derivative of the m.g.f. evaluated at ¢ = 0 is the kth
(uncentered) moment of X.

ok M,

g =0 = E [X"]

Defn 2.19 (Cumulant + Cumulant Generating Function).
Let X be a real-valued scalar rv and M, (t) be its moment generating function. The
cumulant-generating function of X is defined as

Kx(t) =log M,(t), |t| <o
the CGF may be expanded to the form

o0

K.(t)=Y" %tj Jt] < 6

j=1

where k1, kg, ... are constants that depend on the distribution of X and are called
Cumulants. Cumulants can be obtained by differentiating the CGF

oI .

t=0

<+~ ToC

Defn 2.20 (Characteristic Function).
The characteristic function of a random variable X is the function

B(t) :=Elexp(itX)] ,—oo <t < oo,i=+—1
é(t) = E [cos(tX)] + iE [sin(t X)]

If X has a moment generating function M, then it can be shown that M (it) = ¢(t).
¢, unlike the MGF, is always well defined, and shares properties of the MGF.

Defn 2.21 (Order Statistics).
X1,..., X ~iia T2 (x) with Fx (z). X(3) is the k—th order statistic (in ascending
order)

n!

(k— 1)l (n—k)!
Defn 2.22 (Correlation Coefficient).

iy, (1) = Fx ()" (1-Fx (2))" ¥ (x)

Cov [X, Y]

Oz0y

plX, Y] = € [—1, 1] by Cauchy Schwarz

e pX,Y]=1<da,bc Rwithb>0st. Y =a+0bX
e X, Y]=-1<da,b e Rwithd>0s.t. Y =a—bX

Defn 2.23 (Entropy).
Cover (1999, Chap 2-4)
For a (discrete) random variable X with pmf f (x;), the entropy H(X) is

H(X):= =) plz)log, (p(x))

where p; is Pr (X = z) Vi € Supp [X]. By convention, the log is taken with base 2.
Properties:

e H(X)>0
Hy(X) =log,aH,(X)

Conditioning reduces entropy: H(X|Y') < H(X); with equality IFF X 1 Y

— generalisation : H(X;,..
are independent

L Xy) < 3, H(X;) with equality IFF X;s

H(X) <log|X| with equality IFF X is uniformly distributed in X

10



e H(p) is concave in p

Defn 2.24 (Relative Entropy / Kullback-Leibler Distance).
Relative entropy of pmf p w.r.t. pmf ¢

p(x)
)lo
D(pllq) : Z p(x g @
This is not a conventional metric because it is not symmetric.

Defn 2.25 (Mutual Information).

o el
HEXO =Ky :k’g p&)}
H(X,Y)=E, :log p(X{ Y)}
HOXIY) =B, o8 g
I(X;Y)=E, :1og M}
D(pllq) = -1og zgﬂ

This is the KL divergence between the joint and product of marginals.
Properties

o I(X;Y)=H(X)-H(X|Y)=H(Y)-H(Y|X)=HX)+H(Y)-H(X,Y)
e Chain rules

- H(X1,Xo,...Xn) =30 H(Xi, Xi1,... X1)

- I(Xh e ,Xn,Y) = Z?:l I(X“Y|X1, e 7)(1‘,1)

Defn 2.26 (Copula).
For a pair of r.v.s X,Y with joint distribution G(z,y) and marginal distribution
functions F (x) and H(y), a copula function

<+~ ToC

C:[0,1]*=[0,1]; C(u,v) = G(F~*(u), H ' (v))

where C has the following properties
1. C(u,0) = C(0,v) =0 Vu,v € [0, 1]

2. C(u,1) =C(1,v) = 1 Vu,v € [0,1]

3. Vu <ug Avy <wg € [0,1], Cug,v2) — Clug,v1) — Cug,va) + Clug,v1) >0

Defn 2.27 (Frechet Bounds).

max {F (:L‘) ’H(y) -1, 0} < G(xvy) < min {F (l‘) >H(y)}

Important in partial identification lit. The upper bound his occurs when X and
Y are comonotonic, that is, when Y can be expressed as a deterministic, non-
decreasing function of X. The lower bound is achieved when X and Y are coun-
termonotonic, so Y is a deterministic, non-increasing function of X. These two
very special cases correspond to the situations in which all of the mass of the cop-
ula function is concentrated on a curve connecting opposite corners of the unit
square. These special cases correspond to rank correlation of +1 and —1 respec-
tively. The other important special case is independent X and Y", which obviously
corresponds to C'(u,v) = uv.

2.4 Transformations of Random Variables
2.4.1 Useful Inequalities

Basic question : given a random variable X with expectation [E [X], how likely is X
to be close to its expectation, and how close is it likely to be? This implies putting
bounds on quantities of the form Pr (X > E[X]+1t) ¢t > 0.

Theorem 2.10 (Cauchy Schwartz Inequality).
For random n-vectors a, b,

la™b|[ < [lall bl
for RVs X,Y withE [X?] < co AE[Y?] < o0

E[XY] < VE[X?]E[Y?]

Cov[X,Y]? < 0,0,

11



Theorem 2.11 (Jensen’s Inequality).

Let Y be a random function and g(-) be a concave function. If E[Y] and E [¢(Y)]
exist, then E [¢(Y)] < g(E[Y]).

Similarly, if f : R—R is convex, E [f(X)] > f(E [X]).

Theorem 2.12 (Markov’s Inequality).

Pr(X|>t)< ——Vt >0 Equivalent

Pr()(X) >t) <

Where 1(.) is a nonnegative, nondecreasing function; in the basic form ¢ = I.
Equivalently, for e,r > 1
E|[|X|"
PX|>¢€ < %
Theorem 2.13 (Chebychev’s Inequality).
Special case of Markov’s inequality.
Let X be any r.v. w E [X] = p < oo and V [X] = 02 < cc. Then, Ve > 0

PrX—p>g<— =%

This implies that averages of random variables with finite variance converge to
their mean.

Theorem 2.14 (Kolmogorov Inequality).
Let X;,i =1,...,n be independent random variables with E [X;] = 0 having finite
second-order moments. Then, for ¢ > 0,

2
) < B2

Pr(maxXizg 5
€

1<j<n
Theorem 2.15 (Chernoff Inequality).
X ~ N(0,1) Let g(X) be an absolutely continuous function of X having finite
variance. Then

E [lg'(X)%)] = V]g(X)]
equality IFF ¢g(X) is linear in X.

Theorem 2.16 (Holder’s Inequality).
Let X be ar.v. with range A" and let ¢;, g» denote real valued functions on X. Let
p,q>1 st %—F%: 1. Then

<+~ ToC

E [Jg1(X)ga2(X)[] < E[|gr (X)["]/7 E[|g2(X)[1] "/

Theorem 2.17 (Chernoff Bounds).
Let Z be any random variable. Then, Vt > 0,

> o NZ-E[Z]))] ;= _ —\t
Pr(Z>E[Z]+1) r/{lzu(f)lIE [e } e I/\rlzlgMZ,E[Z](A)e
Where M is the MGF of Z.

Theorem 2.18 (Hoeffding’s Inequality).
Let X be a random variable with a > X > b. Then, Vs € R,

s2(b — a)?

logE [e*¥] < sE[X] + ——

2.5 Transformations and Conditional Distributions
Y = ¢g(X) in terms of f, and F,.

Defn 2.28 (CDF of transformation).

Fy (y) =Pr(Y <y)=Pr(g(X)<y)=Pr(X <g '(y) =Fx (9" (v))

Defn 2.29 (Change of Variables technicque for PDF of transformation).
Density of a transformation y = g(X) of a random variable z:

fy() = fo(97 () ‘jyyl(y)‘

If X e R”,

f, () = o (971 (%)) |[detdy—1(v)| = fu (97" (1)) |detTy (g~ (9))]

Example 2.19 (finding pdf of transformation).

Let X have f (z) = 322, and we want to find Y = X2.
Then, g~ '(y) = y"/2, and 39’8;(11) = (1/2)y~ /2
Plugging into the expression above, we get

12



PDF of NV, (u, X) is

_ d _ 1 1
Fr(o) = 1670 |07 e (e w TS )
v dy = /222 0\ 2 (x—p) Bx—p)
1
= 3(y'/?)? §y_1/2 = gy x y 2 = gyl/z It also inherits the linearity property of the form
AN, (11, %) = N, (Ap+b,ATAT)

Defn 2.30 (Conditional Expectations). where A is g X p

For jointly continuous X, Y with joint pdf f, the conditional expectation of Y given ) )

X = x is a function Fact 2.24 (Special Cases of RVs). e t:letz ~ x2,Y = z/\/x/n >y ~t,
Filetzy ~y2,,and 7o ~ X2,y = S YV ~ Fiy,

E [Y|X = x] = /deY\T (y|X) = /y fY|X(y|1') dy o 1 Xn1 ) Xn2s Y T2 /N2 niy, N2

o letz ~ N (0,I) and A is symmetric, then
Conditional Expectation of function h of random variables is

o p(z' Az) ~ x*(K) where K := tr(A)
BXY)X =2l = [ hley) fyix(le) dy Vo € Supp(x

Bin(1, p) ~ Bern(p)
Defn 2.31 (Conditional Variance).
For r.v.s X, Y, conditional variance V [Y'|X = z] is

Beta(1,1) ~ Unif(0,1)

) Gamma(1, A) ~ Expo(})
VIYIX]=E[(Y -E[Y[X])’|X] =E [Y?|X] - [E[V]X]]

. X2 ~ Gamma(n/2,1/2)
Theorem 2.20 (Law of Iterated Expectations/ Adam’s Law).

NBin(1, p) ~ Geom(p)
E[Y]=E[E[Y|X]]

Theorem 2.21 (Law of Total Variance / ANOVA Theorem / Eve’s Law).

Fact 2.25 (Misc Distribution Facts).

VY] =E[V[Y|X]]+ V[E[Y|X]] e Exponential distribution is

- memoryless: Pr (X > s+ X > s) =Pr (X > t)
2.5.1 Distributions facts and links bhetween them ) o . )
— Gaps between Poisson realisations is exponential

Fact 2.22 (Normal Distribution Facts). — Scales (Y ~ Expo()\) AY = Expo(1))
Let X ~ N (pg,02) and Y ~ N (py, 02
(ke %) (k3 — Order statistics (min, max) of expos are also expo

e Va,bERa#0OW=aX+b = W ~N (au, +b,a%02
7 (an o%)) e if X ~ Gamma(a, \), it is the distribution of the wait time for the a realisations

eIf X Il Yand Z = X 4Y,then Z = N (e + 1,02 + 0) of a Expo(\) process
Fact 2.23 (Multivariate Normal). e Discrete distributions: If X ~
N, (i, X) with pa p—vector of means and X a p x p symmetric and positive definite o
matrix. — Bernoilli, coin flip,

<+~ ToC 13



— Binomial: n coin flips,

— Geometric: number of tails before first head when success probability is
p

— Negative binomial: the number of tails until rth head

— Poisson: if rare events occur at rate A per unit time, the number events
that occur in a unit or space of time is X

— Multinomial: n items that can fall into £ buckets independently w.p. p =

(plv e 7pk>
Defn 2.32 (Exchangeability).
Real-valued r.v.s X1, ..., X, are said to have an exchangeable distribution if the
distribution of X1, ..., X,) is the same as the distribution of X;,,..., X, for any
permutation iq,...,4, of 1,...,n.
Defn 2.33 (Martingales).

Consider a sequence of random variables { X7, X, ..
The sequence { X7, X, ...} is said to be martingale if

JstE[X,]] <ocoVn=1

Y, E (X g1l X1, X = X

2.6 Statistical Decision Theory

Define a statistical decision problem as a game involving ‘nature” and ‘decision maker’(DM).

In the first stage (data-generation), nature selects a parameter § € © and uses it
to generate data according to the distribution Py. In the second stage (decision
making), the DM observes the data but not ¢, but knows the statistical model used
by nature. Based on realised data, the DM would like to take an action a € A
whose payoff depends on the parameter drawn by nature , which can be modeled
by endowing DM with a state-contingent utility u(a, #) or loss L(a, #). The DM’s
decision problem is the selection of an action depending on the realisation of the
data.

Defn 2.34 (Statistical Problem).
is a tuple

(97 -’4’ u()a {PO})

containing a parameter space, action space, utility function, and statistical model.
A decision rule d is a function d : X —A.

Example 2.26 (Estimation Problem).
The action space A = ©. The DM needs to decide what is the parameter 0 that
generated the data. The decision rule for this problem is called an estimator. A

typical loss function is quadratic loss := £L(a,0) = (a — 0)?.
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Example 2.27 (Testing Problem).

Partition the parameter space into Oy [Null hypothesis] and ©, [Alternative hy-
pothesis]. Action space A = {ao, a1} defined as choosing null or alternative. De-
cision rules are called a test. Loss function is typically zero-one loss L(a1,6y) =
L(ag,01) = 1;0 otherwise.

Example 2.28 (Inference Problem).
A C R where each action a[] is an interval containing the best candidate values for
6. Decision rules here are confidence sets.

Defn 2.35 (Risk Function).
of decision rule d is

R(0;d) = Ep, [L(d(X),0)]

0
A decision rule d is dominated by d’ if R(6;d") < R(6;d). Decision rules that are
not dominated are called admissable.

Example 2.29 (James-Stein Estimator).
Given (possibly correlated) jointly normal r.v’s Y1, ..., Y, withy; ~ N (u;, 1), and
would like to estimate the n— vector p under squared loss

n

LG = S G — ) = i —

=1

The MLE for each p is just the (unbiased) vector Y itself, but the estimator

n—2
hi=1-==% 1Y
e < > Y) '
has better £ than the MLE whenever n > 3.

Defn 2.36 (Bayes Risk).
given probability distribution m on © (defined as a prior), we define the Bayes risk
of a decision rule d as

r(r,d) = /@ R(6,d)dr(0) = By [R(6; R)]

A decision rule d* is said to be Bayes Rule w.r.t. prior 7 and class of decision rules
Dif r(m,d*) = infgr(m,d) [i.e. it minimises Bayes Risk].

Defn 2.37 (Minimax).
a decision rule d is said to be minimax (relative to a class D of decisions) if

sup R(0,dy) = inf sup R(6,d
068 (6, do) dGDaeg (6,4)
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minimax rule protects DM against worst-case situations.

2.7 Estimation

Defn 2.38 (Sample Statistic).
For iid random variables X1, X», ..., X}, a sample statistic is a function

T(n) = h(n)(leX27 s 7Xn)
where h(,) : R"—=R Vn € N

Defn 2.39 (Unbiasedness).
An estimator @ is unbiased if E {HA} =40

Defn 2.40 (Consistency).
An estimator @ is consistent if § = 6.

Defn 2.41 (Asymptotic Normality).
An estimator 6 is asymptotically normal iff

Va(X) - 6) 4N (o, v M)
where V [é} B is called the asymptotic efficiency.

Defn 2.42 (Sampling Variance of an Estimator).
For an estimator 6, the sampling variance is V [é} .

Defn 2.43 (Mean Squared Error(MSE) of an estimator).
For an estimator 6, the MSE in estimating 6 is

MSE = E [(é— 9)2} - []E M - er+ v M
T e Ve

argminE [(X — ¢)?] = E[X]
ceR

Fact 2.30 (Properties of Mean and Variance).

e X = 15" Xiand 5% = 15 3" (X; — X)? are unbiased estimators of

n—

E [X] and V [X] respectively.

e Both are asymptotically normal
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o If X; ~ N (1,0?)

- XNN(/%%Z)

n—1

2 2
0'2 SX ~ anl

X and S% are independent

X —p
S% /n

~tp_1

2.8 Hypothesis Testing

Defn 2.44 (Test statistic).

A teststatistic, similar to an estimator, is a real valued function S,, := T'(X3, ..., X,,)
of the data sample. It is a random variable. A test ¢ : Domain(T;,)—{0, 1}.
standard normal test statistic:

0 — 0,

w

S =

< Z(1-a/2)

where w = \/02/n = L34,

e Null Hy : 6 € Oy is held as true unless data provides sufficient evidence
against it. typically # = 0 (“simple” hypothesis)

e Alternative H; : 0 € ©1. Held to be true IFF null is found false.

Op, ©; chosen by the econometrician.
Let S € S be a test statistic and its support. A decision rule is a partition of S in to
acceptance and rejection regions such that S = AU R.

Null is
True False
Reject @ Power
) Type 1 error
. 1 - Power
~ Reject 1-a Type 2 Error
Defn 2.45 (Power).

Pr(reject Hy | Hy is true) : w(0) = Pp(S € R).
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Defn 2.46 (Size of Test).
is the largest probability of type-1 error.

sup (0) = sup Pyp(S € R)
0€0©g 0€60

Defn 2.47 (Two-sided Normal Approximation-Based Confidence interval).

Cli_o(B) = {BER,:Pr(BeCl_o)=1—a}

= [é — Z(1-a/2)\/ ‘7[@], é-l- Z(1—a/2)\/ ‘7[@]:|

where z. denotes the ¢t

0,1).

quantile of the standard normal ® s.t. ®(z.) = ¢ V¢ €

Defn 2.48 (Asymptotically valid two-tailed P-value).
P-value = 2[1 — ®(|s])]; in words - smallest critical value under which Hy would be
rejected

Defn 2.49 (Asymptotically valid one-tailed P-value).
One sided P-value = 1 — ®(s) or D(s)

2.9 Convergence Concepts

We estimate § from data, and hope that it is close to true parameter 6,. How close
is @ to 6p? Basic idea of asymptotics is to take the taylor expansions and show
asyrgoptotic normality: which is that the distribution of /n(8 — 6p)—N (0,1) as
n—>00.

Defn 2.50 (Modes of Convergence: Probability, Mean Squared, Distribution).
Amemiya (1985, Chapter 3)

A sequence of r.v.s {X,},n=1,2,... issaid to

e X, —, X - converge in probability if
Ve, 0 > 0,3IN s.t. Vn > N,Pr(|X,, — X| <€) < 1 — 6. Equivalent notation:
plim (X,) =X

e X, = X - converge in mean square if lim,,_, E [X,, — X]2 =0.

e X, —4 X - converge in distribution if IF;,, of X,, converges to the distribution
function IF of X at every continuity point of F. We call F the limit distribution
of {X,}.
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Relations between convergence concepts: M — P — D

e E[X, ] =0 = X, %0

e X, B X — X, %X

X, SX = X, 5 X

X, %0 = X, Ba (a constant)

2.9.1 Laws of Large Numbers

Basic form

Theorem 2.31 (Chebyshev Law of Large Numbers).
X1,...,X, are IID random variables such that E[X;] = u, 02 := V[X;] < oo.
Then,

1 n
-3 X; BE[X],
n 1=1

Theorem 2.32 (Strong Law of large Numbers).
For IID {X;} with finite variance o2

YG'—SY/J Y—,ua'—st

Theorem 2.33 (Glivenko-Cantelli).
Let X;,i = 1,...,n be an iid sequence with distribution F on R. The empirical
distribution function is the function of x defined by

- 1 n
]Fn(x) = n Z Ix,<a
=1

for a given « € R, apply the SLLN to the sequence 1 x, <, to assert
Fo(z) “3'F (2)

Similarly, G.C. asserts

~

sup |F,,(z) —F (z)| “¥0
r€R
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In words, for random samples from a continuous distribution F, the emp1r1cal dis-
tribution F is consistent. By extension, so are the sample quantiles F- 1(7). This is

important for inference in quantile regression.
2.9.2 Central Limit Theorem

Theorem 2.34 ((Lindberg-Levy) Central Limit Theorem).
X1,..., X, arelID with E[X;] = 1, V[X;] = 0%, fora general class of X,

VX, —p) SN (0,0?)

Equivalently,

y _

0,1

AN 0
Another way to state this is to define Z,, := U/"Jg z:i= U/ﬁ,and Fz, =Pr(Z, <z).
Then,

Vz € R,|Fz, (2) — ®(2)| = 0 as n—oo

Informally, for large n, Y, is approximately normally distributed with mean
and variance %2

Example 2.35 (CLT + Slutzky for asymptotic distribution of test statistic).
Z test: Under the null that E [z] = 6,,

Z(600) = YU =00) 4 5r () 1

Sn

because 52 5 V [X]. Reject if Z,,(60) & (202, 21—a/2)-

2.9.3 Tools for transformations

Theorem 2.36 (Continuous Mapping Theorem I).
X, —a4 X; h(.) is continuous. Then, h(X,,) LN h(z)

Theorem 2.37 (Continuous Mapping Theorem II).
X,, —p X;h(.) is continuous. Then, h(X,,) 2 h(x)

Theorem 2.38 (Slutsky’s Theorem).

Let X,,, Y,, be sequences of scalar/vector random elements. If X, A XandY B c,
then
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e X, +V, 5 X e
o X,V, % Xx¢
. Xn/YniX/cgivenc;EO

Theorem 2.39 (Delta Method). R
Let g : R*>R, let 6 be a point in the domain of g, and let {6,,} be a sequence of
random vectors in R*. If

o V(b —0) 5N (0,%)

e g is continuously differentiable, i.e. Vg(6) exists and is continuous

9;;(9)1
where Vg(0) := Zg(-) = :
9,,(0)
Then we have
Vi(g(8) = 9(6)) SN (0,Vg(6)2Vg(0) ")

Scalar version

Equivalently,

f(g(ﬂvL)_g( )) d LYYs
wl VvV

Defn 2.51 (Orders of Magnitude).

(0,1)

For functions u(x), v(z),

O (v(z)) ,x—L denotes |u(x)/v(x)| remains bounded as z— L.

[ ]
£
&

I

e u(z) =o(v(x)),z—L denotes lim,_,, u(z)/v(zr) =
e u(zx) ~v(z), z—L denotes lim,_, ;, u(z)/v(z) =
A function f(n) is of constant order or of order 1if 3¢ > 0s.t. f(") —1 as n—o0.

Equivalently, if f(n)—c as n—o00. We can then write f(n) = O (1) (read of the same
order as).
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Defn 2.52.

Stochastic Orders of Magnitude

White (2014) definition using sequences.
For deterministic sequences {a,}, {b,},

1. 3A < 0 s.t. a,/b,—0 for sufficiently large n, we say a,, = o (b,,) [tending to
zero in probability; a,, is smaller than b,, asymptotically |

an =0 (by) & lim 2 =0

n—o0 by,

2. 3A < oo s.t. a, /b, < A for sufficiently large n, we say a,, = O (b,,) [bounded
in probability, not larger than b,, asymptotically; a,, does not decrease slower
than b, ]

an =0 (by) & lim 2 < C forC >0

n—oo n

e A sequence {a,} is O (n*) ( read - at most of order n*), if n~*a,, is bounded.
Zyp = 0,(n*) & V5,3A(0) < oo An*(8) s.t. Pr (| 22| > A) <5V > n*(0)
When A = 0, {a,} is bounded and we write a,, = O (1).

- If wy = O,(1), {wn} is stochastically bounded, i.e. not explosive as
N —00. Formally, for any constant € > 0, 30, s.t.

supP [Jwn| > 0] < €
N
- Any random sequence converging in distribution is O,(1), which im-

plies N2 {z — E[2]} = O, (1),

— For an estimator ay for a parameter «, in most cases, we have v N (a N —

@) = 0,(1) : ay is v/N-consistent. The convergence rate is therefore
N—1/2,

e Asequence {a,}is o (n*) ( read - of order smaller than n*) if n=*a,,—0. b, =
o(n*) = b, =0(n")

- In other words, when wy - 0, it is also denoted as wy = op(1). For Zy,
by LLN we thus have Zy — E [z] = 0,(1).

Sums and Products
o 0p(1) +0p(1) = 0,(1); Op(1) + Op(1) = Oy(1)
® 0,(1) X 0p(1) = 0p(1); Op(1) x Op(1) = Op(1);
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e 0,(1) + Op(1) = Op(1);05(1) x Op(1) = 0p(1)

Example 2.40 (Consistency of MM Estimator).

R 1 n 1 n »
Bmpot g Ll D alu = 8+ 0,(1) xop(1) 5 p

N — N—— op(1)

2.10 Parametric Models

Defn 2.53 (Parametric Model).
Forr.vY and random vector X of length K, a parametric model is a set of functions:
P : RE+1 SR indexed by a parameter vector 6 of length 7

P={P(y,x;0):0 € ©}

where ® C R is called the parameter space [this guarantees existence as long as ®
is a compact set]. The model is said to be true if 30 € © s.t.

frix(X) = g(y, X;0)

A parametrisation is identifiable if there is a unique 6 € © that corresponds with
each P € P. Equivalently, 0; # 6 = P(-,0;1) # P(-,02)

Defn 2.54 (Regression Model).

Consider a parametric model where Y C R?and P := {P(-,\) : A € A}. Y1,...,Y,
are independent such that Vj = 1, ..., n, the distribution of Y; € P corresponding
with parameter \; (i.e. independent but not identically distributed).

X1,X2, ..., Xy is a known sequence of nonrandom vectors such thatVj = 1,...,n,
Jh(:) s.t. Aj = h(x;,8) for some 6 € ©. Thus, the distribution of Y; depends on the
value of z;, 6, and the function h.

In a regression, h is known/assumed, while 6 is an unknown parameter.

Example 2.41 (Classical Linear Model).
the parametric setup is

9(y. X, (8,0)) = ¢(y; (XB,0%))
and the parameter space © = {(8,0) € RE+2: 5 > 0}

Example 2.42.
For a binary choice model where y € {0, 1}, the parametric model is
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1-h(XB) if y=0

X:
90y, X:8) = h(X3) i y=1

and the mean function h : R—[0,1] is known. Common choices of h are logit
(h(XB) =exp(XB)/(1 + eXp(Xﬂ))) or normal CDF &.

Theorem 2.43 (Sufficient Statistic / Fisher-Neyman Theorem).
Let X have pdf p(z, 6). Then, the statistics ¢(z) are sufficient for 6 IFF the density
can be written as

p(]0) = h(z)ge(4 (x))

where h(x) is a distribution independent of § and gy captures all the dependence
on 6 via sufficient statistics ¢(x). Equivalently, the bayesian interpretation is that
¢(x) is sufficient if the posterior p(8|z) = p(0|¢(x)).

2.11 Robustness
Write estimators as § = 0., (F,,) where F,,(y) =
tribution fn.

In this setup,
e Mean: ¢,, = [ydF,(y)

L3 1 1,,<y is the empirical dis-

e Median: 6, =F,!(3)

e Trimmed Mean =

The mapping 6,,(-) induces a probability distribution for the estimator 0,, under F
which we denote Ly(6,,). F,,—F A 6, =0 (F)

Defn 2.55 (Prokhorov Distance).

Metric on the collection of probability measures on a given metric space.
Let A denote the Borel sets on R VA € Aand A° := {z € R|inf e 4jp—y|<c }
The prokhorov distance between F and G distributions is given by

7(F,G) = inf {¢[F[A] < G[A®] + ¢ VA € A}

Defn 2.56 (Hampel Robustness).
The sequence of estimators {6, } is robustat Fiff Ve > 03§ > 0s.t. Vn,

7(F,G) <6 = 1(Lp(0n), La(0n)) < €
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This is a continuity requirement on the mapping 6(.). An estimator is robust at IF if

small departures from F induce small departures in the distribution of f measured
by the Prokhorov distance.

Defn 2.57 (Influence function).
also called the Frechet derivative of the functional 6,,.

IFy, r(x) := lim M

e—0 IS

where F, = (1 — ¢)F + £4,.

Example 2.44 (Nonrobustness of mean and variance).
Mean: T(F) = [@dF(x), T(F.) = (1 — e)u(F) + €64, 50 I F(py(x) = . — u(F)
Variance T'(F) = [(z — p)?dF ().

=(z—p)? -0’

IFT,F((L’) — tlg% (]- - 5)0'2(F)téx — /1')20'2(F)

Since IF(z)—00 as —00, € contamination noises things up enormously.

2.12 Identification

A data generating process(DGP) is a complete specification of the stochastic process
generating the observed data. Knowledge of the DGP allows one to compute the
likelihood of any realisation of the data but is conceptually distinct since it provides
a description of the structure (/ mechanism) that gives rise to the distribution.

A Model M is a family of theoretically possible DGPs. A model can be

1. fully parametric: indexed by a finite number of parameters

2. non-parametric: indexed by an infinite dimensional parameter (ie an unknown
function)

3. semi-parametric: indexed by a finite-dimensional vector of parameters and an
infinite-dimensional nuisance function

Example 2.45 (OLS as a semiparametric model).
The simplest semiparametric model is

yi=xz,8+¢;
B c RF

19



This model is deemed ‘semi-parametric’ because it contains a finite dimensional
parameter 3 and an infinite dimensional joint distribution for ¢;, «; left unspecified
other than for the conditional mean assumption E [¢;|x;] = 0.

Example 2.46 (Index Models - Canonical semi-parametric models).

yi = 9(@iB) + &
Elei|lxz;] =0
B € RF
g(.) : R—R is monotone increasing

where we are interested in 5. Functions { 9(.),Fox(.),F X} are nuisance

Example 2.47 (Generic Non-parametric model).

Yi = g(xs,€:)
x; 1 E;

g(.,.) : R?=[0, 1] is monotone increasing in both arguments

Unrestricted marginals of ¢;, z;. Interested in function g(., .) suchas h(x) = E. [g(x;, &;)]

Most models can be written in the form

Y: = g(U)), Ui % Fy(u)

where Y] is a vector of observables, U; is a vector of unobserved r.v.s, with dis-

tribution function Fy;(u) and g(.) is a vector-valued function. We call the pair of
functions

6 :=(g(.),Fu(-)

the structure. There is a 1:1 mapping between a particular DGP and a particular
choice of structure. A model space M can be represented in terms of a family © of
structures.

Defn 2.58 (Identification).

While structure € uniquely identifies the distribution of observed variables, the
reverse isn't necessarily true. Identification is the study of which structures are con-
sistent with the joint distribution of observed variables. Let F, (y) denote the dis-
tribution function governing the observed variables and Fg(y) denote the distri-
bution function implied by a particular structure 8. The identified set of structures
is
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QFy,0) ={0 O :Fy(.) =Fy(.)}
The structure is point identified if Q(Fy, ©) is a singleton.

Defn 2.59 (Observational Equivalence).
Two structures €', 8" are said to be observationally equivalent if

Fo (y) = For (y) Vy € R”

i.e. the distribution function implied by the two structures is identical. . The struc-
ture @’ is globally point identified if there is no other 8 in the model space with
which it is observationall equivalent.

Defn 2.60 (Partial Identification).

If for some 8 € ©,Q(F4(.), ©) is a subset of the family of © but not a singleton, the
structure 6 is said to be partially identified because some (but not all) competing
structures have been ruled out. The identified set for a feature (@) can be written
as

{m(6):0cQFy.),0)}

Defn 2.61 (Ceteris Paribus Effect).

Consider the model Y; = f(X;, U;; ¢) where (Y;, X;) are observed scalars, U; is an
unobserved scalar, ¢ is a parameter vector, and f(.,.; ¢) is a function. The model
implies a set of counterfactual values f(z, u) that the outcome Y; would take under
various realisations of the random variables X;, U;. The causal effect of changing X,
from z’ to 2" for individual ¢ can be written as

Ai(x//vxl) = f(LL'//, U’iv d)) - f(l'/, Ui7 ¢)

If we can identify ¢ and establish that X; I U;, we can identify a distribution of
causal effects ;(z”, z').

Defn 2.62 (Statistical Functional).
In a model defined by (finite or infinite)-dimensional parameters § € ©, which in
turn indexes the set of distributions of all observed and counterfactual quantities

Pe = {Pg(Y, (Y2}, p.X):0€ 9}

A functional is the map ¢(-) : Po — R. In causal inference, the functionals of
interest are called estimands.
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3 Linear Regression

3.1 Simple Linear Regression
3.1.1 OLS in Summation Form
Stipulate model Y; = 8y + $1 X; + &;, where E [¢;| X;] = 0,V [¢;] X;] = o2

Fact 3.1 (BLP Least Squares Estimands and Estimators).
Consistent inference for 3 with only assumption being {y;, mz}ivzl is IID with well
defined moments.

._ Cov[X,Y] s X -X)(vi-Y) XY -X.Y
61 = V[X] — ﬂl - ZZ(XZ — X)Q - ﬁ Y2
o= B[] - SR = =7 - AiX
6’2: Zzé?
n—2

As an application of the law of total variance, we can construct Y = f + 5X and
U =Y —Y. Then, the variance decomposition for V [Y] is

~ . ov 2 2 52 52
v[F) = i = S| i = B g0

Ox
VU =0} - V[V] = (1= phy)od

Theorem 3.2 (Properties of Least Squares Estimators).
Let 37 = (Bo, $1)T denote least squares estimators. The conditional means and

variances are
B o] = ()

o] - 2 (5 )

where s% =n"! Y. (X; — X)? =: n=1S,,. This simplifies to

oV [ﬁo} = 02(1/n + 72/8y).
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oV [31} =02/, = #FX] ; under Heteroskedasticity, thisis V {31} = %

o Cov [fo, f1| = o*(~2/5.)
With more than 1 predictor, the variance is

v [Bj]

o2

T TSS;,(1-RY)

where R? is the R? from the regression of X; on the other X's and an intercept, and
TSS; = ,(xij — z;)?. This denominator is called the Variance Inflation Factor.

3.1.2 Prediction

Say we have a model #(x) = Bo + BlX from data (X1,Y7,...X,,Y,). Weseea
new observation X = z, and want to predict yyo. An estimate of the outcome

Yo = Bo + ,5’1 xo. Variance of the prediction is

« « A A PO 1 o — T)2
\% {50 + 51450} =V {50} + 23V [51} + 2z¢Cov {ﬂo, 51} =o? {n + ((no—l)s)}
Theorem 3.3 (Prediction Interval for OLS).
Variance of prediction error ef := yo — go is

V [eo] = V [e0] + V [E [yo|wo] — fo] = o + V [fio]

e (- B2 o o 252

Example 3.4 (Simple linear regression in matrix form).
Partition design matrix s.t. X = [1 1]

1T v

XX — { } / 1 [SM/A —SI/A]
'l z'x

} = XX) "= \1"¢UA  nja

where S, = S22, S, = N a;, A=nY(z; —2)> = N, (22) — (3, (2:))°.

Equivalent expression

oo 1 ]
n?Viz] | —NT n nCov(z,y) + nTy
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3.2 Classical Linear Model
Reference: White (2014, Chap 1), Marmer lecture notes.

3.2.1 Assumptions
1. Linearity: Y = X3+ ¢
2. Strict Exogeneity : E [¢|X] = 0 almost surely

e Replaced with E [¢] = 0 when estimating with 'fixed” instead of random Xs

e A2* Cross moment of residuals and regressors is zero, X is orthogonal
toe: E[X;e;] =0.

W

Spherical error variance : V [g;| X] = 0% E [ee'| X] = 21,

o Replaced with V [¢] = 021, when estimating with 'fixed” instead of random
Xs

Full Rank: No multicollinearity - rank(X) = k

A

Spherical Errors: | X ~ N(0,021,,)
e ¢ ~ N(0,0?) for fixed-regressors case.
6. (V;,X;):i=1,..,nareiid.
® ¢, ..., e, assumed IID for fixed-regressors case.

e (A1-A5) define the Classical Normal regression model

Y X ~ N (XB,0°1,)

(A1-A4) sufficient for unbiasedness + Gauss-Markov.
e Under Al, A2, A4, B\is unbiased (i.e. E [B\} =f)

Replace A3 with e ~ N (0, £2), then
B~ N ([3, (XTX) ' XTeX (XTX)’I)
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3.2.2 Optimisation Derivation
OLS minimises (¢, )

Juin (y = XB)'(y — X5)

=yy—yXp-p'X'y-pX'Xp
| S ——

scalar, combined

Taking FOCs and solving yields
0 (e e)
op

With fixed regressors,

=-28X'y—2X'XB = B =(X'X)"'X"y

V(B) =o*(X'X)!

where, under homoskedasticity, 02 = neiek, wheree =y — X3

3.3 Finite and Large Sample Properties of E, o2

Property 3.5 (Finite: Unbiased).
- under fixed regressor assumption - that X’s are nonrandom. Otherwise, the
conditioning is ill-defined. Under A(1-4),
3 Ty ! T
E [B\X} —E [(X X)'x (Xﬁ+e)]
—B+E[(XTX) " XTe| =8 2nd term 0 by A2
5 (5] === [3]]

by Law of iterated expectations

Otherwise, the expectation operator cannot pass through a ratio.
Alternate statement of bias without fixed regressors:

# (iE [%-’ﬁ]) _ iE [ziyi] = B8
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Property 3.6 (Finite: Variance).
XTE[e|X] X (XTX)™ !
N—_——
o2 by A2

v [BIX] = (x7Tx)" =02 (X1 X)

Under (A1-A5),
BIX ~ N (ﬂ, o (XTX)_1>

Property 3.7 (Finite: Best Linear Unbiased Estimator (BLUE) - Gauss Markov Thm).
OLS coefficient efficient in the class of LUEs. For any other Linear unbiased esti-

mator b,
o (v

Fact 3.8 (Large-Sample Assumptions).

—V[b|X]) a>0VacRk

e A7E [X;X,'] is finite, positive definite
o ASE[X]} <ooVj=1,... .k

e A9E[s]! < 0

e A10E [7X;X, | is positive definite

Property 3.9 (Large: Consistent - 3 2 ).
Under A1, A2*, A6, and A7.

—1
n n
1 1
= — E TiZ; — E TiE;
n “ n “
i=1 =1

" E[z;u;] = 0, we can apply Slutsky’s Theorem and LLN to write

plim ,,_mo(ﬁ B) = <p11m Za: ;r) plim — Zx g; = (E[z;z}])” 1E[a:i5i] =0

Property 3.10 (Large: Asymptotically Normal).
Under A1, A2*, A6, A7 - A10.

Va(B=p) SN (0,(x'3) 7 xX0x (X'X) ) = | 0, (Mxx) !

Mxax
——

(Mxx)~

Q is generally unknown. We can replace it with a consistent estimator €2, which is
the diagonal matrix [€;;]

Defn 3.1 (Huber-White Sandwich ‘Robust’ SEs).
This a plug-in estimate of an asymptotic approximation of the standard error.

-5 (pe) (5]

A-1 B A-1
= (XTX) 7 XTOX (XTX) ™

where

) — diae(e2 52

(1:=diag(éf, ..., é;)

For the vanilla univariate linear regression, this similifies to

4 E[2(X —E[X])?
v 6] - | vV [X]? |

which can be replaced with sample analogues and residuals to compute the robust
SE.

Property 3.11 (62 is unbiased).
Since 62 = = Me, so
Ele'e] = E [¢'M,¢] = tr((M,)Io?) = (n — k)o?
Theorem 3.12 (Wierstrass Approximation Theorem).
Let f : [a, b] =R be continuous. Then Ve > 0, Ip s.t. Vz € [a,b], | f(x) — p(z)| < e
Defn 3.2 (Polynomial Approximation of CEF).
Let X, Y ber.v.sand suppose E [Y|X = z]is continuous and supp[X] = [a, b]. Then,

Ve >0,3K e Nst. VK > K,
SN2
E {(}me] — (X, X2, XK )) } <e

where g(X, X2,... XX") is the BLP of Y given X and higher orders.

efn 3.3 (Polynomial least squares Sieve Estimator).
oriid r.v.s (Y1,X4),..., (Y,,X,,), the polynomial least squares sieve estimator of

N—— .
N-1X'X N-13, é&zz, N-1X'X he CEF is

<+~ ToC
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Jn
EY[X=2]=) A

k=1

where
A— argmin b Xk
be%‘]7z+l z: ( Z k )

where J,—00 and 1 .J,,—0. Asymptotics of the estimator allow for increasing flex-
ibility; as n grows, so does flexibility. As long as ‘flexibility” grows slowly relative
to n, the estimator will be consistent.

Defn 3.4 (Inference for conditional mean 7:(X)).

m(X)=X" (X"X) X'y
f(X) = MVN (xg,UQXT (xXTx)" XT) = MVN(XB,0?Py)

3.4 Geometry of OLS

Define 2 matrices that are
e positive semidifinite 2’ Az > 0 Vz € R* (conformable z)
e symmetric A’ = A
e idempotent AA = A

Defn 3.5 (Projection Matrices).
Matrices that project a vector y into a subspace .S. For OLS,

e L :=span(X) := {Xb: b e R"} is the linear space spanned by the columns

of X.

e P, = X(X'X)!X’ - Hat Matrix - projector into columns space of X

rank(P) = trace(P) = p.
p eigenvalues of 1 and n — p zero eigenvalues
-0<h; <1

Prediction for observation ¢ is simply M;.y where M;. is the ithe row of
the hat matrix
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e M, =1, - P, =1, - X(XX)"'X’ - Annihilator Matrix - projector into
span(X)* (orthogonal subspace of X)

— rank(M) = trace(M) = trace(I — P) = trace(I) — trace(P) =n — k
This generates
e Fitted Value: y = P,Y
e Residual: e = M, Y

Theorem 3.13 (Frisch-Waugh-Lovell Theorem).
Let X, X5 be partitions of X containing first K; and K — K columns respectively,
and 31, B2 be the corresponding coefficients in 8. Further, let M, , P; be the projec-
tion and residualiser matrices for X;. Then,
. -1
By = (X3 MiXs) Xy My

IoW, one can estimate coefficients for X, by first residualising X, and y on X,

3.4.1 Partitioned Regression
Choose k1, ko; k1 + ke = kst. X = [X1  X3]. Then, the normal equation is

XiXe] (4]
[X}Xi XéXi] 3] = [Xéﬂ

yields the FWL solutions
« -1 1
B = (X MX,) ' X, Mby = (XS_M/Q M2X1> X /My = (X*1X*) X"y
——

3.5 Relationships between Exogeneity Assumptions

main model: y; = By + B1x1 + u;.

1. E[u] = 0 is technical assumption; not meeting it only affects the constant
term (.
2. Zero Covariance: Key assumption for consistency of 8;: Cov [u,z] = 0. As-
sumption (1) implies that Cov [u, 2] = E [uz] —E[u|E[z] = Euz] =0
3. Mean independence: E [u|z] = E[u] =0
e Mean independence implies zero covariance E [uz] = E [zE [u|z]] =
E [2E [u]] = E[z] E [u]. Since Cov [u,z] = E [uz] — E[u] E[z], E [u|z] =
Eju] = Euz] =E[u|E[z] = Cov[z,u] =0
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e Zero covariance does not imply mean independence
4. w1l zif f(u,x) = f(u)f(x).

Violations of the zero conditional mean assumption E [¢|x] usually arise one of
three ways:

e Omitted Variables Bias: if unobserved variable q is correlated with both y
and «, failing to include it in the regression results in Cov(x,¢) # 0

e Measurement Error

e Simultaneity

3.6 Residuals and Diagnostics

Defn 3.6 (Leverage).

Since §; = > ;_, hijy;, hij can be interpreted as the weight associated with the
datum (z,,y;). Diagonal elements h;; measures how much impact y; has on g;,
and is therefore called leverage.

Fact 3.14 (Variance of &;).
Since ¢ = My = (I — H)y, V[&] = 0*(1 — hy).

Defn 3.7 (Standardised and Studentised Residuals).

e‘?td _ y’L - Q’L
¢ SV 1-— h“
Studentised residuals often omit the observation in question and estimate
estu — Yi — Ui
‘ S(_i)\/ 1-— hii

Defn 3.8 (Cook’s Distance).
Let (=% be the estimate of 3 with (z;,y;) omitted.
Cook’s distance of x;, y; is defined as

dH(XTX)d; sl oA
= &(X X)d; where d; = 479 —

ks?

and p is the rank of M, = k and s> = 62. D; > 1 is often interpreted as an
influential point.

D;
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3.7 Other Least-Squares Estimators

Defn 3.9 (Robust Regression).
When the data has some very high-leverage points, Huber’s Robust Regression is an
alternative to OLS.

1 n ,
B = argmin E 1 p(yi — x;b)

where the p(.) term is Huber’s Loss Function
u? lu| < ¢
u) =
plw) {2CU| —c Jul>ec

which looks like square error for ‘small” errors and absolute error for ‘large’ er-
rors. It is continuous in ¢ and has a continuous first derivative, which helps with
optimisation. cis a tuning parameter.

Implemented in R using MASS: r1m.

Defn 3.10 (Weighted Least Squares).
Minimise WMSE

1 n
E =— (yi —
WMS (/vala awn) n izzlwl(yl wzﬂ)
which yields the estimator

Bwis = (XTWX) ™ XWy

Defn 3.11 (Generalised least squares).
If covariance matrix of errors is known: E(ee’'|X) = Q

BGLS _ (Xlﬂflx)flxlnfly

V(BGLS) = (X’Q71X)71

Defn 3.12 (Restricted OLS).
maximise
L(b,A\) = (Y = XB) (Y — XB) +2A\(RB — )

where R and r are the restriction matrix and vector respectively.
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3.8 Measures of Goodness of Fit
e TSS = Total Sum of Squares := ||y||*
e ESS = Explained Sum of Squares := || Py||?
e RSS = Residual Sum of Squares := || My||?

(y,9) = +e)=(XB+e)(XB+e)
=BX'XB+ e
Wy —ny®) = BX'XB—ny* +ee
TSS =FESS+ RSS

Other terms disappear bc 23 Le

Defn 3.13 (R?).

TS5 T S (v - Y)? TTSS T YL, oY)
Defn 3.14 (Adjusted R2).
p2 _ 4 1 1 _ p2
R =1 p— k(l R?)
Defn 3.15 (Mallow’s Cp).
~2
Cp— RSS +2(k+ 1)o

k
Defn 3.16 (Akaike Information Criterion (AIC)).

AIC =1In (e e) 42k
n n

Defn 3.17 (Bayesian Information Criterion (BIC)).
BIC = In <6 e> N kln(n)

n n

Defn 3.18 (F statistic).

FStat = (R3 — r)'(s*R(X'X)"*R)"Y(RB —1)/q
Equivalently,

(TSS—RSS)/(k—1)  R*/(k—1)
Bt = RS k) (=R (k) Ttk
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Defn 3.19 (Wald Statistic).

nh(f,) (a’;(g,”) v, ahéé”)/> nh(5,)

reject Hy if W, > X3,1—a =F/q

3.8.1 Model Selection

Defn 3.20 (Generalisation Error).

G=E (Y - m(x)?]

for a new data point (x, y).

This is different from in-sample training error

T= 13 (- )
i=1

Usually, T' < G.

Defn 3. 21 (Generalized / Leave-one-out Cross-Validation).

Lety; ") be the predicted value when we leave out (x;,y;) from the dataset. The

LOOCV is

n

1 NI R S A
LoocvV = =3~ (-3 ) :nz<1—Hﬁ)

i=1 i=1

since tr(H) = p + 1, the average of H;; = (p + 1)/n =: 7. Then,

2 N
1 26
LOOCV = = ;:1: (ylZ - y7) ~ training error + %(p +1)

For ridge, the trace is

= Aj+A

where ), is the j-th Eigenvalue of ¥ = X" X. For linear regression, \ is zero, and

the trace is simply the sum of eigenvalues of the vcov.

3.9 Multiple Testing Corrections

T-tests perform inference on one hypothesis. Suppose one is interested in testing

K hypotheses (e.g. /1 =0,...,8; =0).
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Fact 3.15 (Probability of rejecting any nulls when % independent true nulls are tested).

e Test size = 0.05
e Probability (No rejections) = 0.95%

e Probability (Any (incorrect) rejections) = 1 — 0.95¥—1 as k gets big

Defn 3.22 (Family Wise Error Rate (FWER) adjustments).

Define M° := {i : H; is true} and R := {i : H; is rejected}. The FWER is defined
as follows

FWER = Pr (M°NR # ()

Equivalently, let N; be the number of type I errors (rejections of nulls when null is
true). Then, FWER = Pr (N; > 0) = 1 — Pr (N} — 0).

FWER = 1 — (1 — a)* where a is the size of the test. FWER for k = 10 = 1 —.9510 ~
0.4.

We want procedures for which FWER < a.

e Bonferroni correction - If testing ] hypotheses : Critical value 7 = o/ J

e Holms-Bonferroni stepdown method

- Order k p-values from smallest to largest p(1), . .. p)
- If pay > a/k, stop. Fail to reject all. Else, Reject Hy) if py < a/k.
Proceed.

- If pioy > o/ (k — 1), stop.

- rinse and repeat until you stop rejecting because p(;) > a/(k — (j — 1))
or all k£ have been rejected.

e Computational methods such as Romano and Wolf (2005), Westfall and Young

These methods all modify test sizes; instead we might want an adjusted p-value
for each hypothesis.

Defn 3.23 (Joint Confidence Bands). )
relies on convergence of distribution over rectangles. Suppose 3—8 ~* N (3, V /n).
We want to construct a band [a, b] = ([a, bx])&_, such that

Pr (B8 € [a,b]) = Pr (5 € [ag, bi] VE) =1 —

<+~ ToC

These bands take the form of [ag, b;] = {ﬁk — e/ Vig/n, Bk + c\/ka/n}

where c is chosen such that
Pr (HN (O,S‘l/2VS‘1/2) HOO < 0) —1-a

where S = diag(V). This is chosen by simulation plugging in V.
Defn 3.24 (False Discovery Proportion (FDP)/ Rate (FDR)).

e setup

—dataX ~Pec?P
- nulls Hy,...,H,, CP
- p—values p1(X), ..., pm(X). Not independent.

o Mo = {i: H,is true}
o R ={i: H;isrejected}; R = |R|
o V =|RNHyl

Vv
FDP = —— FDR = E [FDP| <
RV1 [FDP] < o
Benjamini-Hochberg Procedure
e Order p— values p(1) < -+ < pay)
e BH(a) rejects R hypotheses

R(X) = max{r CPr) < ﬂ}

e Data-dependent rejection threshold

R(X
Reject H; & p; < oR(X) =:7(a; X)
m

Adjusted P-value / BH g-value ¢;(X) = min {« : X; is rejected by BH(«)}.
p.adjust(pvals, method = "BH")

Anderson (2008) adjustment - Rescale p values by number of hypotheses / p-value
rank, and adjust for non-monotonicity.
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Benjamini-Hochberg procedure [Benjamini and Hochbers, 1995

R(X) = max {r: Py < %}

Figure 2: BH Procedure visual - data-dependent slope gray line

3.10 Quantile Regression
Notes based on Koenker (2005).

Defn 3.25 (Conditional Quantile Function).
Instead of CEF, we may be interested in the conditional quantile function at quan-
tile 7. Define the conditional CDF of y;

F (y|z;) = Pr (Y < ylz;)

The quantile regression model assumes that the 7—th conditional quantile of y;
given z; is a parametric function of z; and is given by Q. (7|x) = x;3,, where (.
tells us the impact of = on a conditional quantile.

The conditional quantile function at quantile 7 is Q- (y;|z;) = F, ' (7]x;).

Fact 3.16 (Relation to Heteroskedasticity).
Lety; = @B +¢e; ; |z ~ N (0,0%(x;)). The 7 — th conditional quantile function
Q- (x;) satisfies

7 =Pr(y < Q- (@i)|z:) = F(Qr (@) |z:)

Let z, denote the 7—the quantile of the standard normal distribution. Since
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—
wmi ~ N (0,1) we have

o(z;)
—
- — Pr (W < Z|$)

0’(331)
=Pr(Y; < z;B +o(xi)z|xi)

This implies that the 7—th conditional quantile of the distribution of y; is given by

Q,(x;) = xi;B+ o(x)2r

The marginal effect of x; on the 7—th quantile of y; is therefore given by

9 ) A
Q- (x:) — B+ U(ml)z,r
ox; T;
If the errors are homoskedastic (i.e. o(x; = o), the effect of x; is the same for all
7 € (0,1) and coincides with the effect on the conditional mean of y;. Moreover,
since z; < 0if 7 < 0.5 A 2z, > 0if 7 > 0.5, the contribution of the second term

%ﬂii) has opposite effects on the upper and lower quantiles.

Defn 3.26 (Quantile Regression Estimator B,).
B(7) solves

min R(B) == Elpr (v: - z;0)]

This objective function is piecewise linear and continuous, and differentiable ex-
cept at the points at which one or more residuals y; — ;3 are zero. At these points,
only Gateaux derivatives exist, see details in Koenker (2005, Chap 2-3).

The objective function (reframed as a linear program and solved numerically) is

N N

Qn(ﬁ‘r) = Z T |yi - -T;,67| + Z (1 - T) |yz - x;ﬁ‘r‘

iy >xh B 1y <z

e Since the median is robust to outliers in y, QR is a useful check relative to
OLS when there are high-leverage outliers in y.

e The slope parameter 3(r) is interpreted as the slope of the relationship be-
tween the 7th quartile of y and X.

Fact 3.17 (Asymptotic Distribution of j3,).
VN(By = B) SN (0,(4)7 B (4) ™)
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Figure 3: Examples of Treatment Effects on CDF, QF, and QTE from Koenker (2005)

where A := plim & Y, fu, (0|z;)z;z; and B := plim - >, ¢(1 — q)z;}

Defn 3.27 ((Lehmann-Doksum) Quantile Treatment Effect).

Let F be the CDF of Y; [potential outcome under control] and G be the CDF of Y;
[potential outcome under treatment].

Define A(z) as the ‘horizontal distance’ between F and G, such that F(z) = G(z +
A(z)), then A(z) = G"1(F (z)) — =

On changing variables so that 7 =: I (z), we have the quantile treatment effect

5(r) == AF (1) = G} (7) ~F1(7)
In this setting, the ATE is obtained by integrating the QTE over 7

0= /01 S(t)dr = /G*ldT - /F*ldT = u(G) — u(F)
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The QTE analogue estimator to difference in means is

3(r) =G} (r) = F!(7)
where F denotes an empirical distribution function. The quantile regression ana-
logue is
Qy (71D;) = a(r) + 6(1)D;
The L-D quantile treatment effect is the response necessary to keep a respondent
at the same quantile under both control and treatment regimes.
3.10.1 Interpreting Quantile Regression Models

In a transformed model Q) (7| X = z) = h(Qy (7|X = x)) = «'B(r), for mono-
tone transforms h(.), we get

oQy(t|X =x) 0on ' (a'B)
8£Ej o 833j
9Qv (.)

If we specify Q1o4(v), then oy = exp(z’'B)B;.

For practical purposes, suppose we observe two CDFs F and G for treated and un-
treated groups. Under randomisation, the two CDFs are identical by assumption
(since the treatment was randomly administered), so the difference between their
medians is the median treatment effect.

3.11 Measurement Error

Fact 3.18 (Classical Measurement error in the outcome does not Bias OLS).
let observed y = y* + u, be the true value plus noise. We estimate the regression
y = zf + € + uy. The coefficient is

plim (3) — C{)/v(y, x) _ Cov(z + € + uy, x) Cov(e + uy, )
ar(z) Var(z) Var(z)

The last equality holds iff measurement error in y is orthogonal to x. This means

this rarely holds in practice.

Also means OLS estimates are more imprecise. The (homoscedastic) variance is

now (X'X) ™" [02 + 02 .

=5+ =5

Defn 3.28 (Classical measurement error / Error in variables).

True data X is measured with error, X. Lety = X*8+U,and X = X*+V. Then,
y = XB + (u— V). The error term is correlated with X through measurement
error V, so OLS is inconsistent.
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Example 3.19 (Measurement Error with a Scalar Regressor).
True regressor: x*, variance 2. measured with v ~ N (0,02). Then, we under-
estimate the true coeff1c1ent [Attentuation Bias|

plim /3 = *—|—025 5(1—&—5)

where s = 02 /02, is the noise-to-signal ratio.

Fact 3.20 (Measurement error with correlated regressors).
Adding correlated errors makes attenuation bias from measurement error worse.

Fact 3.21 (IVs solve measurement error problem).
3Z; s.t. Cov [Z;, X}] # 0,Cov [Z;,m;] = 0, where Z; is the instrument, X* is the
signal, and m is the measurement error. in the bivariate regression,

5 Cov|Y,Z] Covia+ X} +e;,2Z;] BCov[XF,Z)

v = Cov [X.Z] Cov[X;+m,Z]  Cov[X;,Z] =Fp

3.12 Missing Data
Defn 3.29 (Missing Data Categories).

e Missing at Random (MAR) : missingness in z; does not depend on its value
but may depend on values of z; (j # i)

e Missing Completely at Random (MCAR): X, is a simple random sample
of all potentially observable data values. ignorable for likelihood inference if this
is the case.

e Not missing at Random (NMAR) if neither of the above applies.

3.13 Inference on functions of parameters
3.13.1 Bootstrap

The bootstrap principle Say the original data is X. Our parameter estimate from
the data is . We can simulate surrogate datasets called (bootstrap rephcatlons) by
sampling from the data X and computing a sequence of statistics f =T(Xy),... by =
T(Xr)

For a reasonable number of replications M, we can \/fa\rrﬂ asV m

Debiasing: This logic can also be used for debiasing: since 7 is an estimator for t,,
the sampling distribution of  is close to that of 7, and 7 itself is close to to,

B[] -t~ E[] -

we want to approximate the RHS using what we can calculate (LHS). This requires
t — to to be approximately pivotal.

Key idea: resampling samples from the Empirical CDF, which is consistent for the
true CDF F. Since all statistical functionals ¢(F) are calculated on F, we can get the

distribution of ¢ by computing the ECDF of ().
General Bootstrap Algorithm

1. Givendataxy,...
2. compute test-statistic £(0)5 (x5, ..., X}x)

Repeat steps (1) and (2) B independent times, obtaining B bootstrap replica-
tions of the statistic 6,,. Compute quantiles / variance of empirical distribution

of t(3),....t(3)\".
Example 3.22 (Bootstrap Standard Error).

B _
3Boot 51 Z (0; —9 2 where 0* = B~
=1
Defn 3.30 (Edgeworth Expansion).
the EE is the expansion of the distribution function around the normal distribution.
If we have n IID random variables X1, . .., X,, with density f, mean y, and variance

B
1 0
>0
b=1

o?. An edgeworth expansion for the CDF of ‘F VX1 can be written

n(X —
Based on Cosma Shalizi’s ADAEPoV and notes https://www.stat.cmu.edu/ cshalizi/402/lectures/0&r (\F(JM) < w) = P(w) + ¢(w) 7%(&1 -1+ R,

bootstrap/lecture-08.pdf

Statistical quantities of interest, be they means, variances, or more complicated
quantities, are functions of the underlying stochastic model (represented by the
distribution function), and hence are statistical functionals.
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6/n
where nR,, has a boundary.

Defn 3.31 (Jackknife).
Exposition from Efron (1982)

Given an estimate u = T( ) based on a sample of n draws from empirical distri-
bution IF, define the estimate with the i-th observation left out as
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https://www.stat.cmu.edu/~cshalizi/402/lectures/08-bootstrap/lecture-08.pdf
https://www.stat.cmu.edu/~cshalizi/402/lectures/08-bootstrap/lecture-08.pdf

Ui = T(F_;)

And let () := Y"1 | u_;/n average these leave-out estimates.
The jackknife estimate of the standard error for @ is the square root of

u* 2

—_———
n

S
g B " (@ )

2 . _ N _ O
Jjad('_n—lZ n—1 _Z n(n —1)

i=1 i=1
Defn 3.32 (Asymptotically Pivotal Statistic).

A statistic whose limit distribution does not depend on unknown parameters is
said to be asymptotically pivotal. Estimators are generally not asymptotically piv-
otal, while standard normal or chi squared test statistics typically are.

Defn 3.33 (Cluster Wild Bootstrap).
With a “small” number of clusters, conventional clustered bootstrap errors yield
over-optimistic variances. CGM Algorigthm for each resampling

o Estimate the main model imposing the null, e.g. to test the stat. significance
of a single variable regress y;, on all components of x;, except the variable
that has coefficient zero under the null. Construct 4;;, = y;q — 2} oBHO

o for each resampling
-1 wp. 05

1 w.p. 0.5
servations in cluster g get the same Rademacher weights

- Randomly assing cluster g the weight d, = . All ob-

- Generage new pseudo-residuals uj, = dy, x 4,9 = y;, = x295H0+u;*g.
- Regress y;; on z;4 [not imposing the null] and compute w* [the t-stat
with clustered SEs]

e p value for this test is the proportion of times that |w| > |w}| [where |w]| is
the original sample statistic]

3.13.2 Propogation of Error / Delta Method

Propagation of error for generated quantities

Say we estimate §, which is a function of some intermediate quantities ¢y, . .. , ,,
which are themselves estimated. Difference in group means, marginal effects in
nonlinear models are examples of such generated quantities.
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Since § = f (a, ey 5,,), we derive standard errors for the generated quantity by
writing a taylor expansion.

P
O~ f($7,.. 0p) = F(1,- -, bp) + Y (6] — i)

The variance for 6 can be written using a general analogue to V[a + bX + cy| =
b2V [X] + 2V [Y] + 2bcCov [XY]. Allowing for covariance between any two pa-
rameters in the vector ¢;, ¢;, we can write the variance as

v[o]~ 3 (1) [@]HZ > @

1=1 =1 j=i+1

Cov {qﬁw qﬁj}

The second term is zero if the quantities are uncorrelated.

General Statement
Works by considering a Taylor expansion of Qol h(x;, ).

h(z) = h(z0) + h'(20)(z — 20) + o([|2 — zo|)
If 7 = h(B) and h(#) # 0, by Slutsky’s thm,
h(B%) % MVN (h(8), VA (8) £VH(8"))

where the gradient is evaluated at MLE estimates and X is the covariance matrix
of the MLE.

« _ [ 9n(B)| Oh(B) oh(B)
Vh(ﬁ)‘( DBr |g OB |g " OBk 6*>
For the scalar case,
Tn—T d
) =N (0,1)
where
SAe(%n) = g/(é)s/\e(én)
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3.13.3 Parametric Bootstrap

Assuming the point estimates and variances of the parameters are correct, draw
from distribution of parameters and construct quantity of interest (e.g. a marginal
effect) for each draw. For m of M simulations,

B™ ~MVN (8*,Ix(8)")
h(B)™ = h(B™)

Then, average them or take their quantiles

3.14 Generalised Method of Moments

Datais D := (Y;,X,,Z;)}_, where Y; € R, X, is a k-vector of regressors, and Z; is
a [—vector of ‘instruments’. Need [ > k

Defn 3.34 (Linear GMM).
Model given by Y; = X3+ U; and E [Z;U;] = 0
When k = [, we can solve for 3 as

n -1 n
B = (Z zl-X;> Sz,
i=1 =1

Let W,, be a (possibly random) [ x | weight matrix such that W,, % W. For a
given choice of a weight matrix W,,, the GMM estimator solves

~

. 1 —
Bn(W,,) = argmin W"ﬁ Z Z.(Y; — X.8)

i=1

2
/

1 < 1<

= argmin | — Z,(Y; — X! W, W, [ - Z,(Y; - X.8

i (s i) wiws (322000
Different choices of W produce different estimators. Choice of weight matrix only
matters in over-identified case (I > k).

Defn 3.35 (GMM Estimator (general formulation)).
Assume existence (from theoretical model) of » moment conditions for ¢ parame-
ters

]E [g(w“ 0())] =0
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where 6 is a ¢ x 1 vector, g(+) is a r x 1 vector function with r > ¢, and 6, denotes
the value of 6 in the DGP. w includes all observables.
Sample Analogue:

Define Jacobian

D(H)::E[W},qu

problem is under-identified if rank(D) < £, just identified if rank(D) = k, and
over-identified when rank(D) > k.
Evaluated at the maximum,

1 n
Vo > g(w;, 0o) SN (0,8)
i=1

where
S=E I:g(wzaeo)g(wwe)T] 34X q

Can insert a positive definite ¢ x ¢ weighting matrix W that tells us how much to
penalise violations of one moment condition relative to another.
So, GMM estimator gy minimises a quadratic form

0 = argmin QAn©O) =gn(®T Wy  gn(0)
0 S~~~
g x q, PSD

in sample, this means

n T n
0 = arggnin (ib 297(9)> %% (rlz Z%(@)

Technical conditions for GMM  (Newey and McFadden, 1994)

1. 6 € © (parameter space is compact)

2. Elg(zi,00)] = 0and E [g(z;, 0)] # 0 VO # O (global identification condition)

3. 9n(6) = E[g(z;, 0)]
4. E[g(z,0)] is continous
5. A :=D(0;) W D(0)) " is invertible
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6. g(zi, 0) has at least two moments finite and finite derivatives atall 8 € @

7. g,(0) is twice-continuously differentiable about 8,
8. W,, 5 W (weight matrix goes to constant)
9. 0y is not on the boundary of ®

Asymptotic Distribution

VN@O = 0) 3N (0, V)

Where
Vy = (DWD) /(DWSW’'D’) (DWD) "

with D :=E [:2,9:(0)] and S := E [g;(0)g;(0) " | for general weight matrices W.

Defn 3.36 ((2-step) Efficient GMM). R
The weight matrix W y that minimises the variance of fgvm is Wy = S™1, which
produces

Vy= (DST'D) "

Want S to be small (sampling variation / noise of the moments) to be small and D
to be large (objective function steep around 6).
Problem is S = E [g(w;, 6y)g(w;, 80)’] is unobserved. So use sample analogue

" —1
W=8"= (i > (g(wiﬁ) - gN(é\)) (g(wiﬁ) - 9N@')>

=1

Steps
1. Pick some initial guess Wy =1,
2. Solve f = argming gn (€)' Wogn ()
—~ N N N o\ -1
3. Update W = (1521, (9w, 0) — gn (9)) (9(wi,0) — gn(@)') )
4. Solve Oy = argming gN(t‘))’\/?\\’gN 9)

5. Compute D(@GMM) and S(§GMM)

Example 3.23 (Standard Methods nested in GMM).
Most standard methods can be re-expressed as GMM.
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e OLS:y; = z;8+¢;. Exogeneity implies E [z}¢;] = 0. Can write in terms of ob-
servables and parameters as E [2}(y; — z}5)] = 0. Yields moment condition
e 2SLS: z; is endogenous, so E [z}¢;] # 0. However, 3z; such that E [z}¢;] = 0,
so moment condition for exclusion restriction is g(y;, zi, zi, ) = 2L (y; — x}0)

e Maximum Likelihood: gis simply the score function, so g(w;, 8) = %{W
3.14.1 Empirical Likelihood
Notes based on Owen (2001) and Anatolyev and Gospodinov (2011).
Defn 3.37 (Nonparametric Likelihood).
Given Xi,..., X, € Rassumed IID with common CDF F, the nonparametric like-

lihood of the CDF FF is

i=1 i=1
The value £(F) is the probability of getting exactly the observed sample values
Xy,..., X, from the CDF F.

L(F) = 0 for continuous F; for positive nplikelihood, a distribution F must place
positive probability on every one of the observed data values.

Theorem 3.24 (The Empirical CDF (ECDF) maximises the Nonparametric Likelihood).
where

where ¢, is a point mass as z.

NPMLE as constrained optimisation Consider a random sample {xz;}!" , from a
population distribution F(z) with density f(z). The joint likelihood is given by

H f(x;)

instead of assuming a particular parametric form for f(z|n), we define n := p =
(p1,---,pn) Where p; = f(f(z;) denotes a sequence of discrete probability weights
assigned to each sample observation observation. The Nonparametric Maximum
Likelihood estimate of p solves
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subject to the constraint

2o pi=1.
The lagrangian for this problem is

1 n n
Lp1s-- s pnspt) = > log(p;) — <Zpi - 1)
=1 =1

which yields the solutionp; = = ,i=1,...,n

1
Defn 3.38 (Empirical Likelihood).
Suppose now we have a model in the form of a system of unconditional moment
restrictions

E[m(w,8p)] =0

where 0 is k x 1, w is a vector of observables, and m(w, 6) is an [ vector of moment
conditions. This amends the above constrained optimisation problem to

1 n
2\ ;
max ; og(p:)

subject to the constraints
n
Zpim(wi, 0)=0
i=1

Z?:l p; = 1.
The lagrangian for this problem is

1 n n n
L(p1y---sPn, i) = - Zlog(pi) AT Zpim(wi, 0)—pu <Zpi - 1)
i=1 i=1 i=1

which, upon tedious rearrangement, yields the system of equations that implicitly
define the solutions
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1 i m(w;, 5) _0
ne 1+ ATm(w;,0)
n ) Y .
1 Z 8m(Aw“ 0) /350\ X—0
n= 14+ AxTm(w;,0)
where the solution 8 is called the empirical likelihood (EL) estimator and X is a vector
of EL multipliers. The dual of the above problem solve the EL saddlepoint problem
max min 1 Z (—log(1 + XTm(w;, 0)))

0c® X n “
i=1

Generalised Empirical Likelihood Replacing the log above with an arbitrary shape-
constrained criterion function p(v) (p(0) = 0, p’(0) = p”(0) = —1) yields the gen-
eralised empirical likelihood estimator which solves

1 n
i — Xm(w;, 0
mip sup - ; p(ATm(w;,0))
where A,, = {X: XTm(w;,0) € T} where Y is an open set containing zero.
% g

e p(v) =log(l —v),T = (—o0, 1) reduces GEL to the basic EL setup.
e p(v) = —4v? — v: Continuously Updated GMM (CUE)
e p(v) =1 — exp(v): Exponential tilting

The primal of the problem is

n

6 = argmin Z hn (ps)

D
where h,,(-) belongs to the Cressie-Read family of divergences

[y(v + D] H(npa) T = 1]

hn (pz) =

Implemented in momentfit: :gel4.

3.14.2 M-estimation
GMM, but as taught in stats departments.
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A M — estimator is a solution for 0 that solves a moment condition

n

> 9(0;,0) =0 (1)

i=1

where O, ..., 0, are IID obs (of arbitrary length), 8 € R*, and ¢(-) is a known
k x 1 estimating function that does not depend on i or n.

The moment condition 1 is solved numerically using standard root-finding tech-
niques.

The M-estimator 0 is consistent and asymptotically normal with asymptotic variance
of the following sandwich form

~ 1 ~
Bread B,, 7-,0:—57’ i, 0
read B,,(O;, 0) P P'(0;,0)
N 1 n R R
M,,(0;,0) = = Y 9(0; .0)"
Meat M, (O;, 6) ni=1w(oz,0)¢(0z,0)

Since many (most?) statistical estimation problems are solutions to an optimiza-
tion problem, M-estimation nests many familiar statistical problems with v(-) as
the corresponding FOC. For example, for maximum likelihood, +/(-) is the score

oy T
equation %{;ym '
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4 Causal Inference

4.1 Foundations, Experiments

4.1.1 Potential Outcomes

Exposition from Athey and Imbens (2016b) and Imbens and D. B. Rubin (2015)
Y; is the observed outcome, D; is the treatment with levels d € D,
potential outcomes denoted Yy;, Y, Y;(d) (interchangeably).

Y;OSiY;(Dl)i{YQZ lf DZZO
Equivalently, we have the switching equation

Y; =D; Y+ (1— D) Yo = Yo, + (Y1 — Yo;) D;
—_————

Ti

This encodes what is known as the causal-consistency assumption (/ SUTVA).
Generally, define a potential outcome (Frolich and Sperlich, 2019)

}/id - (p(d, Xi7 Uz)

where X is a vector of observed covariates and U; is a vector of unobservables,
and ¢ is an unknown measurable function. Typically, we are interested in non-

parametric identification of ¢ or some features of it.

Defn 4.1 (Assignment Mechanism).
Given a population of n units, the assignment mechanism is a row-exchangeable
function Pr (D|X, Y (0), Y (1)) taking values on [0, 1] that satisfies

> Pr(DX,Y(0),Y(1) =1
De{0,1}N
A unit level assignment probability for unit i is
p(XY(0),Y(1) = > Pr(D.X,Y(0),Y(1))
D:D;=1

A finite population propensity score is

1
e(r) = —— pi(X,Y(0),Y(1
)= Fa7, 3 MK YO.Y0)
where N(z) = #{i=1,...,N|X; = x} is the number of units in each stratum

defined by X, = x;.

Defn 4.2 (Causal Estimand).
is a row-exchangeable function of potential outcomes, treatment assignment, and
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covariates.

T= T(Y(O)v Y(1)7 X, d)

Y (0), Y (1) are n— vectors of potential outcomes, X is a n x p covariate matrix, and
d is an assignment vector.

The most intuitive estimand is a n— vector 7 = Y (1) — Y (0). This is impossible
to estimate because of the FPCI, so we instead use summaries, such as its sample
average, or subgroup averages.

Defn 4.3 (Fundamental Problem of Causal Inference).
We never see both potential outcomes for any given unit.
Decompositions of Observed Differences:

4.1.2 Treatment Effects
Estimands

o 7ate :=E (Y1; — Y0i)

® TATT :— E(Yli - YE)1|D1 = 1) = ]ED/11|D1 = 1] —E[Y0i|DZ‘ = 1]
Under randomisation, 74rr = TarT, since the treated are a random sample of the
population. Under weak(er) assumption of Yy; L D;, only 747 is identified.
4.1.3 Difference in Means

Defn 4.4 (Difference in Means point estimate).

N
.1 DY, (1-D) Y 1 1
D =1 — D = 0] = 1Ds = 1] — 1D = 1Ds = 1] — 1D = = — =—> DY, — — 1-D,)Y;
E[Y;|D; = 1] — E[Yi|D; = 0] = E[Yy,|D; = 1] — E[Yos| D; = 1] + E[Yo4| D; = 1] — E[Yoy| D; = 0] 7 N,.zl( , EN z; EN( )

M/N ~ No/N

observed difference ATT Selection Bias

=EW] - E[Yo] + E[Yo:|D; = 1] — E[Yo;|D; = 0] + (1 — ) (ATT — ATU)

ATE Selection Bias

where m = E [D] is the share of the sample treated.

Assumption 1 (Identification Assumption: Complete Randomisation).

(Y13, Yo;) AL D;
This is a Missing Completely at Random (MCAR) assumption on potential out-
comes.

Assumption 2 (Stable Unit Treatment Value Assumption (SUTVA)).

Writing outcomes generated by the switching regression assumes that potential
outcomes for any unit do not vary with the treatment assigned to other units. In
practice, this is equivalent to a no spillovers assumption.

(Y14, Yo:) 1L D_;

Equivalently, let D denote a treatment vector for NV units, and Y (D) be the poten-
tial outcome vector that would be observed if was based on allocation D. Then,
SUTVA requires that for allocations D, D’,

Y;(D) =Y;(D")if D; = D;

Intuitively, SUTVA ensures that the ‘science table’ (Imbens & Rubin 2015) has 2
columns for the two potential outcomes as opposed to 2" (number of potential
outcomes with arbitrary interference).
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Heterogeneous Treatment Bias

Defn 4.5 (Variance estimation for difference in means).
Variance of Difference in means estimator is given by

Ty = — + — — —
DiM NO Nl N
where Sp, S; are sample variances of Yo vt respectively, and Sp; is the variance
of the unit level treatment effect

1
N_1 i:1(Yi(1) - Yi(0) - 7)

This is not identifiable because of the last term. If the treatment effect is constant
in the population, the last term is zero.
A (conservative) variance estimator is given by

o o7 o8
V(Toim) = <N11 + N(()))

where

1 _
~2 2 g _
O Y (Yi-Ya)? ;d=0,1
These variance estimates can be used to construct 95% confidence intervals

Cogs(r) = (7 — 1.96VV, 7 + 1.96V/V,)
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4.1.4 Regression Adjustment
Y =a+ mecDi +ni
=Yoo +(Y1—=Yo)Di+{(Yio—Yo) + Di- [(Yaa — Y1) — (Yio — Y0)]}
~ —

[e3

TREG Ni
o a=E[Yy]
o 7=E[Y1; — Yo
o 1; =Yy, — E(Yy;) [extra terms above come from allowing for heterogeneous
TEs]
Selection bias: Cov [D;,n;] # 0

Example 4.1 (Matrix formulae for randomized regression).
Suppose 50 percent of the population gets the treatment. Let X; = [D; 1]. Then,

wxe[f {3t ] = mt-3[3

Similarly,

Therefore

N

Generalise to p fraction treated
VCV under homoscedasticity

G=ovo=a) [ 7] (; w %:“>

VCV under heteroskedasticity

< 1 > {(1 —p)P Y PP Y0 PP Y ﬁT
p*(1 —p)*N(N —-2) —p? Yo —p? Y0

Including controls:
Yi=a+1D;+ X8+

Corrects for chance covariate imbalances, improves precision by removing variation
in outcome accounted for by pre-treatment characteristics.
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Fact4.2.
Freedman (2008) Critique
Regression of the form Y; = o + 7.y D; + 1X; + €

® 7,4 is consistent for ATE but has small sample bias (unless model is true);
bias is on the order of 1/n

® 7,4 precision does not improve through the inclusion of controls; including
controls is harmful to precision if more than 3/4 units are assigned to one
treatment condition

Theorem 4.3 (Lin (2013) fix / response to Freedman critique).
Recommends fitting

Vi=a+mnDi+ 8- (Xi—X)+8:1-Di- (Xi —X) + ¢

Where the two potential outcomes are stipulated to follow

YI=YT+(X-X1)"(Bo+8)
YO =Y04+ (X —Xo)' (Bo)

) R)

which has same small sample bias, but cannot hurt asymptotic precision even if
the model is incorrect and will likely increase precision if covariates are predictive
of the outcomes.

4.1.5 Randomisation Inference

Defn 4.6 (Fisher’s Exact Test).

sharp null: Yy, = Yy, Vi. Implies Hy : E[Y;] = E[Yo]; Hy1:E[Y;] # E[Yo].

To test sharp null, set Y; = Y, for all units and re-randomize treatment. Complete
randomisation of 2V units with N treated. (QNN ) assignment vectors. P value can
be as smallas 1/(%)).

Q is the full set of randomisation realisations, and w is an element in the set (drawn
either under complete randomization or binomial randomization), with associated
probability 1/(%Y)

One sided P-value : Pr ((&(w) > 7aTE))

4.1.6 Blocking

Stratify randomisation to ensure that groups start out with identical observable
characteristics on blocked factors.
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V [Fer] < V [for] if 22822 < 558 where ¢ and ¢* are errors from specification

omitting and including block dummles respectively.

For J blocks,
Point estimate

2\2

i ’

Variance Randomisations within each block are independent, so the variances are
simple means (with squared weights).
2
( > Var (7;)

Mk

Var (75) =
j=1

Regression Formulation
J

yi=7Di+ Y B Bij+e
=2

If treatment probabilities vary by block, then weight by

1 1
w;; = | — | D; + 1-D;
’ (%) (11%3‘)( )

Efficiency Gains from Blocking

e Complete Randomisation : Y; = oo + 7crD; + ¢;

e Block Randomisation: Y; = « + 7grD; + Zj:z B;Bij + €

2 no 22 N
Var [Tor] = 0—572 with 52 = 2z & _ S5k
Z?l(D _D) n-2 n-2

2 nooox? SSR-

Var [?BR] = Te- With 6’2 = Zl:l 61 = <

S n—k—-1 n—-k-1

Sy (D= D) (1- R?)

Where R? is the fit from regressing D on all B; dummies. Since R ~
domisation,

0 by ran-

SSR: SSR:

V[TBR]<V[TCR]<:>n_k_1 < "2
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4.1.7 Power Calculations

— — 0_2 0,2
Basic idea: With large enough samples, V [V1 — Yo] = 7% + gy [where p =
N, /N is the share of sample treated]. Set p to minimise overall variance. Yields
. With homoskedasticity, this is 3 Treatment, 3 control.

p = o1 +<7
Defn 4.7 (Power Function).

T = p1 — po (effect size)

Test for 7 > (t1_x +ta/2SE(B).
For common variance o,

N N
7=Pr(t|>196) =2 -1.9 VN +|1-®(19 VN
20 20
General formula for Power with unequal variances
T v l1-a[1.96— T
o+ N TN

T=®&[1.96—

2

This yields

Defn 4.8 (Minimum Detectable Effect MDE).
Common variance (assumed)

o2

MDE(7) = M, _s i3

where M,, o = t(1_o/2) + t1— = Critical t-value to reject null + t-value for alter-
native (where 1 — k) is power.
MDES (Minimum Detectable Effect Size in Standard Deviation Units):

v
Np(1—p)

Fact 4.4 (Typical MDE for o = 0.05, x = 0.8, N large).
Multiplier M,,_, simplifies to 1.96 4 0.84 ~ 2.8

MDES(7) = M, _»

MDE ~ (0.84 + 1.96)SE(7) ~ 2.8 SE(7)

Rearrange to get necessary sample size for any given hypothesised MDE and ex-
pected variance.

N = (srn b 2 )2< 1 ) 52
- 11—k a/2 p(l _p) MDE2
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MDES for Blocking
1-R%
Np(1 - p)

where R% is the R-squared from regressing Y on block dummies.

MDES(75Rr) = My—k—1

Fact 4.5 (Required Sample Size for rejection probability 3, size o, treatment share -,
effect size 7).
To test Hy : E [Y;(1) — Y;(0)] = 0 against the alternative, we look at the T Statistic

—obs —obs
Y, =Y
T = t ¢ ~ j\/ < 5 T 5 5 1)
\/S2/N; + S2/N.. V0?/Ny + 02 /N,
Inverting this for size /2 gives us a required sample size

(@ 1B+ 27 (1 - /2))
(r/a)? -~ (1 =)
typically, 8 = 0.8, &« = 0.05, v = 0.5, so by subtitution

Required Sample Size = N =

(@71(0.8) + ©71(0.975))

N= (t/0)%-0.52
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4.2 Selection On Observables

Imbens (2004) typology
e Regression estimators: rely on consistent estimation of o (x), 1 (x)
e Matching estimators
e Propensity score estimators: rely on estimation of 7(x)

o Combination methods (augmented IPW, bias-corrected Matching, etc)

4.2.1 Regression Anatomy / FWL
_ Cov(Y;, 1)
where Zy; is the residual from a regression of z; on all other covariates.

Fact 4.6 (Omitted-Variables Bias Formula).
If structural (long) equation is Y; = a + 7.D; + W/v + ¢;, with W; vector of unob-
served, and we estimate short Y; = a+pD, +¢;, then we can write the specification
asy =71D; + Wi~y +e
1%
_ Cov[Y;, Dy

!
=74+ 0w
V [D] TTYowD

equivalently,

plim 7ors = 7 + 0y = 7 + plim [(N—1D’D)*1 N-'D'W]y

Omitted Variables Bias
Coefficient in Short Regression = Coefficientin long regression + effect of omit-
ted x regression of omitted on included. This bias can be arbitrarily large.

4.2.2 Identification of Treatment Effects under Unconfoundedness

Assumption 3 (Conditional Independence Assumption and Overlap).

o Unconfoundedness | Selection on Observables / Ignorability / Conditional Inde-
pendence Assumption: (Yp,Y1) 1L D|X
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- In terms of densities, this is equivalent to the validity of the following
density factorisation

fy(a),pix (¥, d|x) = fy (@) x (y[x)fpx (d|z)
= fy|p.x(yld, x)fpx (d|)

o common support 0 < Pr(D =1|X) < 1

E[Yy = /E [Y4X = x| dPx by LIE
= / E[YYD=d,X=x|dPx by unconfoundedness, overlap

= /E [Y|D =d,X =x|dPx by consistency

The third quantity is estimable using observed data.

Estimators:
Discrete Case: x has finite values indexed by k = 1,..., K with generic entry x;,
K
mate = » (E[Y|D=1X=x;] —E[Y|D =0,X = x;])Pr (X = x1.)
k=1
K
TATT = ZE[Y|D =1,X=x;]-E[Y|D=0,X=x;]) Pr(X =x4|D=1)
k=1

Multi-valued and Continuous Treatments Imbens (2000) and Hirano and Imbens
(2004)

Treatment values: D finite if multi-valued / C R for continuous, with correspond-
ing dose-responses Y;(d). We are interested in dose-response function p(d) =
E [Y;(d)], and contrasts.

First define Generalised propensity score :

R:=r(d,x) = fD|x (d]x)
Assumptions:
o Weak unconfoundedness: Y(d) I D|X =x VD €D
e Conditional density overlap: f (D =d|X =x) >0
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Bias removal using the generalised propensity score:

e Estimate the conditional expectation of the outcome as a function of treat-
ment level d and GPS R as

Bld,r) =E[Y(d)|r(d,X)=r]=E[Y|D =d|R =]

e Estimate the dose-response function of the treatment by averaging the con-
ditional expectation at that particular level of treatment 1(d) = E [8(d, r(d, X))]

Then compute contrasts to get first derivative (MTE)

0
%E [1(d)]

4.2.3 Estimatorsof E [Y]

which can be used to construct estimators of ATE(7; — 7p), ATT((y1 —50|D = 1),
and other estimands. reference: Imbens (2004), David Childers’ lecture notes.

e Regression Adjustment

- Estimate p14(x) = E[Y|D = d, X = x| by nonparametric regression esti-
mator ig(x)

- Average 35% i= L Y0, fla(x)

— Since average of predicted treated outcome for the treated is equal to
the average predicted outcome for controls, can also write ATE as

- RN - -
Treg = - > Di - [Y; = fio(Xi)] + (1 = Dy)[fin (X;) — Vi]
i=1
— SATT only requires imputation of one potential outcome
- RS -
Treg = - 2 DilYi = fio(X0)]
i=1

e Inverse Propensity Weighting

- Estimate propensity score 7(x) = E [D = d|X = x] by conditional prob-
ability estimator 7(d|x)

- Average

1 Yilp_
~IPW . __ i Dj=d
W= 5 2

n-
i=1
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e Augmented Inverse Propensity Weighting / Combination methods
- Estimate pq(x) = E[Y|D = d,X = x| by [iq(x)
- Estimate 7(x) = E[D = d|X = x] 7(d|x)
— Average

n

~apw . L . (Yi — fa(x))1p,=a
K ~n§KM“+ )

e Hahn (1998) normalized outcome regression : estimate

_ (1o(x))

p1 = 7(x) 5 Ho = 1—_72(x) (%)

4.2.4 Subclassification / Blocking

Weighted combination of K subclasses of covariate values, which partition the

population
K
=S () ()
K k
e =3 (711 (1)

4.2.5 Regression Adjustment

A single regression with controls X is potentially problematic because of Simp-
son’s paradox. To account for this in a parametric setup, assume a set of iid subjects
i =1,...n we observe a tuple (X;,Y;, D;), comprised of

e feature vector X; € R?
e response Y; € R
e treatment assignment D; € {0,1}
Define conditional response surfaces as
pay(z) == EY;|X; =x,D; = d
First pass regression adjustment estimator (using OLS)
1o

7= [y (Xi) — i) (X))
=1
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where [i(q)(x) is obtained via OLS. This generically doesn’t work for regularised
regression.
With known propensity score 7(X) (as in case of regression), an efficient estima-
tor (Hahn, 1998) weights all estimated treatment effects fi; (X;) — o(X;) by the
propensity score:

—arT _ et T(Xa) [ (%) — fio(Xi)]

e 2 i m(X4)

Fact 4.7 (Consistency of Regression estimation of ATE).
Additional Assumptions for consistent estimate of ATE from OLS:

1) Constant treatment effects

2) Outcomes linear in X
= 7 will provide unbiased and consistent estimates of ATE.

e (2) fails - 7ors is Best Linear Approximation of average causal response func-
tionE[Y|D =1,X] —E[Y|D =0, X].

e (1) fails - Torg is conditional variance weighted average of underlying 7s.

Pretend there are m strata of X. Then, OLS estimates

m
tos = 3 (E[Y|X = a4, D =1] - E[Y|X = 23, D = 0]) wi
k=1

where the weight

_ V(DX = 24| Pr (X = )
ST VDX = 2] Pr (X = o)

Wk

Tors weighs up groups where the size of the treated and untreated population are
roughly equal, and weighs down groups with large imbalances in the size of these
two groups.

ToLs is true effect IFF constant treatment effects holds.

4.2.6 Matching

Regression estimators impute missing potential outcomes by imputing it using
ta(X;). Matching estimators proceed by by ‘imputing’ potential outcome using
the observed outcome from ‘closest’ control unit.
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Defn 4.9 (Matching Estimators).
Define ¢,,,(¢) as the index that satisfies

> X, —X <X X, = ™
jid;#d;

So, ¢, (i) is the index of the unit in the opposite treatment group that is m—th
closest to unit 7 in terms of covariate values in terms of the norm ||-||. Let Jps (%) :=
{l1(i), ..., Lr(7)} denote the indices of the first M matches for unit ;. Then, impute
potential outcomes as

?_(0)_{11 if D; =0
ﬁ EjEJI\/I(i) }/J if Di=1

1 : _
P.(1) = | 7 Lseqn@¥i i Di=0
Y, if D, =1

then, the simple matching (with replacement) estimator for ATE is

- I o -
7$£=;§]WU—Y®}
1=1

and corresponding ATT
1
JATT
TMatch = E Z (Yl - YvJU))
D=1

where M = 1 corresponds with one-to-one matching and M > 1 is many-to-one.
Many-to-one matching is not y/n consistent (Abadie and Imbens (2006)) and has
a bias of O(N~'/*) where k is the number of continuous covariates.
Bias-corrected (Abadie-Imbens)

. 1 . N
TATT = A Z (Yi = Yi)) — (fi0 (Xi) — o (X))
D=1

Where po(z) = E[Y|X = x, D = 0] is the regression function under the control.

Metrics

e Euclidian Distance

IX, = X,1l = ED (X,, X;) = \/(X: — X,)' (X, - X,)
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e Stata diagonal distance

—~ —1
StataD (X;, X;) = \/ (X, — X;)' diag (ZJX> (X; - X))

where the normalisation factor is the diagonal element of ¥, the estimated
variance covariance matrix.

e Mahalanobis distance (scale-invariant)

MD (X;, X;) = \/(Xi - X;)'TH(Xi - X))

Where Y is the variance-covariance matrix.

Defn 4.10 (Variance Estimators for Matching).

Matching estimators have a normal distribution in large samples provided that
bias is small.

For matching without replacement,

1 | XM ) 2
FArr = Ny > <Yz‘ i > Vi) — 5ATT>
D

i=1

For matching with replacement,

1 1 & :

~2 A

TarT = N Z (Yi - Z Yim(i) — 5ATT) +
Dizl m=1

1 K(K;—1) B
v I (FG ) vep=o

where K is the number of times observation 7 is used in a match, and the last
error variance term is estimated by matching also. the bootstrap doesn’t work for
matching.

Theorem 4.8 (Balancing Property of the Propensity Score Rosenbaum and D. B. Rubin
(1983)).

PScore is a balancing score - Conditioning on Propensity score is equivalent to
conditioning on covariates:

Pr(D = 1|Yp, V1, 7(X)) = Pr (D = 1|r(X)) = n(X)
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Yi(0),Y;(1) UL Dy| X; = Y3(0),Yi(1) AL Di|m(X;)

Theorem 4.9 (Efficiency bound and efficient score).
Hahn (1998) defines the semiparametric Efficiency Bound for ATE: the asymptotic
variance of any regular estimator of 7 of the population ATE obeys

V@ + 105 N (0,V)
where

o lnX) | a8 (X)
V2Vg" =E { 2% T T oaX)

and for PATE ()

m(X) 0f(X)) | 7(X?) 05(X)
p? p*(1 = m(X) p?

where ¢3(X) =V [Y4X], 7(X) :=E [Y! = Y°|X], and p := E [r(X)].

Any regular estimator whose asymptotic variance achieves this efficiency bound

isequal to 2 > | (1) + Op(y/n), where

e

Di(Yi — (L, X5)) (1= Di)(Ys — (0, X))
wz(ﬂ) = M(LXi) - :u(07 Xz) + W(Xz) - 1— ,ﬂ.(XZ)

is the Efficient Influence Function for estimating 7.
Imbens (2004) shows that

2
——
VEATE — yPATE _ [Yl Y, —TP]

Variance of treatment effect

Estimators in this section try to attain the SPEB.

Defn 4.11 (Weighting on the Propensity Score: Horvitz-Thompson Estimands).

ww_ gy D-mX) }:E[YD_Y(l—D)]

TATE = (X)(1 — 7(X)) (X)) (1-7(X))
and
1 D — n(X)
AT = Pr(D = 1)]E {Y' 1 —7n(X) }
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The counterfactual mean E [Y°|D = 1] = y can be identified as

=

where p = Pr (D =1).
Defn 4.12 (Inverse Probability-Weighted Estimators).

1| vib;, Y1 -Dy) 1 & D; 1-D;
~ate _ © e A _ - le _ A _ _ [
Tiow = 3 2} X)) A-—7X)) | n Z; (ﬂx,-,) 1 W(X¢)>

1= \ PN , 1=
E[Y1] E[Yo]

Hirano, Imbens, and Ridder (2003) normalise both pieces using a Hajek-style ad-
justment, since extreme values of 7 makes variance explode. Often advisable to
trim or use Hajek weights, which introduces limited bias at the cost of large de-
creases in variance.

w3/ 5) - (Ve

i=1

Similarly, for the effect on the treated

~att | L | - T(Xq) m(X)
e [Nl Z Yz] L:DL " 1_%(Xi)/i:Di—01_%(Xi)‘|

i:D;=1 ;=0

Horvitz-Thompson Estimator as Regression Y; = a + 7D; + ¢; with IPW weights

\ D; N 1— D,
N r(X) 11— w(X)

Defn 4.13 (Weighted Average Treatment Effect Hirano, Imbens, and Ridder (2003) ).
define the Weighted ATE (WATE) as
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JE[Y! - YO X =x] g(x)dF(x)

[ 9(x)dF(x

where g(x) is a weighting function. ATT is constructed when g(x)
the corresponding estimator is

TWATE—ZQ X;) (Ax, - 1i—7rxl )/Zg (x:)

Defn 4.14 (Overlap Weights (Li, Morgan, and Zaslavsky, 2018)).
Sample drawn from f(X), and can represent a target population as g(
where h(-) is the tilting function.

Define fy(xz) = Pr(X = x|D = d), which gives fi(x)
f(@)(1 = n(x)

For a given tilting function, to estimate 73, weight f;(x)

TATE =

= m(x)

f@)m(x) ;5 folz) o

wr (@), wo(@) = :Eg 1 f(:()w)
Target h(x) Estimand w1 , wo
Combined 1 ATE | (. i) IPW]
Treated 7(x) ATT E , 17rsfm)
Control 1—7(x) ATC 1W&§£) 1
Overlap m(x)(1 — 7 (z)) ATO (1 =m(z),m(x))

Overlap weights are defined by choosing h(x) that minimises asymptotic variance
of 7. The achieve exact balance on covariates included in the propensity score
estimation.

wo(x;)(1 — Dy)Y;
wo(x;)(1 — D;)

7=qh-

N

ﬁh _ Z w1(Xi)Dz‘Y¢ .
0 w1 (Xi ) Di

7OW can be interpreted as treatment effect among population that have good bal-

ance on observables.

Implemented in PSweight.

Defn 4.15 (Entropy Balancing (Hainmueller, 2012)).
Entropy weights w; for each control unit are chosen by a reweighting scheme
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X) x f(X)h(X

)

max H(w) = — Z w; log(w;)
’ #:D=0

subject to balance/moment-condition and normalising constraints

Z wicri(X;)=m, rel,....R
:D=0
Z wizlandwi ZOV{?CEZO}
:D=0

The above problem is convex but has dimensionality of ng (nonnegativity) + p
(moment conditions) + 1 (normalisation). The dual, on the other hand, only has
dimensionality p+1 and unconstrained, which is considerably easier to solve using
Newton-Raphson.

Defn 4.16 (Covariate Balancing Propensity Score).

Imai and Ratkovic (2014) propose CBPS, which is a method that involves mod-
ifying an initial propensity score estimate (e.g. by changing coefficients from a
logistic model) iteratively until a balance criterion is reached.

Their basic insight is that when we use a logistic regression to estimate a propensity

A(XZT,B) _ exp(x; B)

1+exp(x, B)’ and

score, we assert that the pscore takes the form 7g(x;) =
maximise the bernoulli log likelihood

Z d;ilog(ms(xi)) + (1 — di) log(1 — ma(x;))

which is then solved by the corresponding score

l n diﬂ'/ﬁ(xi) (1 —di)ﬂ'lﬁ(xi) _
n ; m3(x;) 1—mg(x;) a

this score balances a particular function of covariates: 7j;(x;). Alternatively, we
could choose that function by specifying a moment condition

E [dif(xi) - a- di)xi:| _0
me(xi) 1 —=ms(x)
Analogously for ATT, this moment condition is

m5(%i)
— ma(x;

E {dif(xi) - (1- di)f(xi)}

44



When this balance condition is solved independently, the problem is just-identified.
When it is used in conjunction with the conventional bernoulli likelihood, the
problem is over-identified. Implemented in CBPS: : CBPS as well as balance.

Defn 4.17 (Covariate-Balancing Scoring Rules Q. Zhao (2016)).

Defn 4.18 (General form of Weighting Estimators : Ben-Michael et al. (2021)).
The estimand is u1 = E[Y(1)] (with uo defined analogously). The estimator for
this quantity is written

1’!7,
“:—EDinYi
H1 n L 7(Xi)

where the weights (-) are chosen to satisfy the sample balance property

% Z Div(X) f(X;) =~ % Z f(X;) for any bounded f(z)
i=1 i=1

in words: for every function f(z), the weighting function equates weighted aver-
ages of f over the treated units to unweighted averages over the study population.
The weights are solved by solving an optimisation problem to trade off imbalance
and some measure of complexity

2
7 = argmin { imbalance’},(v) + 0—2 Z (X;)?
ol —_— D,

¢) .
x({X:)}

with convex , x functions.
A common imbalance measure is

1 & 1 &
imbalancel (7) = max |~ 3" X, — = 3" (X)X
1=1 =1

for M= {8 : [|8ll, <1}

4.2.7 Hybrid Estimators

A doubly-robust estimator is consistent if one gets either the propensity score 7 or
the regression /i right.

Defn 4.19 (Augmented IPW Estimators).
Oracle AIPW
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I ; ; Yi — (o) (X)
Thiew =~ ; |:M(1)(Xi) ~Ho(Xi) + Dim—re s+ (1= D)=
Feasible AIPW

TAIPW = %Z <Dl(nﬁz)él)(xl)) - (1= DlZ)_(?(;(?)O(XZ)) + {1 (X;) — ﬂo(Xi)}>

IPW
Regression  ——e e
L& |7 | DilYi — (X))
—— X;) + TR

i=1

(X0 + (1 —D;)(Y; — ﬂO(Xi)):|

1—#(X3)

estimator for E[Y;(0)]

estimator for E[Y; (1)]

This is the Augmented-Inverse-Propensity Weighting Estimator (AIPW) intro-
duced by Robins, Rotnitzky, and L. P. Zhao (1994) and Hahn (1998). Additional
overviews:(Bang and Robins, 2005; Chernozhukov, Chetverikov, et al., 2018). Gen-
eral double-robustness property also shared by targeted maximum-likelihood estima-
tors(TMLE) - due to Van Der Laan and D. Rubin (2006).

Similarly, analogous estimator for ATT

1~ (Y — 110(Xi)) D;
=22
=1

CR(X) (L= D) (Vi — fio(X4)) )
P p(1—7(Xy))

where p = Pr (D; = 1) and p is its empirical analogue.

Defn 4.20 (Cross-Fit AIPW).
The Cross-fit version can be stated as

~ I n k(i ~— k(i
Trew = 3 gy (X)) — iy V(X))
~—k(i ~—k(7
Yi ~ “(1)( )(7Xi) -(1- D»)—yi _ “<0>( (X))
7RO(X;) Y17 RO(X;)

where k(i) is a mapping that takes an observation and puts it into one of the k
folds. ﬁ(_ll;(l) is an estimator excluding the k'" fold.
Define individual treatment effect score as
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Ty = fiy(Xs) — fio)(Xi) + -

Then, 7 =1 %" T,
We can form level-a CIs Z,, :

~1 = 1 ~
To=Th2_opV2 ;V=—"-—"7>1;-7)>
T 21 /2 n(n_l);( T)

grt has a forest-based implementation of AIPW

cf = causal_forest(X, Y, D)
ate_hat = average_treatment_effect(cf)

Defn 4.21 (Double Selection Estimator for High-Dimensional Controls).
Belloni, Chernozhukov, and Hansen (2014) and Chernozhukov, Chetverikov, et al.
(2018) partially-linear setup

yi =d;m + g(x;) + &4
di = m(x;) +n;

E[E,|.’1}Z,dL] =0
E [nilz] =0

where d; is a scalar treatment indicator. Observations are independent but not
necessarily identically distributed. We are interested in inference about 7 that is
robust to mistakes in model-selection.

Approximate g and m with linear combinations of control terms ¢; = P(x;), which
may contain interactions and non-linear transformations.

Assume approximate sparsity (:= there are only a small number of relevant controls,
and irrelevant controls have a high probability of being small).

Naive (incorrect) approach: use LASSO on an eqn of the form

yi = 7D; + x; 8 + ¢; with penalty h(8) = ||8]], = Z 181,
J

where the treatment 7 is not penalised. This will mean we drop any control that
is highly correlated with the treatment if the control is moderately correlated with
the outcome. Then, if we use a post-LASSO selection to estimate the treatment
effect, the effect will be contaminated with an omitted variable bias.
recommended two-step approach

1. Estimate y; = ;8 + v; with LASSO, select predictive variables (i.e. those
with nonzero coefficients) in .4
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2. Estimate d; = c¢}8 + v; with LASSO, select predictive variables (i.e. those
with nonzero coefficients) in B

3. Estimate y; = 7D; + e\x + v; where ¢; := AU B [i.e. control for variables
that are selected in either the first or second regression |

Defn 4.22 (Post-double-selection estimator).

Let l1,ls C {1,...,p} be the indices of the selected controls for the outcome and
treatment respectively.

The post-double-selection estimator is

(7.8) = argmin {E, [(y; - dir - 2{8)?] : ; =0Vj ¢ 1, Ul }
TER,BERF

Can use plugin estimator for variance based on residuals

E [v2q2
oTNF-TIN(0,1) = 2= 7[””/’;]
E [v7]
where
~ . n
i = (yi — diT — @] —
i = (yi —diT —@if)y [ =7
5]\1‘ = dz — CL‘;B\
B= argmin {IE,L [(di — a:;»,B)Q] (B =0Vj¢ lA}
BERP
Implemented in hdm: :rlassoEffect(., 'double selection')

Defn 4.23 (Double-ML - General case with moment conditions).

Let the target parameter 7 solve the equation E [m(Z;, 79, 5o)] = 0 for known score
function m, vector of observables Z; := {X;, D;, Yi}?zl, and nuisance parameter
Bo. In fully parametric models, m is simply the score function [derivative of the
log-likelihood]. For ATE, m(Z;, 1, 8) := (Y; — D;7 — X/8)D;.

In naive double-ML settings, E [0sm/(Z;, 70, Bo) = mop1 # 0]. So, we replace m with
the Neyman-orthogonal score % s.t.

E [0,¢(Z;,10,m0) = 0].

which yields the Orthogonalised Moment Condition E [¢/(Z;, 79, 70)] = 0 for some
real-valued condition #(.).
Using a Neyman-orthogonal score eliminates first-order biases arising from the
replacement of 7y with 7.
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Defn 4.24 (Orthogonal Scores).

Reference: Bach et al. (2021)

Consider data W := (Y, D, X) with D € {0,1}

Partial linear setup Y = Dy + go(X) + U; D =mo(X) + V.
Score function is

YW;0,m) = (Y = I(X) =0(D —m(X)))(D —m(X))

~—— ———
E[Y]X] E[D]X]
Partially Linear IV
Z=mo(X)+V, E(V|X)=0
Score is

YWV, 0.n) = (Y — U(X) —0(D - r(X) ))(Z - m(X))
—— —— ——
E[Y|X] E[D|X] E[Z|X]

Interactive Regression
Y =go(D,X)+e, E[e|D,X]=0
——
E[Y|D, X]
D= mo(X) +¢ E[{X]=0
——

P[D = 1]X]

Here, the estimands are

057" = Ego(1, X) — 90(0, X)]
964TT = E[QO(]-vX) _90<07X)|D = 1]

The score function for ATE (Hahn (1998))

VAT (Z1,0,m) = (9(1,X) - g(0, X))+ D(Ym(ig’ X)) _(a- ?Eym(;()o’ )y
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The nuisance parameter true value is 179 = (go, mo). For ATET,

D
—

o

T 1 m(X)
VAT (Z;,0,m) = - (D - m(l - D)> (Y —g(0, X))

Defn 4.25 (Cross-fitting Double-ML). 1. Take a K-fold random partition (Ij)k=1,... x
of observation indices {1, ...,n} s.t. each fold I has size n/k. For each k, de-
fine I¢ :={1,...,n} I as the complement / auxilliary sample.

2. Foreach k € {1,..., K}, construct a ML estimator of 7y using only the aux-
illiary sample I{; 7 = 1((Zi)se10)

3. For each k € {1,..., K}, using the main sample I, construct the estimator
71, as the solution of

1
72/7 Z ¢(Zi77‘k777k) =0

i€},

4. Aggregate the estimators 7, on each main sample ¥ = + Zszl Th

Example 4.10 (Sample-Splitting for Treatment Effects).
Simple implementation of Cross-fitting for Treatment effects

1. Partition the data in two, such that each fold I, I has size n/2.

2. Using only sample I3, construct a ML estimator of ¢(0, X) and m(X),e.g. a
feedforward nnet of Y; on X;, denoted as g7, (), and logit-lasso of D; on X,
denoted by my, (z).

3. Use the estimators on the hold-out sample I to compute the T.E

1 (X))
Sen Di | 1=y, (X3)

I, = (L=Di)| (Yi —91,(Xs))
4. Repeat (2,3) swapping the roles of I; and I, to get 71,
5. Aggregate the estimators:
L+ 71,
2

'f- =
Implemented in DoubleML

4.2.8 Augmented Balancing

Loosely: AIPW without the (potentially fraught) inversion of the propensity score
step. Exposition based on Bruns-Smith et al (2023)
setup:
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e Covariates X € X C R¥, Y € R outcome, two populations p and ¢ that are
distributions over (X,Y)

- pis ‘source’, ¢ is ‘target’ (e.g. treatment group and overall sample)
e Estimand is E, [Y]
e Identification Assumptions

1. Conditional Mean Ignorability: E, [Y|X] = E, [V | X]

2. Population Overlap: ¢(z) is absolutely continuous w.r.t. p(z)

Effect Functionals
Regression Functional

Eq [Bp [V | X]] =Eq [Eq [Y | X]] = Eq [Y]
Weighting Functional

E, [jji(X)Y} —E, [flj)mEp | X}] —E, [E, [V | X]] = E, [¥]
Doubly-Robust Functional
E, [E, [¥ | X]] + E, [jj)m VB, X]}}

Balancing Weights: Rationale

. Z’—Z (X) is difficult to estimate using plug-in estimation

e Alternative: weighting for balance = automatic estimation of the Riesz rep-
resenter

Weighting to minimise covariate imbalance

Imbalance

min { sup E, [w(X)f(X)] — Eq [f(X)] +6 ||w]]?
feF

w
Direct estimation of the density ratio

g;gg{ﬂ*:p (f(X)—jZ(X))QH

Minimum variance weights that balance F are also guaranteed to balance all other
measurable functions in F.

Defn 4.26 (Linear Balancing Weights). e In linear setting, relevant imbalance is
captured entirely by feature mean imbalance
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e X,,Y, are n iid draws from p, X, are m draws from q

e Define feature map ¢ : X —TR4: construct gram matrices
- q)p = (b(Xp)
- 6q 1= Eq[@]

o Let F = {f(x) = 9T¢(x) 219] < r}

— Let ||-||, denote dual norm [¢5 : lo, {1 : {5 ]

Imbalance s (,,) = [|w®, — ]|

*

Three Equivalent Representations

Penalised Form : min { |w®, — Equ + 6 Hw||§}

weR™

Constrained form : min [w[f5 st. ||w®, — &, < &
weR™

Automatic Form : ;relg‘li {07 (@) @,)0 — 20" D, + 55 1|0]|}

Example 4.11 (Equivalence Example : OLS is DR).
OLS is equivalent to a weighting estimator that exactly balances the feature means.

Let Bors = (®, ®,) '@, Y, be the linear regression fit on p (source sample). Then,

E,[®,fo1s] =
Eq[@q(0,) @,) '@, V)]

[{U\exact o Y;a]

P
IDCACAR Rt M

Analogue for Ridge
Ey[@,(2) @, +61)710)V,] = E,[@,(2) @, + 1)) oV,]

Proposition 4.12 (Augmented Balancing as Undersmoothed Regression).
Vf;., € RY, and any linear balancing weight estimator with estimated coefficients

reg

d d ~5 _ o T DO —
0¢ € R?, w° = 09, , and &) = wd,
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By[@4Beg) + Byl o (¥, = @,8))] = Byl 0 Y,] + B, | (B, — 85 ) B,

/\

~ oo
Baug,; == (1 — a;;) vegj T 05 Bolsj where a? = fq’j

—®,;
—®,;
In words: when both outcome and weighting models are linear, the augmented

estimator is equivalent to a linear model with coefficients that are element-wise
affine combinations of base learner Bre , and coefs o5 from regressing Y, on ¢,

4.2.9 Heterogeneous Treatment Effects with selection on observables

Conditional Average Treatment Effects (CATEs) (7(z) = E[Y! - Y'|X =])
are often of great policy interest for targeting those who have largest potential
gains. However, conventional methods are prone to a severe risk of fishing from
researchers (cf ‘conditional effects” in most published work in the social sciences).
Instead, recent work proposes to use nonparametric estimators to find subgroups,
use sample-splitting for honesty.

1. transformed outcome regression use outcome transformed w pscore

DY (1-D)Y

H=0X 10X

2. conditional mean regression use the fact that under SOO

(@) = E[Vi|X = 2] - E[Yo|X = a] = (@) — po(@)

(1) typically inefficient because of pscore in denominator, so most focus is on (2).
Random forests are a flexible method that is widely liked.

Defn 4.27 (Robinson Semiparametric Setup (Robinson, 1988)).
Consider a model for 7(x) where

Yz(d) = f(Xz) +d- T(Xz) + €(d),

where 7(z) = ()3 for some pre-determined set of basis functions ¢ : X —RF.
We allow for non-parametric relationships between X, y;,d;, but the treatment
effect function itself is parametrised by 3 € R¥. Robinson (1988) showed that
under unconfoundedness, we can rewrite the semiparametric setup above as

P [d;| Xi] = e(x)

<+~ ToC

E, {(T)gEOLS + (‘D - @6) r(’g):| = Ey[@4au)

Y, —m(X;) = (di — e(Xi)w(X5) - B+ & where
m(x) = E[Y;|X; = x] = f(X;) + e(X;)7(X)

The oracle algorithm for estimating 3 is (1) define Y =Y, —m(X;) and Z; =
(d; — e(X;)¥(X;), then estimate residuals-on-residual regression. This procedure
is y/n-consistent and asymptotically normal.

Use cross-fitting to emulate the Oracle.

1. Run non-parametric regressions ¥ ~ X and D ~ X to get m(x), e(x)

2. define transformed features Y; = Y;—m %9 (X,), Z = (D;—e~F0 (X;)(X5)

3. Estimate Eb by regressing 172 ~ Z;

Defn 4.28 (R-Loss).
To define R-Loss (Athey, J. Tibshirani, and Wager, 2019), under more general setup
restate unconfoundedness as follows

E[ei(di)| X, d;] = 0 where g;(d) := Yi(d) — (p0)(Xi) + w7 (X5))

and follow Robinson’s approach to write

Y, — m(Xz) = (Dz — e(XZ))T(XZ) +¢&;

R-loss is then written

() = argmin {E [(()@- (X)) — (d; — e(Xi))T/(Xi))Q] }

T/

Defn 4.29 (R-Learner, Athey, J. Tibshirani, and Wager (2019)).
Define e(z) = Pr (D = 1|X = z) and m(z) = E[Y|X = z| The R-learner consists
of the following steps

1. Use any method to estimate the response functions e(x), m(z)

2. Minimise R-loss using cross-fitting for nuisance components

7(.) = argmin ((V; — m(X3)) — 7(X3)(D; — e(X:))) + An(7())

T

where A,, is some regulariser.
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Causal forest as implemented by grf starts by fitting two separate trees to estimate
m, €, makes out-of-bag predictions [using cross-fitting] using the two first-stage
forests, then grow causal forest via

Doy i)Y — m(X5)(Di — e(X5)))
Yoy ai(z)(D; —e(X;))?

T(r) =

where
Ix,ec,(z)icB

BZ\ZXGEb (z),i € B|

are the learned adaptive weights.

Defn 4.30 (Double-sample / Honest trees (Athey and Imbens, 2016a)).

1. Draw a subsample of size s from the sample with replacement and divide it
into disjoint sets Z, J; |Z| = |J| = n/2.

2. Grow a tree via recursive partitioning, with splits chosen from J (i.e. with-
out using Y observations from 7 sample)

3. Estimate leaf responses using only Z sample

Finally, aggregate all trees over subsamples of size s

2= (D) Y Releeze. 2

1<ii1<...,<is<n

Q
|~
M=

T(mvfgaZ;,17"'aZ:,s) Baggmg

o
I

1

where £ summarises randomness in the selection of the variable when growing the
tree, Z; := (D;, X;, Y;) is shorthand for a training sample.

where the base learner

Ix:, eci(a)

it X7, € L;(x)

T(@ &, Z5y, - ZE) = ) aip(@)Yi sai,(@) =

i€{ip, 1, 0p,5}
the ‘honesty” property is making «;,(z) independent of V}*,, i.e. do not use the

same data to select partition (splits) and make predictions.
Implemented in causalForest and grf.
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4.2,10 Multi-action policy learning

i =1,..., N units, to be assigned to J + 1 actions 4; € {0,1,...,
has have corresponding rewards {Yi(o), Yi(l), ce
variate X; € X C R%. Define a policy function

T:x— A

A given policy assigns each unit to a treatment level. Each policy has a correspond-
ing value function

J} =: A, which
Y;.(J)}. Each observation has co-

V(m) =E[Y(m(x))]
An optimal policy 7* € Il is defined as

7* = argmax E [Y (7)]
mell

Deviations from this optimum is called regret
R(m) =E[Y(r")] - E[Y(m)] = V(z*) = V(7)
Define a CEF as
pi(a, x;) =E {Yi(a) | Xz}
The first-best optimal rule is

mi(X;) = arg max {Mi(% Xi)}
acJ

In the binary action case, this simplifies to7(x;) = 1 {p(1,x;) > p(0,x;)} = 1{r(z) > 0}

which is the conditional empirical success (CES) rule of Manski (2004).

Under unconfoundedness and Overlap, we can estimate fis and construct an em-
pirical analogue of the value function for a policy = using the following familiar
estimators

Via(r Z fii (m

Vipw (1) = %Z MYZ

2 pa (X))
‘7A1PW(7T) = %Z [ﬁi(W(XiLXi) + W

A /n-convergent estimator of the value function is the Cross-fit Augmented In-
verse Probability Weighted Learning (CAIPWL) estimator of Zhou, Athey, and
Wager (2018), which is constructed as a cross-fit analogue of the AIPW estimator.
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4.2.11 Sensitivity Analysis

Defn 4.31 (Standardised Difference).

Check balance by computing SDiff for observable confounders
Standardised Difference = X Xe
(s7 +52)/2

Example 4.13 (Multiple control groups).

Three valued treatment indicator: T; € {—1,0, 1} corresponding with ineligibles,
eligible nonparticipants, and participants. We can test unconfoundedness by com-
paring ineligibles with eligible nonparticipants, i.e. test

Y IL1{T; = 0} |X,, T3 € {~1,0}

Placebo Outcomes

Covariates included lagged outcomes Y; _1,...Y; _7. Test

Yi—1 1L D;|Y; 2, Y 7, X;
e.g. Earnings in 1975 in Lalonde
Defn 4.32 (Parametric Sensitivity Analysis (Imbens (2003)).
U is a nuisance parameter.
Y1,y L DIX, U

Where U ~ B(m =0.5),and U IL X. P(U=1)=P(U =0) =0.5.
Propensity score is Logistic:

exp(X0 +~U)
1+ exp(X0+~U)

« indicates strength of relationship between U and D|X.
Y is conditionally normal

P(D=1|X,U) =

Y|X,U ~ N(aD + X3+ 6U,0?)

0 indicates strength of relationship between U and Y| X.

MLE setup

Construct grid of (v, §) and calculate the MLE for & (v, §) by maximising I(«, 8, 6, v, §)
over (7, 9).

Use 2 partial R?s:

® R} ,..(0): Residual variation in outcome explained by U (after partialling

out X).
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e R} ,..(7): Residual variation in treatment assignment explained by U (after

partialling out X).

Draw threshold contours, should expect most covariates to be clustered around
origin.

Rosenbaum (2002)
Tuning parameter I' > 1 that measures departure from zero hidden bias.
For any two observations ¢ and j with identical covariate values X; = X, under
unconfoundedness, probability of assignment into treatment should be identical
m(X;) = (X;)
Treatment assignment probability may differ due to unobserved binary confounder
U. We can bound this by the ratio:

1 m(l—my)

P QA VAN o
F_(lfﬁi)ﬂj -

v=1 = Nobias. I' =2 = i is twice as likely to be treated than j despite

identical .
I' is assumed to satisfy

Pr(D =dX =) /(1 - Pr(D = dX_z)) T

S Pr(D=dX =27 =) /(1 —Pr(D=dX =2,V (d) =y)) —

1
T

For any given candidate I' > 1, estimates of the treatment effect can be computed.
Implemented in rbounds: :hlsens.

Defn 4.33 (Coefficient Stahility Approaches).

Altonji, Elder, Taber (2005)

Only informative if selection on observables is informative about selection on
unobservables.

How much does treatment effect move when controls are added? Estimate model
with and without controls:

o Vi=al"D,+ Xp+¢
o Vi=af'D, +¢

~F

AET ratio: p = w57
Want p to be as big as possible (i.e. &' — & —0 under unconfoundedness).

Defn 4.34 (Oster (2019) - Proportional selection coefficient).
Define proportional selection coefficient

_ Covle, D]

Cov [X']
*=VH

VI[X']

/
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Then,

5 o[5BTt 8

where
e 3, R are from a univariate regression of Y on T’
e 3, R are from a regression including controls
® R,,.. is maximum achievable R?

Defn 4.35 (¢-Robustness Value (Cinelli and Hazlett, 2020)).

True model is Y = 7D + X8 + vZ + ¢, but we don’t observe Z. We would like
to quantify how biased the coefficient from the short regression 7 is for the long
regression coefficient 7. From OVB FOrmula, we know 75 = 7 +7 + 5 where 7 is
the conditional association between the omitted Z and Y (‘“impact’) and § is the
coefficient from regressing Z on D (‘imbalance’).

The bias from this omission is

‘B/l-a\s‘ = R%/NZ\D,XRQDNZ‘X sd(YlX,D)
L-R _,x ) sd(DX)

They then define

qu:%[./fgwfg—fﬂ

where f, = ¢ ] fym D‘X| where fy . p|x is the partial Cohen’s f of the treatment
with the outcome, and ¢ is the proportion of reduction on the treatment coefficient
7 that would be deemed problematic.

4.2.12 Partial Identification
the ATE can be decomposed as

ATE = E[Y (1)] — E[Y(0)]

=E[Y;(1)|D; =1]Pr(D; =1) + E[Yi(1)|D; = 0]Pr (D; = 0)
~E[Y;(0)|D; = 1]Pr(D; = 1) + E[Y;(0)| D; = 0]Pr (D; = 0)

The terms in red are counterfactual outcomes for which the data contains no in-
formation. Bounding approaches involve estimators for these missing quantities.
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Defn 4.36 (Agnostic Bounds).

Suppose all we know is Y? € [0, 1]
w.lo.g. given bounded support [Y, Y], we can always min-max rescale to %

E[Y|D = 0] (1 - Pr (D

EY'-Y| €e{E[Y|D=1]Pr(D=1)— 1)} -Pr(D=1),
{E[Y|D=1]Pr(D=1) -

Width of possible interval learnable from data is [0, 1] at largest, [—1, 0] at smallest,
so worst case interval always contains 0. Need theory/assumptions to even get the
sign right.

Defn 4.37 (Manski Bounds).

Assume bounded support for the outcome. Replace missing values with maxi-
mum (yY?) or minimum (y”?) of support. These are worst-case bounds and
yield intervals that are basically uninformative.

E[Y(W)]Y? =E[Y|D=1]Pr(D=1)+y""Pr (D =0)
E[Y()]*® =E[Y|D =1]Pr (D =1) + y*PPr (D = 0)
E[Y(0)]Y" = y"PPr (D = 1)+ E[Y|D = 0] Pr (D = 0)
E[Y (0)]"" = y"PPr (D = 1)+ E[Y|D = 0] Pr (D = 0)

And denote AVB .= E[Y(1)]Y? —E[v(0)]*? ALB .= E[Y (1)]*” —E[v(0)]Y"
Monotone Treatment Response: assume mean potential outcome under treat-
ment cannot be lower than under control E [Y'(1)] > E[Y(0)] = A > 0. Then

AYE — max(E[Y (1)]*? —E[Y(0)]Y?,0)

Monotone Treatment Selection: subjects select themselves into treatment in a way
the mean potential outcomes of the treatment and control groups can be ordered.

Positive MTS impliesE [Y(1)|D = 1] > E[Y(1)|D = 0Jand E[Y(0)|D = 1] > E[Y(0)|D = 0].

This implies E [Y (0)]"? = E[Y|D = 0]and E[Y (1)]Y? = E[Y|D = 1]

Theorem 4.14 (Kolmogorov’s Conjecture - Sharp bounds on treatment effects).

Let 7; := Y7; — yo; denote the treatment effect and F denote its distribution, and let
F1,Fy denote the distributions of outcomes for the two potential outcomes. Then,
FE(b) < F(b) < FY(b) where
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FL(b) = max {mjxlﬁ‘l(y) —Fo(y — b), O}

FY(b) = 1 + min {myinFl(y) —Foy — b),O}

4.3 Instrumental Variables
SOO Fails/E [X;¢;] # 0 because of OVB, then Bo Ls is no longer consistent. Use Z
as instrument for D which isolates variation unrelated to the omitted variable.

4.3.1 Traditional IV Framework (Constant Treatment Effects)
Setup

e Second Stage: Y = ag + a1.D + us
e First Stage: D = 7o+ mZ + uy
e Reduced Form:

Y=9%+mZ+us
=ag+ ai(my +mZ 4+ ur) + ug
= (Oéo + Oél’iTo) + ((,Ylﬂ'l) Z + (alul + UQ)
~——

71

Assumption 4 (IV Assumptions).

o Exogeneity (as good as random conditional on covariates): Cov [u1, Z] =0

o Exclusion Restriction: Cov [uz, D] = 0, Z has no effect on Y except through
D.

e Relevance: Z affects D
With the above assumptions, we can write

Defn 4.38 (Instrumental Variables Estimator).

Brv = (Z/X)_l Z'y

This is equivalent to
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Defn 4.39 (Wald Estimator).
With binary treatment and binary instrument, one can write the IV effect as

_mn _ Cov[Y,Z]

Y _E[Y|Z=1]-E[Y|Z =0]

ar  Cov[Y,D] E[D|Z=1]-E[D|Z=0]

Defn 4.40 (2SLS Estimator).
With multiple instruments or endogenous variables,

dosrs = (X'P.X) ' X'P.y
where P, = Z (2'Z) " Z' is X projected in the column space of Z.
Defn 4.41 (k-Class estimation).
ay, = (X/(I— kP.)X) " X/(I- kP.)y
which nests 25LS, LIML, and Fuller’s estimator as special cases. Specifically,
e k=0 = ayis OLS
o k=1 = @y is2SLS

o b=k = ak is LIML

b .

Py et b >0 = ay, is Fuller’s estimator

o k=kim —
here, kv is the minimum value of k that satisfies

dot (YL@ —KkPL)y  y I—kP )X\ _
CXTA-kP)y XTA-kP.)X) ™

Implemented in ivmodel, which takes model fits from AER: : ivreg and computes
LIML / k-class estimates.
Asymptotically, all £— class estimators are consistent for « when k—1, n—o0.

Inference
e Under homoscedasticity, V [das1.s] = 0% (X PZX)_1
e Under heteroskedasticity,

1

V(Brv) = (ZP.X) ' P.X'OP.X (X'P.X)"; Q = Diag[i?]
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Defn 4.42 (Hausman test for exogeneity).
Test statistic and null distribution

(B2sls - Bols)2 2

H:= ~ X1

a ‘7(325[5) - ‘7(60[5>

Equivalently, Assuming the instrument Z is valid, we can test for whether z is
endogenous by estimating the following regression

Yi = Zim + xion + 0ip1 + €

where ¢ are the (fitted) residuals from estimating the first stage regression z; =
Z!1p + v;. A standard t-test for p tests whether x is exogenous assuming Z, is a valid
set of instruments. [means this test is not that useful in practice]

4.3.2 Weak Instruments

lim Cov|Y, Z] N Cov [Z, uz)

ary = =a«
P e =iz, D] " Coviz,D] _ *P
Second term non-zero if instrument is not exogenous. Let 0y ,, = Cov [ul, ug]
and o =V [ug] [variance of first stage error] and F be F statistic of the first-stage.
Then, bias in IV is

Cov [Z, us)
Cov [Z, D]

Ouyu, 1
o2 F+1

E [&IV — Oz} =
If first stage is weak, bias approaches U;é—“z As F—o0, Bry—0.
ug

Defn 4.43 (Anderson-Rubin Robust Confidence Intervals).

When instruments are weak, AR Confidence intervals are preferable to eyeballing
F-statistics. Let M be a n x 2 matrix of (y X)), and let ag = (8o,1),bo = (1, —fo)
(where f is typically 0), and

MTP.M

f]:
n—L—p

be an estimator for the covariance matrix for the errors.
and let s, t be two-dimensional vectors defined as

§:=(27Z)2Z  Mby(b) Sby) "2

and

t= (ZTZ)%ZTMZA]AaO(an]ao)*%
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Define the scalars Q1 =578,Q, =3 't,Q3 =t ' t

based on these scalars, two tests that are fully robust to weak instruments for test-
ing Hy : B = o - Anderson Rubin test (AR1949) and Conditional Likelihood Test
(Moriera 2003)

AR (Bo) = %
CLR(Bo) = % (@1 - @3) + ;\/(@1 + @3)2 —4 (@1@3 - @%)

4.3.3 1V with Heterogeneous Treatment Effects / LATE Theorem
e binary instrument Z; € {0, 1}
e binary treatment D, € {0, 1} is potential treatment status given Z = z
e potential outcomes: Y;(D, Z) = {Y(1,1),Y(1,0),Y(0,1),Y(0,0)}
o heterogeneous treatment effects 5, = Y;(1) — Y;(0)

Defn 4.44 (IV Subpopulations).

e Compliers: D1 > Dy, Dy =0,D; =0
o Always takers: Dy = Dy =1
e Never Takers: Dy =D, =0
e Defiers: D1 < Dy
Assumption 5 (LATE Thm Assumptions).

e Al: Independence of Instrument : {Y,Y;, Do, D1} 1L Z

e A2: Exclusion restriction : Y;(d,0) = Y;(d,1) = Yy ford = 0,1
e A3: First Stage: E [Dy; — Dg;] #0

e A4: Monotonicity / No defiers: Dy; — Do, > 0V i or vice versa

Theorem 4.15 (LATE Theorem (Angrist and Imbens (1994))).
Under A1-A4,

E[Y|Z=1]-E[Y|Z =0]

= = E [Yy; — Yos| D1; > Do
E[D|Z=1]—-E[D|Z =0] [Yii = Yoil D1i > Dol

ary
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If A1:A4 are satisfied, the IV estimate is the Local Average Treatment Effect for
the compliers.

Cov [511‘, 7711‘]
]E [7’(12']

So, late is weighted average for people with large 7y;; i.e. treatment effect for those
whosle probability of treatment is most influenced by Z;.

LATE = ATE +

Theorem 4.16 (Bloom Result).
1V in Randomized Trials with one-sided noncompliance. Conditional on Al:A4 hold-
ing,and E[D|Z; = 0] = Pr (D = 1|Z = 0) = 0. Then,

E[Y|Z=1-E[Y|Z =0] ITT
= =E[Y; -Yy|D=1]|=ATT
Pr(D=1Z=1) Compliance Y1 - Yol ]
Precision for LATE Estimation
SE

ITT

SE —, & —————
LATE "~ Compliance

4.3.4 Characterising Compliers

PO Model of IV allows for heterogeneous treatment effects but does not formally iden-
tify LATE conditional on X.

Abadie (2003) extends methods by allowing the treatment inducer to be random-
ized conditionally on the covariates and by allowing the outcome to depend on the
covariates besides the treatment intake. The paper also provided semiparametric
estimations of the probability of receiving the treatment inducement, which helps
to identify the treatment effects in a more robust way.

Need the following assumptions (all conditional on X):

o Independence of instrument: Z Il (D(z),Y (#',d))|X Vz,2’, d € {0,1}: SOO
w.r.t. instrument.

e Exclusion restriction: Pr (Y (1,d) =Y (0,d) =Y (d)|X) =1
e Monotonicity: Pr (D(1) > D(0)|X) =1

o First Stage: E[D|Z = 1,X] — E[D|Z = 0,X] #0

e Common Support: 0 < Pr(Z=1,X) <1

Specifically, when the treatment inducer Z is as good as randomized after condi-
tioning on covariates X, Abadie proposed a two-stage procedure to estimate treat-
ment effects.

<+~ ToC

e Estimate the probability of receiving the treatment inducement P(Z = 1|X)
(preferably using a semiparametric estimator) in order to provide a set of
pseudo-weights.

e Second, the pseudo-weights are used to estimate the local average response
function (LARF) of the outcome conditional on the treatment and covariates.

The estimated coefficient for the treatment intake D reflects the conditional treat-
ment effect.

Fact 4.17 (Size of Strata).
Given monotonicity, we can identify the proportion of compliers, never-takers, and
always-takers respectively.

Tcompliers = Pr (Dl > DO|X) =E [D|X, Z = 1] —E [D|X, Z = O}
Talways-takers = Pr (D, =Dy =1X)=E [DlX, Z = O]
Tnever-takers = PT (Dl =Dy = 0|X) =1-E [D|X, Z = 1]

If nobody in the treatment group has access to the treatment (i.e. E[D|Z = 0] =
0), the LATE = ATT.

Fact 4.18 (Proportion of treatment group that are compliers).
By Bayes rule,

Pr(D = 1|D; > Do) Pr (D, > Do)

Pr (D1 > D()|D = 1) =

Pr(D=1)
Pr(Z=1)[E[D|Z=1]-E[D|Z = 0]
B Pr(D=1)

Theorem 4.19 (Abadie’s Kappa).

Suppose assumptions of LATE thm hold conditional on covariates X. Let g(-) be
any measurable real function of Y, D, X with finite expectation. We can show that
the expectation of g is a weighted sum of the expectation in the three groups
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E[g[X] = E[g|X, D1 > Do] Pr (D1 > Do|X) +
Compliers

E [g‘X,Dl = DO = 1] Pr (Dl = DO = 1|X)

Always takers
+E [g‘X,Dl = DO = O] Pr (D1 = DO = OX)

Never Takers

Rearranging terms gives us

Then,
Bltr, 00D, > ) = ELE D) g D)
where
D(1-2) (1-D)Z

I{Z‘:].—

1-Pr(Z=1X) Pr(Z=1X)

This result can be applied to any characteristic or outcome and get its mean for compliers
by removing the means for never and always takers. Angrist and Pischke (2008, p
181-183) provides overview of estimation. Trick is to construct a weighting scheme
with positive weights so that «;, which is negative for always-takers and never-

takers.
To compute x, we need Pr (Z = 1/X), which can be computed using a standard

logit/probit or a power-series.
Standard example: average covariate value among compliers:
E [kX]

E[x]

is the weighted average of covariate X using Kappa weights.

E[X|D1 > Do] =

Likelihood that Complier has a given value of (Bernoulli distributed) charac-
teristic X relative to the rest of the population is given by

E[D|Z=1,X=1]-E[D|Z=0,X =1]  FSin Subgroup
E[D|Z =1]-E[D|Z = 0] ~ Overall FS

Theorem 4.20 (Average Causal Response).

Assume A1-A4 from LATE. Generalise D to take values in the set{O7 1,..., D} ;
Let Yy; := fi(d) denote the potential (or latent) outcome for person i for treatment
level d. Then,
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D
= wak [Yai — Ya_1ldi; > d > doj]
d=1

E[Y|Z=1]-E[Y|Z = 0]
E[D|Z =1] - E[D|Z = 1]

where the weights
Pr (dli >d > doz)

ijﬂ Pr(di; > j > doi)

Wq

are non-negative and sum to 1.

Defn 4.45 (Local Average Response Function (LARF)).
CEF of Y| X, D for the subpopulation of compliers: E [Y'|X, D, D; > D]
E[xY|X, D]

E[Y|X,D,D; > D] = El

e Lstimate x
e Estimate E [Y|X, D] in the whole population, weighting by &
implemented in LARF: :1arf in R.

Defn 4.46 (Inverse Compliance Score Weighting (Aronow and Carnegie, 2013)).
Treatment is . First define two additional quantities

e Pyc; == Pr(W; >WoUW, =1|X; =x) = F(x,04,¢) is the conditional
probability that unit i is either a complier *or* an always taker

— assume that this probability is a function of covariates X; , with cor-
responding parameter vector 8 4 ¢ and CDF F that transforms it to the
probability scale [taken to be the normal CDF & henceforth, but can be
relaxed |

[ ] PA\A,C,i = Pr (W() = 1|W1 > Wo U Wo = l,Xi = X) = F(ng)A\A,C) is the
conditional probability that unit 7 is an always taker *conditional* on being
either a complier or a never taker

— assume that this probability is a function of covariates with correspond-
ing covariate vector ¢ 4j4,c

Next, they note that the probability of treatment for stratum X; = x; can be written
as

Compliers assigned to treatment

Pr (W = 1|X1 = Xi) = Pr (Wl > WZ‘X, = Xi) Z; +Pr (WO = 1‘X1 = Xi)

Always takers
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Using the two conditional probabilties defined above, this can be written as

Pr (W =1|X; = x;) = Pac,i(l1 — Paja,c.i)Zi + Pac,iPajac,

which, for binary treatment W; lets us write a Bernoulli likelihood for an observa-
tion

Ui(Pajaciis PacilW, Z) = (Pa,c,i(1 — Pajaci)Zi + PaciPajaci)”
(1= Paci(l — Pajaci)Zi — PaciPajaci) ™"

Plugging in the definitions of P4 ¢ ; and PA| A.c.i gives us the likelihood and its

argmax defines the solution for 6 A,c and ¢ 4la,c- This is generically a difficult
optimisation problem and improving its computation is a promising avenue for
future research.

N

H (x104,0)(

=1

L(Paja,c,i, Pa,cilW, Z)

(1 =F(x;04,0)(1 —F(Xjpaja,c)Zi — F(x;04.c)F(X;Ppajac)))

The maximum likelihood estimates of the two parameter vectors can be plugged
into I to compute individual compliance scores

PriisCor AT Priisnot AT = iisC
~ —
Pei=Pr (W, > WolX; =x;) = F(x;04,.) 1—F(x{baja.c)

The inverse compliance score weighted estimator for the ATE with weights w¢ ; :=
1/Pc; is then

aate _ (i @aiZiYs) [ (i, @eiZi) = (Ui Goi (1= Z0) Yi) [ (i, wei (1~

—F(Xippaja,c)Zi + F(x;0.4,0)F(x;0 )4, c)))

Ticsw = (i weiZiWi) | (3 ©eiZi) — (3oiy woi (1= Zi) Wi) [ (3042 e (1 = Zi))

which is a weighted version of the familiar Wald estimator with a Hajek correction
that normalises each expectation by the sum of weights in that treatment group.
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4.3.5 Shift Share / Bartik Instruments

SSIV setting from Borusyak, Hull, and Jaravel (2022) and Goldsmith-Pinkham,
Sorkin, and Swift (2020) [notation and exposition from PGP’s slides]. We want to
estimate the causal effect or structural parameter 7 in

yo=Twi+7 X +e

where Cov [¢;, w;] # 0 because the ‘treatment’ w; is typically a change in an eco-
nomic quantity (e.g. employment) that is correlated with unobserved shocks to
the outcome y; (e.g. wages). [ indexes locations.

An accounting identity that decomposes the treatment is

K Location-Industry Shares

=
wy = Z 2k ik

k=1 Location-Industry Shifts

where k indexes industries. 2nd accounting identity for location-industry shifts is
Jik = Gk + ik
~—~ ~—~
Location-industry ~ industry  location-industry shocks: unobserved

As a GMM system

1-W;

Yt = Dth,Bo + Twi + €
wi = D}yvo + ¥ By + mu
Gikt = Gkt + Jii

K
By = E 21k0gkt
k=1

D;; = Exog controls, FE

L
{{wlta Dy, Ezt}le}l_l

Under constant 7, need

are [ID , L—o0

e Exogeneity E [Bjey: | D] =0
e Relevance Cov [By, wy; | Dy # 0
Defn 4.47 (Bartik Estimator).

Shares Shocks

L T K ~/~ /=
Zl:l Zt:l Zkzl 2kt Ykt yﬁ
L T K
21:1 Zt:l Zk:1 Rkt Gkt wﬁ

e ‘shares’: focus on zjxo : Goldsmith-Pinkham, Sorkin, and Swift (2020)

TBartik —
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- Analogy to DiD: Ay = Changes in industry composition gy
e ’shifts”: focus on g : Borusyak, Hull, and Jaravel (2022)

- requires argument for why shocks are randomly assigned

Thartik = Z QT
k
with Rotemberg weight

N g2 W
af = ﬁ
Dokm1 G2y W

4.3.6 Marginal Treatment Effects: Treatment effects under self selection

Heckman and Vytlacil (2007) propose the marginal treatment effect (MTE) setup
that generalises the IV approach for continuous instruments and nests many es-
timands (and is a generalisation of the Roy (1951) model). It also has a clearer

treatment of self-selection.
Exposition based on Cornelissen et al. (2016). Define potential outcomes

Yoi = po(xi) + voi
Yii = (%) + v,

where 11;(-) is the conditional mean function and v;; captures deviations, with
E [Uji|xi] =0.
Treatment assignment assumes a weakly separable choice model

Dy = pa(xi, zi) + v
D; =1p:>o

where dj is the latent propensity to take the treatment, and is interpreted as the net
gain from treatment since treatment is only taken up if D} > 0. z; is an instrument.
v; enters the selection equation negatively, and thus represents latent resistance to

treatment.
The condition D} > 0 can be rewritten as pq(x;, z;) > v;. Applying the CDF of v

F, to both sides yields
IF’u (/’Ld(xh ZZ)) Z Fv (Ui)
—— —
Quantiles of distaste distribution =: v4;

Propensity score =: P(x;, 2;)

Both RHS and LHS are distributed on [0, 1]. The treatment decision can now be
written as
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D; = ]lP(xi;Zi)Zvdi'
Now, we define treatment effects

Y; = (1 - D;)Yy; + DYy,
=Yoi + D; (Y1 — Yoi)
———

= A,
A(x:) Idiosyncratic gain
—~ —_——
= po(xi) + D; [p1 (%) — po(xi) +  vii —voi | +voi
=A;

Aggregating over different parts of the covariate distribution yields different esti-
mates.

ATE(x) := E [Aj]x; = x] = p1(x) — p10(x)
ATT(X) =K [A2|Xl = X,DZ' = 1} = Ml(X) — /lo(X) + E [Uli - UOiIDi = 1]
ATU(X) =FE [A1|Xz =X, Dl = 0} = Ml(X) — ‘LL()(X) + E [Uli — UOilDi = 0]

Integrating these over x yields the conventional estimators. With self-selection
based on D; = 14,>0~ typically means ATT > ATE > ATU.

Fact 4.21 (Estimation with Binary Instrument).
The covariate-specific Wald estimator is

E[Ylzi = z,x; = x| — E[Yi]z; = z,x; = X]
E[D;|zi = z,x; = x| — E[D;|z; = z,%x; = X]

Under the standard A1-A4 from AIR96,

Wald(x) =

LATE(X) =K [}/11 — }/Ol‘Dll > D0i7xi = X]
= p1(x3) — po(x;) + E [v1; — voi|D1i > Doi, X = X|

These can be aggregated using the ‘saturate and weight’ theorem (Angrist and
Imbens)

IV = > w(x)LATE(x)
xeX

with weights
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Weights

Target parameter Expression wg(n, x,2) w;‘(ﬂ, x,z)
1\\'cr;lgt untreated outcome E[)])] 1 0
J\\'Cl'ilg'ﬂ tl'C‘.ltL'L' outcome E[ ) ‘l ] 0 1
ATE E[Th - T -1 1

ATE given X =¥, where P[X =] > 0 E[Y) - 11X =7] Alr=%]
PIX=x]

- zu]'(m X, 32)

ATT ElY) - Yp|D=1] = wj(u,x,2) 1[n < p(x2)]
P[D=1]
ATU E[Y; - Yo|D = 0] -}, x,2) Lo > p,2)]
P[D=0]
LATE for zp — z; given X = x, E[Y, - Yylplx,z9) < U < - wi(n,x,2) Lplxz) <# < ple;z)]
where p(x,21) > p(x,zp) plx,2), X =x] ple:z1)= pixiso)

Figure 4: MTE weights from Mogstad and Torgovitsky (2018)

E[D;|x; = x,2; = 2]
Share with x; = x Py

Dx \% D; %, z;

w(xi) = =
V[P
For a continuous instrument, for a pair of instrument values z, 2/, LATE(z, 2/, x) =

E [Yh - Y0i|DZi > Dz’ivxi = X].
Defn 4.48 (Marginal Treatment Effect (MTE)).

MTE(x; = x,V; =v) :=E[Y1; — Yo |xi = x,V = v]
_ OE[Y|x; = x,p(Z, X) = p(2,2)]
B Ip(z, x)

MTE is defined as a continuum of treatment effects along the distribution of vp.
Define two marginal treatment response (MTR) functions

mo(u,x) = E[Yp|U =u, X =x]; mi(u,x) =E[V|U =u,X =%]

Many useful parameters are identified using the following expression

1 1
=g { / mo(u, X )i (u, X, Z)du} +E [ / i (u, X ) (u, X, Z)du
0 0

with weights specified in 4.
Parametric Model: Assuming joint normality for Uy, Uy, V,

<+~ ToC

¢ (X4, Z;) Ba)
1= ((Xy, Z;) Ba)

E[Uy | D; =1,X;,Z;) = EUy; | Vi < (X5, Z;) Ba, Xi, Zi) = ;1 (W)

EUoi | Dy =0,X;,2Z;] = EUoi | Vi > (X4, Zi) Ba, X, Zi] = po (

where py is the correlation p [Uy;, V;], and p1 = p [U;, Vi].
yields MTE estimator

MTE (z,up) = E (Y1; — Yo; | X; = 2,Up; = up) = x (61 — Bo)+(p1 — po) @~ (up)
Defn 4.49 (Control Function IV).
Let X; = x; — X. Write

Yi =x] a+ Dix;0 + Did; + <

where §; is a random effect that captures treatment effect heterogeneity . We can
rewrite this and by demeaning &; = § — §;.

Voi

Yi=x] a+ D%, 0+ Do +"¢; (2)

where § captures the ATE at means of X, which is the unconditional ATE under
the linear specification.
Write the selection equation

D, = xm;— + z;mo +v; With E [VZ‘|XZ', Zi] =0
Assumptions

e E [e;|v;] = nv;: Conventional selection bias.

o E {gl |1/2} = 1)v;: unobservable part of treatment effect 5: depends linearly on
the unobservables that affect treatment selection.

Including 7; and 7; D; in eqn 2 yields a consistent estimate of the ATE : .

4.3.7 High Dimensional IV selection

Chernozhukov, Hansen, and Spindler (2015) setup:
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Yi =Tdi+$;ﬁ+€i
d; = 113;’70 + Z;(so + v;

where

1. x; is a vector of p? exogenous controls, including a constant.
2. z; is a vector of p? instruments
3. d; is an endogenous variable

4. p? >>nandp; >>n

1. Run (post)LASSO of d; on z;, z; to obtain 7, 5

2. Run (post)LASSO of y; on x; to get 6.

3. Run (post)LASSO of d; = /7 + 2.0 on x; to get V.

4. Construct p? :=y; — x;0, pli=d; — mfi@and v =y + zgS+ :c:@

5. Estimate 7 by using standard IV regression of p¢ on p¢ with 9; as instrument.
Perform inference using score stastics or conventional heteroskedasticity-robust
SEs.

implemented in hdm: :rlassoIV(., select.X = T, select.Z = T).
Discussion in https://cran.r-project.org/web/packages/hdm/vignettes/hdm.pdf.

4.3.8 Principal Stratification

Treatment comparisons often need to be adjusted for post-treatment variables.
Binary treatment Z; € {0, 1}. post-treatment Intermediate variable S;(z;) € {0,1},
Outcome Y; € {0, 1}. For each individual, the treatment assumes a single value,
so only one of the two potential intermediate values are observed. Based on joint
potential outcomes of the intermediate variable (.S;, (0), S;(1)), we have 4 strata

00 = {3 :5;(0)=0,5;(1) =0} Never Takers
10 = {i:5;(0) =1,5;(1) =0} Defiers
01 ={i:S5;(0)=0,5;(1) =1} Compliers
11={i:5;(1)=0,5;(1) =1} Always takers
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Defn 4.50 (Principal Stratification Frangakis and D. B. Rubin (2002)).

The basic principal stratification P, w.r.t post treatment variable S is the partition
of units i = 1,...,n such that, forall units in any set of Py, all units have the same
vector of (5;(0), S;(1)). The principal stratum G; € {00, 10,01, 11} to which unit ¢
belongs is not affected by treatment assignment for any principal stratification, so
can be considered pre-treatment.

e Treatment Ignorability implies
(Yi(0),Yi(1)) 1L Z;15:(0), Si(1), X
(i.e. treatment and control units can be compared conditional on stratum)
e Principal Causal Effect (PCE)

TSO~,51 = E [Y;(].) — Y;(ONSZ(O) = So,Si(].) = 81}

A common example is the
Complier Average Causal Effect (CACE) = Causal Effect on Principal Stratum of
Compliers (AIR96)

CACE = E[Y;(1) - Yi(0)]5i(0) = 0, Si(1) = 1]
Recall that G; = (Sp, S1) concatenated. So, AIR96 in PS terms:
e Monotonicity: S1 > Sy = {G; = 10} must be empty: no defiers.

e Exclusion: 711 = 79

Estimation under principal ignorability (Jiang, Yang, and Ding, 2020)
o Treatment ignorability Z 1L (Sy, S1,Yp, Y1) | X
e monotonicity: S; > Sy = G; = 10 is not allowed

e principal ignorability

| S=0 | S=1
Z=0] G=00or01 G=11
Z=0 =00 G=11o0r01
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Disentangle mixture distribution within strata by assuming same conditional ex- Direct and Indirect Effects via Principal Stratification Direct effect of Z conditional

pectation across mixture components (complier, never taker, always taker). on S exists if there is a causal effect of Z on Y for observations for whom the treat-
Define nuisance functions: ment does not affect selection 5, i.e. principal strata 00, 11. This is a zero-first-stage
o sample in [V-terms.
o Treatment probability: 7(X) = Pr(Z =1 X) The Indirect Effect is mediated through S.

e Principal Score: e4(X) = Pr (G = ¢ | X) identified by
Attrition as Selection Bias Let S denote a binary selection indicator for when Y

e01(X) = p1(X) — po(X) is observed. Let S(1),.5(0) denote potential selection states under treatment and
eoo(X) =1—p1(X) nontreatment.
e11(X) = po(X) e S(1) =0,5(0) = 0: never-selected

wherep, (X)=Pr(S=1|2Z=2X) e 5(1) =1,5(0) = 1: always selected

e Outcome mean: i.4(X) =E[Y | Z = 2,5 =5, X] e S(0) =0,5(1) = 1: selection compliers
Treatment Probability and Principal Score e S(0) =1,5(1) = 0: selection defiers (ruled out by Lee bounds)
_E eor(X) S Z eor(X) 1-8 1-Z Dominance assumption: E[Y (1)|S(1) =1,5(0) =1] > E[Y(1)|S(1) = 1,5(0) = 0]
701 = P — po p1(X) 7(X) T — ol —po(X) 1 — w(X) and E[Y(0)|S(1) =1,5(0) =1] > E[Y(0)|S(1) = 1,5(0) = 0]. The average poten-

tial outcome of the always selected dominates that of compliers under either treat-
_pgll=8 Z 1 g eoX) 1-5 1-Z ment state.
00 = 1—py 7(X) 1—p1 1—po(X)1—7(X) Then, Zhang and Rubin (2003) bounds are

_ 611(X) S Z . i 1 Z
R s e il B Pl AT =ENID=15=1Y2y]-E[}ID=05=1]

A =RY|ID=1,S=1-E[Y|D=0,5 =1]
Treatment Probability and Outcome Mean

[SZ/m(X) —S(1—2)/{1 —=(X)} where y* is chosen such that the lowest outcomes among those with D =1,5 =1

o1 =K {p11(X) = poo(X) } correspond to the share of compliers among those with D = 1, S = 1 are smaller
b1 —Po P P &
:1 S$2/m(X) ! than this value.
— T

700 = E 1—pm {p10(X) — MOO(X)}] Defn 4.51 (Lee Bounds).

. Assumin

S1-2)/{1 —=n(X g

i =E ( )/p{o ( )}{uu(X) - M01(X)}}

e randomisation: {Y (1),Y(0),5(0),S(1),X} 1L D

Principal Score and Outcome Mean e monotonicity: S(1) > S(0)a.s.

- 'pl(f) —Z}:O(x) (i1 (X) — Moo(X)}} Lee (2009) focuses on the ATE among the always observed
1= Do
1 — (X E[Y (1) =Y(0)[S(0) = S(1) = 1]
o = B | 72U 400(5) — oo (30}
00 1—p H1o Hoo The second quantity: E[Y(0)|S(1) = 1,5(0) = 1] is point identified. In contrast,
[po(X) the outcome in the treatment group can be either an always-selected’s outcome or
m =E o {1 (X) = por (X )}} a selection complier’s outcome.
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Always selected share among the treated is

Pr(S=1|D =0)

po=Pr(S(1) =1,5(0) = 1[S(1) = 1) = Pr(S(0) = 1S(1) = 1) = 5o 5=

In the best case, the always-selected comprise the top py quantile of the treatment
outcomes. Then the largest possible value of 5 is
By =E[Y|Y 2 Qysc1,p=1(1 — po),D = 1,5 =1] ~E[Y|S = 1,D = ]

The smallest possible one is

BL =E [Y|Y < Qy\S:LD:lp(%D = Oa S = 1] - E [Y‘S = 17D = O]

this can be implemented conditional on covariates by constructing po(z) within
each z stratum.

4.4 Regression Discontinuity Design

Setup
Treatment (D) changes discontinuously at some particular value z; in z [and
nothing else does], so

o Oifl‘i<$0
Di_{lifﬂjizaﬁo

Standard identification assumptions violated by definition because although un-
confoundedness holds trivially since we have D; = 1,,>., this also means overlap is
always violated. Need to invoke continuity to do causal inference.

Defn 4.52 (Sharp Regression Discontinuity Estimand (Hahn et al 2001)).
Identified at x = ¢, i.e. 7. = p(1)(c) — py(c) via

T =E[Y1 = Y| X = =lmE[Y|X = - lmE[Y|X = (]
xle zTe

liinE [y|X] — li%nE [y|X] = TsrpD + liinE [u| X] — lignIE [u| X]

~0

Identification Assumption 1 (Smoothness of Unobservabhles).

e Conditional mean function E [u|X] is continuous at ¢

e Mean Treatment effect function E [r;| X] is right continuous at ¢

<+~ ToC

4.4.1 Estimators

Normalise running variable ¢ := z(. Then, the linear regression implementation
is the following:

Y=a+mD+Bf(X—c)+ B =) x Dxg(X —c)+e

where f and g are local or global polynomials. Since the design relies on identifi-
cation at infinity (i.e. at the cutoff), choice of polynomial / functional form matters a

lot.
Calonico, Cattaneo, Titiunik (2014) recommend local-linear regressions. Older

literature relies on global higher-order polynomials, which often yields strange
estimates.

Defn 4.53 (Local Linear RD Estimator).

7, = argmin {ZK ('Xih_ C) x (Yi—a—71D; — Boy(Zi — c)- — By (Zi — C)+)}

i=1
Where K () is a kernel function. Common choices are the window function K (z) =
1|;/<1 or the triangular kernel K (x) = (1 — |x]) +

Assumptions for Local Linear Estimator  Loosely, we need CEFs 4, to be smooth.
More precisely, we need fi(,,) () to be twice-differentiable with uniformly bounded
second derivative.

d2

22 M) (2)

<BVzeRAwEe{0,1}
Taking a taylor expansion around ¢, we can write the CEFs as

1
thw) () = Ay + By (T —¢) + 2P ) (x —¢) |pw) ()] < B2*

with 7. = a(1) — a(). The local linear regression with a window kernel can be
solved in closed form

S b= B[  BlKi = (Ko
E[(Xi — 0)?] = E)[Xi — ¢]?

a@ =
e<Xi<cthn

where E(-) denote sample averages over the regression window. Then, the error
term can be written as

A =an+ Y

c<X;<ct+hn

Yoy (Xi — )+ Z

c<Xi<cthn

Yi(Yi = p(1y (X))

Curvature Bias Sampling Noise
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Curvature bias bounded by Bh2.
7.=71.+0 (n_2/5) withh,, ~ n~1/%

This rate is a consequence of working with the 2nd derivative. In general, if we
assume /(. (-) has a bounded k—th derivative, we can achive n=*/(2+1) rate us-

ing local polynomial regression of order k — 1 with a bandwidth scaling as h,, ~
n—1/(2k+1)

Defn 4.54 (Minimax Linear Estimation (Imbens and Wager, 2017)).
The local linear regression estimator for 7.

~ . - Zi—C
TC:argmanK< - |)(Yi—a—TWi—B(0)(Zi—c)—6(1)(Zi—c)+)2
i=1

n

which can be written as a local linear estimator 7, = ZZ‘L:I v:Y; where weights v;
only depend on the running variable Z. Imbens and Wager (2017) show that local
linear regression is not the best estimator in this class.

Under an assumption that

tor is the one that minimises the MSE MSE(7.(7)| {Z1,.. ., Zn}) < o |73 + I3(7)
and is given by

() (z)‘ < B|{Z,...,Z,}, the minimax linear estima-

R(r%) = D APV ; 4" = angmin {o |13 + 13(1) }
i=1

These weights can be solved for using quadratic programming,.

4.4.2 FuzzyRD

Discontinuity doesn’t deterministically change treatment, but affects probability of
treatment. Analogue of IV with one-sided non-compliance.

o q1_ go(l‘L) lf €Z; < Zo
P[D; = 1|z;) = {g1($¢) if x; > xo

go(x;) # g1(x;). Assuming g1 (xo) > go(xo), the probability of treatment relates to
x; via:

E[Di|xi] = PID; = 1]x;] = go(w:) + [g1(z:) — go(z:)]T;

where T; = 1,,>,, := point of discontinuity
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4.4.3 Regression Kink Design

First-derivative version of the fuzzy RD. Continuous treatment, where the treat-
ments are a function of the running variable X with kink at . This implies that

the first derivative g—)D( of continuous treatment D is discontinuous at the threshold.
The marginal treatment effect at the threshold is defined as

OE[Y | X €[xo,z0+¢€)]

OE[Y | X E[zg—e,20)]

A (do) = IE [Y (do)|X = z] _ lim. 0 X — lim._,q %
X=z 0) = =
0 oD lim, W ~lim. W

4.5 Differences-in-Differences

4.5.1 DiD with 2 periods

Binary treatment d € {0, 1}, 2 time periods ¢ € {0, 1}.
Potential outcomes denoted Y,<.

Defn 4.55 (Estimand).
ATT in the 2nd period.

Tarr =E [V =Y |D =1]
E [V|D = 1] not observed, so must be imputed.
Naive Estimation Strategies
e Before-After Comparison: 7 = E [V{!|D = 1] —E [Y?|D = 1]
— assumes E [Y?|D = 1] =E [V D = 1] (No trending)
e Post Treatment-Control Comparison: 7 = E [Y'|D = 1] — E [Y"|D = 0]

- Assumes E [Y?|D = 1] = E [Y|D = 0] (Random Assignment in the
2nd period)

Both typically untenable in practice, so we need parallel trends.

Defn 4.56 (DiD Estimator).
Sample analogue of
Impute E [Y"|D = 1| with

E[v)ID=1] + E[f|D=0] -E[D=0

Baseline PO for treated Change over time in control series
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Ap_ =E[Y{}|D=1] -E[YJ|D=1] -

over-time difference for treated unit

E[v!|D = 0] ~E[y{|D = 0]

over-time difference for control unit

Defn 4.57 (Parallel Trends Assumption).

E[Y - Y7|D =1] E[YY - Y7|D = 0]

Trend in control PO for Treated Trend in control PO for Control

Often justified using a figure [with transformed y if necessary ], or control for time
trends [which relies on a strong functional form assumption], or a clear falsifica-
tion test [on a placebo group].

IfE [YP|D = 1] = E [YQ|D = 0], this collapses to a Selection-on-observables in the
2nd period assumption.

k [Ylo‘D = 1] =E [Y1O|D = O}

For a two-period difference, we can also write the standard OLS exogeneity con-
dition in differences form

E[Az'Ae] =0
E[zhes] + E[x)€1] — E[x)ex] — E[xhe ] =0

No feedback loop

Which makes a direct link with the strong exogeneity assumption in panel data
models that asserts that ¢; 1L x4, ... ;.

Regression Estimator
We typically prefer the following regression estimator (for automatic standard er-
rors etc).

Yit = a + yTreat; + A\Post; + 7(Treat; x Post;) + €

Triple Differences (DDD) Estimator
Regular Diff-in-Diff estimate - Diff-in-diff estimate for placebo group.

4.5.2 Nonparametric Identification Assumptions with Covariates

Lechner (2011)
Estimand:
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marr =E[Y! =YD =1]

=E|E[Y,' - Y’ X=x,D=1]|D=1
04 (x)
= Ex|p=1 [0:(x)]

Identification Assumptions:

e SUTVA
Y;:DY;l—f—(l—D)Y;O 7t€{071}

Covariate exogeneity
X'=X'=XzeXx

No effect before treatment

Oo(x) =0; Ve e X

Common Trend
(parallel trends within x strata)

EY/X=x,D=1] -E[YPX=x,D =1]
=E[Y?X=x,D=0] -E[Y)|X=x,D=0]
=B [YPIX =x] ~ E[Y{|X = x]

e Common support

Pr(T=1,D=1X =x,(T,D) € {(t,d),(1,1)}) < 1
Y(t,d) € {(0,1),(0,0),(1,0)} z € X

Tthi§[ allows us to estimate the conditional ATT as the standard DiD within each X
stratum.

Averaging these over dX gives us the ATT
= E[{pn (LX) = (0, X)} = {po(1,X) — po(0, X)} D = 1,7 =1]

where regression functions y4(t, ) denote conditional expectations for treatment
d at time t given covariates x.

64



Defn 4.58 (Semiparametric Difference-in-Differences).

Abadie (2005)

Denote potential outcomes under treatment and control for unit i as Y;} and Y.
For some observed covariates X;, we are interested in the CATT

(X)) = E [V - Y{1|X;, D; = 1]

For identification, we need
1. Conditional parallel trends: E [V — Y|D; = 1,X;| =E [V — Y,J|D; =0, X;]

2. Overlap: 3¢ > Osuch that E[D; = 1|X;] > cand E[D;|X;] <1 —¢

The Abadie estimand can be defined as

D; —E[D; = 1|X;]
E[D; =11X;] (1 - E[D; = 1]X;)]

PO

E[Y]-Yi|X;,Di] =E (Y — Yio)| X,

Defining AY; := Y;; — Y;o, we then have

D; —E[D; = 1|X;]
E[D; = 1 X, E[D; = 01X

DAY, 1 o[ _(-Djav, o
£ {E D, = 1|X] 'XZ} £ [(1 “ED, = 1) 'Xl]

E[Y;i - Y3|X;,D;] =E { Amxi]

This is an IPW Estimator.
Integrating this over dP(X|D = 1) gives us the ATT

Yi —Yo
Pr(D=1)

E[Yll_YOODzl]zE{ .D_E[D:”Xi]}

1-E[D = 1]Xj]

THe full IPW estimator can be written

DT D(1-T)pia(X)

Ap=17=1=E[Y - {

H p170(X)H
B ((1 —D)Tp1a(X) (1-D)1- T)pm(X))H
po,1 (X)IT po,o(X)II
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where II = Pr (D =1,T = 1) is the unconditional probability of being treated
in the post-treatment period, and py.(X) = Pr (D = dT = t|X) are conditional
probabilities of specific treatment-group combinations.

Double-robust version - Zimmert (2020)

Ap_17-1 = E[{E — DA -T)p11(X)

H pLO(X)H
_ ((1 —D)Tp1a(X) (1-D)1- T)Pl,l(X)>} «
po,1(X)II po,0(X)II
DT

(Y - ;de(T7X)) + T(NI(LX) - M1(07X) - (NO(le) - MO(O7X)))]

4.6 Panel Data

Setup: We observe a sample of i = 1,..., N cross-sectional units fort = 1,...,T
time periods = Data: {(yi,x},) :t=1,..., T},
One-way fixed effects and Random effects both use the form

Yir = Ty B+ 0; + €qn (3)
——
€it

although they make different assumptions about the error.

Error assumptions for panel regressions

(2) RE: (1) and E [e;¢|x;] = 0 [Absorb unobserved unit effect into error term, im-
pose orthogonality it] = 6; 1L x;. Equivalent to Pooled OLS with FGLS.

4.6.1 Fixed Effects Regression
Identification Assumption
o Strict Exogeneity - errors are uncorrelated with lags and leads of x
E [eit|z:] = Elest|wir, - xir) =0 = Elz, 4] =0Vs,t =1,...T
Equivalent statement for y;; is
E[yit|Tir, -, 2ir] = E [yit|2it] = 27,8

— Rules out feedback loops i.e. z;; correlated with ¢; ;_; because X's are
set in response to prior error, e.g. Policing and crime.

e regressors vary over time for at least some «.
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Setup
Define an individual fixed effect for individual 7

A — { 1 if the observation involves unit i
* 7 | 0 otherwise

and define the same for each time period for panel data.
If D;; is as good as randomly assigned conditional on A;:

E[Yoit|Ai, Xit, t, Dit] = E[Yoie| A, Xit, 1]
Then, assuming A; enter linearly,
EYoir|Ai, Xit, t, Dit]) = a+ My + Ay + X1, 8
Assuming the causal effect of the treatment is additive and constant,
EY1it|Ai, Xit, t] = E[Yoir| Ai, Xig, t] +p

where p is the causal effect of interest.
Then, we can write:

Yie = o + M +p Diy + X[, 8+ €
€it = Yoir — E[Yoit| Ai, X, t]
o =a+ Ay

Error Term
Fixed effect

Restrictions
e Linear
e Additive functional form
e Variation in D;;, over time, for ¢, must be as good as random

Defn 4.59 (Within Estimator).
Estimate the specification

i = &p + €
where k; = M;k; individual demeaned values from pre-multiplying by the Indi-

vidual specific demeaning operator M; := I, — 1, (1,1;) " 1} with every compo-
nent in eqn 3, which removes the fixed effect 6;.

Defn 4.60 (First Differences Estimator).
Lag eqn 3 1 period and subtracting gives

Ayir = Az}, B+ A€y

where Ay;t = yi+ — ¥i+—1 and so on. This naturally eliminates the time-invariant
fixed effect 6;. The pooled OLS estimation of 3 in the above regression is called the

first differences (FD) estimator B FD.
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Fact 4.22 (Efficiency of FE and FD Estimators).

e FE estimator is more efficient under the assumption that ¢;; are serially un-
correlated [E [e;€e}|x;, 0;] = 021r]

e FD more efficient when ¢;; follows a random-walk.

Fact 4.23 (Equivalence between Within/FE and first differences for 2 periods).
For Individual Fixed Effects/Within estimation, using the regression anatomy for-
mula, write:

Cov(Yit, Dit)

FE — =
PP Nar(Da)
Sincet =2,Y,; = Y;;, + 23t and D; = D;; + 2D

A Cov(Yit, Dit)
PrE = Var(D;;)
_ Cov(Yi — Y, Dyy — D)
~ Var(Dy — Dy))
_ Cov(Yie — Yyt — 25, Diy — Dy — 25
B Var(D;t — Dyt — A?“)
_ —Cov(AYi,ADy)  Cov(AYis, ADjyt)
—Var(AD;;) Var(AD;)

= PFD

4.6.2 Random Effects

Identification Assumption

Assume §; 1L X; < E[6;|z;] = E[f;] = 0 - strong assumption

In other words, entire error term e;; = v + 0; is independent of X. This assumes
OLS is consistent but inefficient, which is why it is of limited use in observational
settings.

When there is autocorrelation in time series (i.e. €; s are correlated over time ),
GLS estimates can be obtained by estimating OLS on quasi-differenced data. This
allows us to estimate the effects of time-invariant characteristics (assuming the in-
dependence condition is met).

Yit — Ni = (g — AT) B+ (1 = N + vy — Ap;
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where

Nl=

0.2
A=1— |2
[a%Tcé}

Assumption 6 (RE FGLS Assumptions).

2

e Idiosyncratic errors v;; have constant finite variance: E [I/ft] =0

o Idiosyncratic errors v;; are serially uncorrelated: E [v;, ;5] = 0Vt # s.
o E[0?|x;] =03
Under these assumptions, the FGLS matrix €2 takes a special form
Q = ol + ogjrit

where jrj’- isa T x T matrix of 1s. Estimators for the variance components are in

Wooldridge (2010, ¢ 10, pp 260-61). A robust estimator of €2 is constructed using
pooled OLS residuals v;

n
1 o
Q:—E ;0]
n
i=1

With this, we can apply the FGLS estimator
~ N -1 A
Bre = (X’Q*X) X'Q 1y

4.6.3 Hausman Test: Choosing between FE and RE

BrE is assumed to be consistent. Oft-abused test as a result.
e HO: Bpg — Bre =10
e HO: Brp — Bre #0

(BFE - B\RE)/ (@BFE} — Var [B\RE} ) (BF‘E - BRE) t Xi

If the error component 6 is correlated with z, RE estimates are not consistent. Per-
form Hausman test for random vs fixed effects (where under the null, Cov(8;, z;;) =
0)

e When the idiosyncratic error variance 62 is large relative to 7;63, A—0 and

Bre ~ Bpool. In words, the individual effect is relatively small, so Pooled
OLS is suitable.
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e When the idiosyncratic error variance 62 is small relative to T;65, A—1 and
Bre = Pre. Individual effects are relatively large, so FE is suitable.

4.6.4 Time Trends
Linear Time Trend
Vit =XaB+c+t+ew, t=1,2,...,T
Time Fixed Effects (a.k.a. Two-way Fixed Effects)
Yie =X+ ¢+t +eqn, t=1,2,...,T
Unit Specific Time Trends
Yie =XuB+ci+gi-t+t+ew, t=12,....T

4.6.5 Distributed Lag

Define switching indicator D;; as 1 if ¢ switched from control to treatment between
t—1andt.

m q

1/ist =vs + )\t + Z 6—TDS,t—T + Z 6+7'D5,t+7' + Xz{stﬁ + €ist

=0 T=1

where the sums on the RHS allow for m lags / post-treatment effects, and q leads
/ pre-treatment effects. Leads should be close to 0.

4.6.6 Staggered Adoption

Let T denote multiple time periods such thatt € {0, 1,..., 7}, withnobody treated
att = 0 and staggered adoption. Let G be a dummy that is equal to one if a subject
experiences treatment introduction in period ¢ (e.g. G2 = 1 implies the treatment
is introduced in period 2 in said group).

Fact 4.24 (Inconsistency for ATT (Chaisemartin and D’Haultfceuille, 2020)).
Under parallel trends for the untreated potential outcomes, Y ;(0), the treatment

effect B in the vanilla two-way fixed effects regression

Yg,t = BFEDg,t + g + % + Egt

can be decomposed as

E {BFE} =E Z

(gyt):Dg,f/?fO

Wg,tAg,t ; where Ag,t = Yg’t(l) — Yg,t(O)

The weights W, ; sum to one and are proportional to and the same sign as
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Ny, (Dgnf —Dg. =D+ D)

pesky weight

where D, . is the average treatment of group g across periods (share of periods
treated), D.; is the average treatment at period ¢ across groups, and D. . is the
grand mean of the treatment indicator. These weights can be negative.

This means that B¢ is biased for the ATT because W, 1 is innot (only) proportional
to Ny . Bis only unbiased when

o the treatment is binary AND

e the treatment is staggered and absorbing (i.e. groups get treated once and
stay treated) AND

e there is no variation in treatment timing

Under these conditions, the pesky weight is constant across treated units, so the
weights are proportional to Ny ;

OR, B is also unbiased if (Dgt—Dgy,.—D.;+ D..) is uncorrelated with the treat-
ment effects A, ;. This is only plausible when treatment has been randomly staggered,
otherwise, it is entirely plausible that groups with larger treatment effects selected
into treatment early, and so on.

Theorem 4.25 (DiD Decomposition Theorem (Goodman-Bacon, 2018)).

Consider a dataset comprising K timing groups ordered by the time at which they
first receive treatment and a maximum of one never-treated group U. The OLS
estimate from a two-way fixed effects regression is

Bpp = Z scwBhl + Z Z SijijD +

ADD
SjkBjk
kAU kU j>k ——

DD estimated with
already treated group

where weights depend on sample size and variance of treatment within each DD.
This maximises the weights of groups treated in the middle of the panel. The Late
vs Early comparison is particularly problematic (and is typically incorrect when
treatment effects are heterogeneous in time).

Visually, this involves decomposing the setup in fig 5 into its constituent two-way
parts fig 6.

Theorem 4.26 (Group-time average treatment effects (Callaway and Sant’Anna, 2020)).

Estimand: Group-time average treatment effect
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Figure 5: Some Staggered Difference in Differences data

ATT(g,1) = E[Yi(g) — Yi(00)|Gy = 1], ¥ ¢ > g

where Y;(g) is the potential outcome for group treated at g.
Separate (1) identification, (2) estimation and inference, and (3) aggregation.

e Al: No anticipation Vi, ¢t and t < g,¢’, Yi:(9) = Yi+(¢')

o A2: Parallel trends based on ‘never treated’ group: V¢t € {2,...,T}, g € Gs.t.
t>g,E[Y(0) = Y1-1(0)|Gy = 1] = E[Y3(0) — ¥;1(0)|C = 1]

Trend in group treated at 1

Trend in never treated

Estimators for Group-time ATEs

ATT " (95t) = E[Y; = Yy a|Gy = 1] - E[Y; = Yy 4[|C = 1]
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B. Late Group vs. Untreated Group
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Figure 6: Constituent 2-way Differences in Differences Comparisons

ATTin* (9,t) =E[Y; — Yy_1|Gy = 1] = E[Y; = Y,_1|D; = 0,C = 1]
Aggregation: event-study type estimand.

-
Op(e) = Z 1yre<TATT (9,9 +e)Pr(G=g|G+e<T,C#1)
g=2
Implemented in did and DRDID.

Fact 4.27 (Imputation Estimators (IFE / Factor models/ Matrix Completion)).

The negative weighting problem with 2WFE under staggered adoption can be
remedied easily by using the following procedure, which is termed Imputation
by Liu, Wang, and Xu (2021). This nests the procedures in Xu (2017) and Athey,
Bayati, et al. (2017) etc.

e Fit a model for Yiio) using only untreated observations for all units (i.e. un-
treated periods for units that eventually got treated)
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e Impute Y (O for treated units and treated time periods
e compute 7;; = Y — fg@o) | Vi, t where W;; = 1

o Average for (equal weighting) ATT or average over time for event study

This works well when the outcome model for Yigo) is good, i.e. when the fixed
effects or latent factors are well estimated. This will not work well for short panels.

4.6.7 Changes-in-Changes

Athey and Imbens (2006)
Given a continuous outcome Y and a monotonicity in unobserved heterogeneity, CiC
allows us to identify both the ATT and Quantile effect on the treated (QTT).
Assume the following about untreated potential outcomes

Y2 =H(U,T)U 1L T|D

where U is a scalar unobservable or an index of unobservables. H(u, t) is a general
function assumed to be strictly monotonically increasing in values of u for periods
t € {0,1}. The conditional independence assumption requires that the unobserved
heterogeneity is constant over time within treatment groups.

Denote Fy (4)ja:(y) = P[Y(d) < y|D = d,T = t] the conditional CDF of potential
outcome Y (d), and Fy,(y) = P [D = d, T = t] corresponding CDF for observed out-
come. Conditional outcome distributions Fg1, Fgg, F19 are observed. The inverse
of the latter is F,'(y), the conditional quantile function. The unobserved CDF is
identified as

Fy )11 (%) = F10 (Fgo (Fo1(y)))
The QTT at quantile 7 is then identified as
Ap_i(T) =F7 (1) - Foyi1 ()™
Foit (Foo (Fig (7))
and the ATT is identified as
Ap_i =E[Y|D=1,T = 1] — E [Fg;' (Foo(Y10))]

Implemented in qte: : CiC.

4.6.8 Synthetic Control
Original Abadie, Diamond, and Hainmueller (2010) setup.

Observe ng+; units in periods t = 1,...,T. Unit 1 is treated starting from period
To+1,while2,...,no+ 1 are never treated, and are therefore called the donor pool.
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Y; 205 if Dy

0o0s 0
Y%tb:Yi(Dit):{Yi1 if Dy —1

Since there is only 1 treated unit, the effect of interest
Tt = Yh(t) — Y()i(t), t = T0+1, . ,T

Observed data matrix ((Doudchenko and Imbens, 2016))

YlT(l) Y2’T(O) e ey Yn0+1’T(0)

obs .__ (yrobs ‘ _ YLTU'+1(1) Y2,T0'+1(0) --'~, Y!LU-‘,-I,Z.—'O-"-I(O)
Y= (Vi )i=r 1 it no b1 = Yin(1) Yo, (0) ..., Yi417,(0)
Y171(].) Yg’l(O) ey Yn0+171(0)

FPCI applies; potential outcome matrices are:

? Y2, 7(0) ooy Yoor7(0)
Y(0) = ? Yor,+1(0) ..., Yoot1,1,41(0)

Y1 To (1) Y2,To (0) R }/"(H-LTO (O)

Yogr1.1(0)

? 7,07

Let X cq+ be a p—vector of a pre-intervention characteristics, and X, is a p x ng
matrix containing the same values for control units. This typically includes pre-
treatment outcomes, in which case p = Ty, but predictors (even time invariant
ones, Z;) are usually available.

et

Vi

Xtreat =
b
Y7

?
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Defn 4.61 (Synthetic Control Estimator).
For some p x p PSD matrix V, define ||X||y, = VX'VX, where V is typically
diagonal. Consider weights w = (wy, .. .,wp,+1) satisfying

wiz(), 2,...,n0+1

Zw,‘ZI

i>2

(Non-Negativity)
(Sum to 1)

This forces interpolation, i.e. the counterfactual cannot take a value greater than
the maximal value or smaller than the minimal value of for a control unit. The
synthetic control solution w* solves

min || X¢reat — Xew] \3, s.t. Non-negativity, Sum to 1
w
The Synthetic Control Estimator is then
no+1
Rom Vi Y Y
i=2

In contrast, a simple difference-in-differences estimator gives

1 no+1
~DID .__ y,obs obs obs obs
Tt = Yl,t - Yl,To - E Yy _Yi,To
nog < 2
i=

Abadie, Diamond, and Hainmueller (2010) choose V = diagv;,...,v, using a
nested-minimisation of the Mean Square Prediction Error (MSPE) over the pre-
treatment period

To no+1
MSPE(V) := > ¥7%* = > wi( V)Y
t=1 1=2

Defn 4.62 (Imbens and Doudchenko representation).
Doudchenko and Imbens (2016) Setup:

Yobs Yobs Y ( 1 ) Y (0)
Yobs _ t, post [ post] _ |: t, post ¢, post ] Tx(N+1
|: thr%re Yg,b;re Yt, pre (O) YC, pre (O) ( )
Y(O) = |: ? YC, pOS’t(O):| _ |: ? YC, post(O):|
Yt, pre (0) Yc, pre (0) Yt, pre (O) Yc, pre (O)
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e relative magnitudes of T"and N might dictate whether we impute the missing
potential outcome ? using this or this comparison

— Many Units and Multiple Periods: N >> T, Y(0) is ‘fat’, and red
comparison becomes challenging relative to blue. So matching methods
are attractive.

- To >> N, Y(0) is ‘tall’, and matching becomes infeasible. So it might
be easier to estimate blue dependence structure.

- Finally, if Ty ~ N, regularization strategy for limiting the number of
control units that enter into the estimation of Y 7, +1(0) may be impor-
tant

e Focus on last period for now: 77 = Yo 7(1) — Yp,7(0) = YO"Eﬁ —Yo,7(0)

e Many estimators impute Y; 1(0) with the linear structure }?07T(0) = 4+
Y wi Y

— Methods differ in how p and w are chosen as a function of YOS yobs  yobs

¢, post? t, pre»

e Impose four constraints

1. No Intercept: ;1 = 0. Stronger than Parallel trends in DiD.
2. Addingup: Y | w; = 1. Common to DiD, SC.

3. Non-negativity: w; > 0V i. Ensures uniqueness via ‘coarse’ regularisa-
tion + precision control. Negative weights may improve out-of-sample
prediction.

4. Constant Weights: w;, =w Vi
e DiD imposes 2-4.
e ADH(2010, 2014) impose 1-3
- 1+ 2 imply ‘No Extrapolation’.
Relaxing these assumptions:
e Negative weights

— If treated units are outliers on important covariates, negative weights
might improve fit
- Bias reduction - negative weights increase bias-reduction rate

e When N >> Ty, (1-3) alone might not result in a unique solution. Choose
by
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— Matching on pre-treatment outcomes : one good control unit is better
than synthetic one comprised of disparate units

— Constant weights - implicit in DiD
e Given many pairs of (u,w)

e prefer values s.t. synthetic control unit is similar to treated units in terms of
lagged outcomes

o low dispersion of weights

e few control units with non-zero weights

Optimisation Problem
Ingredients of objective function

e Balance: difference between pre-treatment outcomes for treated and linear-
combination of pre-treatment outcomes for control

2
- ||Yt, pre — M — WTYC, pre”2 = (Yt, pre_,u_WTYc, pre)T(Yt, pre_ﬂ_wTYc, pre)
e Sparse and small weights:

~ sparsity : [,
- magnitude: ||w||5

(A (N, @), 5" (N, @) = ar%rgin Q1 w| Yy, pres Yo, pre; A, @)
where  Q(u, w| Y, pre; Yo, pre; A @) = ||Yt,pre — - wTYc,preH;
(52 el +alll
Tailored Regularisation

e don’t want to scale covariates Y pre to preserve interpretability of weights

e Instead, treat each control unit as a “‘pseudo-treated” unit and compute )A/ij (0) =
A (G5 0, A) + 52, @i, A) - Y88 where
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pick the value of the tuning parameters («

(1

"(J; A @), W (§; A, a)) = argmin Z

CV(a, )

l1—«
A
(5

e

Difference in Differences

e assume (2-4)

e No unique y,w solution for T' = 2, so fix w = 5

. 1
wdld:N Vie{l,...

. 1
~did
=—Y'1
: To;

Best Subset; One-to-one Matching

(n%,0%) = argmin, , Q(;; A = 0, @) with Zf\;l 1,20 < k (=1 for OtO)

Synthetic Control

e assume (1-3) (i.e. u=0)

gt T M Z w;Y; it +
e = i#0,j
2
ralul,)
Aopts )\f,gt) that minimises
¥;,1(0)
" A) — Z 0" (s, N) - Yir)

N}

e For M x M PSD diagonal matrix V
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(@(V), 1(V)) = argmin{(X;

v:

w, i

argmin

V=diag(vi,...,v

M)

(X —p

{ (Yt, pre

(Yt, pre

—p

i#0,j

1

—w'X)TV

— wTX)}
—B(V) Y pre) "

= B(V) " Yo pre)}

Constrained regression: When X; = Y;;; 1 <t < T, (Lagged Outcomes only)
V=Iyand =0

Defn 4.63 (Many treated units : Synthetic Difference in Differences).

Arkhangelsky et al. (2021)

Consider a balanced panel with N units and 7" time periods, where the first N,
units are never treated, while N;, = N — N, treated units are exposed after time
T}, We seek to solve for sdid weights @44 that align pre-exposure trends in outcomes
of unexposed units with those for exposed units

Neco N
E Sdde ~ N 1 E Yit
=1 i=Nco+1

we also look for time weights Asdid that balance pre-exposure time periods with
post-exposure time periods for unexposed units.
Weights are solved using the following optimisation problems

(o&o,ﬁdid) = argmin lyn;t (wo,w)  where

wo ER,WEN
Tpre Neo 1 N 2
Lunit (WOaW) = Z (WO + Zinit TN Z Yzf) + CQTpre ||w||§,
t—1 i=1 T Neo +1

NCO
0= {weM:Zwi:Lwi:Ntrl forall i = Neo +1,...,N},
=1

where R denotes the positive real line. We set the regularization parameter ¢ as

Nco Tpre_l
1/4 A . ~2
C = (Nterost) / & with & § E Ay —
pre i=1 t=1
Ncu pre -1

where Aj; = Y41y — Yy, and A=

co pre

and
We implement this for the time weights sdid by solving
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(;\O,S\Sdid> = argmin fime (Ao, A) where

Ao ER,AEA
2
Neo Tpre 1 T
lime (Ao, A) = E Ao + E MY — Yie |
: Tpost
i=1 t=1 t=Tpro+1

Tpre
A=SXeRT Y N =1 =Tk forallt = Tpe +1,...,T
t=1
1. Compute regularisation parameter ¢

2. Compute unit weights &sdid

3. Compute time weights Asid

4. Compute the SDID estimator using the following weighted DID regression

N T
(G A) = argmin {Z Z(Yit —pu—a; — B — DitT)QGfdidedid}

Ty, i=1 t=1
implemented in synthdid: :synthdid_estimate

Defn 4.64 (Interactive Fixed Effects (Bai, 2009)).

Yit = 61Dy + B+ N fr + €t

Where D is the treatment, d;; is the heterogeneous treatment effect for unit i at time
t, ;; is a p— vector of time-varying controls. f; = [fi,..., fri]' is a k x 1 vector of
unknown common factors, A\; = [A\;1, ..., \;r]' isa r x 1 vector of unknown factor
loadings. This factor component nests standard functional forms

Ui = N X _fi
~— ~— ~—
Confounders  Loadings  factors

fi=1 = X\; x1=\; unit FEs

Ai=1 = 1x f; = f; time FEs

Jie =1, fae = &, Ain = @iy hia = 1 = fi X A\i = o + & two-way FEs.

ft =t = A\ x ft = A\; x t Unit-specific linear time trends

Ai = Yio, fr = ar = A X fy = ay;+—1 — vy Lagged dependent variable
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Steps
1. Get initial value of 3 using within estimator
2. Estimate Xi, ft using B
3. Re-estimate B using )T/ﬁ
4. Tterate

Drawback - constant effect

Defn 4.65 (Generalized Synthetic Control (Xu, 2017)).
With, Nco control units and N7 g treated units, Write DGP for individual unit as

K:Dlo(slﬂ-X;,B—‘rFAZ-l-Ez i1€1,2,...Nco,Nco+1,....N

Where Y; = [yi1, yio, - -, v, Di = [Di1, ..., Dir]', Xy = [®i1, ..., 2] is T x K,
F = [fl,...,fT]/iSTX r.
Stack controls together gives

/
B8 + _F Aco +eco
TxNco TxNcoxp px1 TXNco Ngoxr

GSC for treatment effects is an out-of-sample prediction method: the treatment
effect for unit 7 at time ¢ is the difference between teh actual outcome and its esti-
mated coutnerfactual ¢;; = Y;;(1) — Y;+(0), where Y;;(0) is imputed in three steps.

1. Estimate an IFE model using only the control group data and estimate
ﬂa F) ACO
B.F,Aco = argmin > (Y- X8 - FA;) (Y; — X8 - FA;)
BFA jec
st. F'F =1,; Al,Aco = Diagonal

2. Estimate Factor loadings for each treated unit by minimising mean-squared
error of the predicted treated outcome in pretreatment periods

Xi = argmin(Y? — X?,/@\ — ]?“OL)’(Y? — X?,@ — 130&-)’
A

_ (130’1?*0)_1 FO(YO-X98)ieT

where 0 superscripts denote the pretreatment periods.
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3. Calculate Treated Counterfactuals based on ,@, f‘, A,
Vi) =i, B+ Nf ieT i t>T,

Choose the number of factors r by cross-validation. Implemented in gsynth.

4.6.9 Dynamic Treatment Effects

We may want to estimate the effects of treatment sequences (‘time-varying expo-

sures’), as in medical settings (Robins 1986, Robins, Hernan, and Brumback (2000)).

2 period example Consider a setting with ¢ = 1,2 and corresponding outcomes
Y: and treatments D;, where the treatment takes on values dy,d> € {0,1,...,J},
and baseline covariates X and covariates at the end of the first period X;.

Letds := (di,d2) € {0,1,...,J}x{0,1,..., J}. Accordingly, Y>(d>) is the potential
outcome realised when treatment is set to sequence dz. The ATE (contrast) two
distinct treatment sequences ds vs d is

A(dz, dy) := E[Y5(d2) — Y2(dy)]
Estimating this quantity requires a sequential selection on observables assumption

Yg(dg) HIR D1|X0 and }/g(dg) AL l)2|l)1,)(0,}(17 for dl,dg € {O, 1,. .. J}
Pr (Dl = d]_IXQ) > 0 and Pr (D2 = d2|D1,X0,X1) >0

Under these assumptions, dynamic treatment effects can be estimated based on
nested conditional means regressions

AT (dy, dy) = E[E [E [Y2|d2, Xo, X1] [dy, Xo] — E [E[¥2|d3, Xo, X4] |d}, Xo]]

where dy = (dq,d2) and df = (d}, d5) denote distinct treatment sequences.
or an IPW estimator

Y - Ip=alp,=ay
pd/l (}(O)pdl2 (Dla XOa Xl)

- Y 1p,—a,1p,=da
Alpw d 7d/ = E 1 1 2 2 _
(dz, ) p? (Xo)p?2 (D1, Xo, X1)

where p? (X;) and p?2 are propensity scores in the two periods.
Finally, a double robust estimator is
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A%(dy, dp) = E [ — 4%
1p,=d, - 1py=a, - (Y2 — pp7?(d2, X))
p¥ (Xo)p?2 (D1, X0, X1)
+ ﬂDlzdl : (.UJY2(d23X1) - VYZ(d27XO))
ph(Xo)

where 92 =

+ I/Y2 (dz, Xo)

where

1Y (dg, Xo,X1) = E[Y2|Dy = da, Xo, X4] and
v¥2(dy, Xo) = E [E [Ya|d), Xo, X4] | Dy = d}, X

are (nested) conditional mean outcomes.

If we assume that D5 is conditionally independent of potential outcomes given pre-
treatment covariates Xy and D; (implying that post-treatment X, aren’t required
to control for confounders jointly affecting the second treatment and the outcome).
In this case, the second part of the first SOO assumption can be strengthened to
Y (d2) AL D9|D4,X;. This simplifies

1p,—d, - Ip,—a, - (Yo — p*2(d2, Xo))

p* (Xo)p? (di1, Xo)

implemented in causalweight: :dyntreatDML.

e =

+ 11 (d2, Xo)

Generalisation to arbitrary panels (Blackwell and Glynn, 2018; Herndn, Brum-
back, and Robins, 2001)

Let D;; denote treatment status at time ¢, and collect them into a ¢t— vector for each
unit to form a Treatment History D, := (D1, D;2, ..., D;r). A partial treatment
history up to time ¢ is denoted D; ;.;. Time varying covariates are arranged anal-
ogously X, X, X 1.4

Potential outcomes are defined on treatment histories and rely on the standard con-
sistency assumption / SUTVA, which assumes that the potential outcome for the
same observed history Y;; := Y;;(dy.:) when D; 1., = dy. This generates 2¢ po-
tential outcomes for the outcome in period ¢, which permits many hypothetical
comparisons.

The estimand typically of interest the average causal effect of a treatment history

7(dyg, d,) = E[Yir(dis) — Yie(dy,,)]

Define potential outcomes just intervening on the last j periods as Y (D; 14— j—1, di—j:t),

which is the “marginal” potential outcome if the treatment history runs its natural
course up to t — j — 1 and set the last j lags to d;— ;..
This allows us to define a contemporaneous treatment effect (CET)
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T(t) = E[Yie(Dj1:0-1,1) — Yie(Di1:4-1,0)] = E[Yie (1) —
The j—step lagged effect is defined analogously
ni(t, j) = E[Yi(Di:e—j-1,1,0;) — Yie(Dj 1:0— -1, 0,05)]

and the step response function (SRF) describes how this effect varies by time period
and distance between the shift and the outcome

7s(t,j) = E[Yi (1) — Yie(05)]

These effects are (clunkily) parametrised in an autoregressive distributed-lag (ADL)
models of the form

Y (0)]

Yie =B+ a1+ B1Ds + BaDip 1+ €in

with assumption €;; AL D; ¢ V¢,s. This implies the following form for potential
outcomes

Yii(di) = Bo + Y5 i—1(di—1) + f1Diy + B2Djv—1 + €it

hence, changes in d;_; can have both a direct and indirect effect on Y.

Identification Assumption 2 (Baseline Randomisation).

{}/;t(dl:t) it = ]-7 cee 7T} AL Di,l:t|Xi,O

This relates to linear panel models of the form

Yie = Bo + B1Dig + BoDiy—1 + it
where strict exogeneity E [1;:|D; 1.7] = E [1;¢] = 0 is assumed.
Identification Assumption 3 (Sequential Ignorability).

For every treatment history d;.r and period ¢,

{Y;s(dl:s) s=1 . »T} AL Di 1:t|Vit

where V; is a set of covariates such as {Y; ;—1, D; 1—1, Xt }
This relates to sequential exogeneity in panel models

E[ei¢|Di e, Xi1:Yi:e—1] = Eleit|Di, Vie] = 0

Under sequential ignorability, an ADL approach would be to write the outcome
regression with time-varying covariates

Yie = Bo+aYii—1+ 1D+ BoDip—1 + X6 + e

This generates post-treatment bias because X;; may be affected by D; 1.1—;.
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Defn 4.66 (Structural Nested Mean Models (SNMM)).
Define the impulse response functions (‘blip-down’ functions) as

be(di, ) = E[Yie(di:4—j,05) — Yie(di:i—j—1,0541)|D1p—j = dizp—j]

which is the effect of a change from 0 to d;_; in terms of the treatment on the
outcome at time ¢, conditional on treatment history up to time ¢ — j.
These functions are parametrised as a function of lag length

be(dis, Ji) = y1jdi—j + Vojdi—jde—j—1 . ..

This then allows us to construct blipped-down / demediated outcomes

j—1
Y=Y =Y vDits
s=1

Intuitively, this transformation subtracts off the effects of j lags of treatment, creat-
ing an estimate of the counterfactual level of the outcome at time ¢ if the treatment
had been set to 0 for j periods before ¢. Under sequential ignorability, the trans-
formed outcome th has the same expectation as the counterfactual Y;;(d;.;— —j> 0;),
and can be used to construct Y ™! by modelling the relationship between Y} and
D; ;_; to estimate the lagged effect for j + 1. This is recursive, hence the nested
Sequential g-estimation can be used to estimate effects. Suppose we're interested
in the contemporaneous effect and the first-lagged effect and we adopt an impulse
response function b;(d1.¢ ;) = 7;d:—; for both these effects. We assume sequential
ignorability conditional on V;; := {D;;_1,Y;:—1,X;}. Sequential g-estimation
proceeds as follows

1. For j = 0 regress the un-transformed outcome on {D;;, D; 1—1,Y; -1, Xt }
as in an ADL model. If this is correctly specified, we estimate the bhp -down
parameter 7y, (contemporaneous effect) correctly.

2. We use 7 to construct the one-lag blipped-down outcome 2% =Yy —oDis

3. Thisblipped-down outcome would be regressed on{D; 1, D; 1_2,Y; 12,
to estimate the next blip-down parameter v; (the first lagged effect)

4. (repeat for further lags, standard error estimated via block-boostrap)

Defn 4.67 (Marginal Structural Models).

To specify a marginal structural model, we choose a potential outcome lag length
and write a model for the marginal model of those potential outcomes in terms of
treatment history
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E[Yz’t(dl:t)] = g(dlzt;ﬂ)

for example, for a contemporaneous and two lagged effects, we write E [Y;;(d;—2.)] =

g(di—2.; B), marginalising over further lags and covariates.
The average causal effect is then

T = g(d B) — g(dyy; B)
This motivates an IPW approach where weights are constructed as

t

SW,, = 11 P(Dit| D t—1,7)
' P(Dyt|Xit, Yi—1, Diy1,0)

t=1

where the denominator of each term is the product of the predicted probability of
observing unit i’s observed treatment status conditional on covariates that satisfy
conditional ignorability. Multiplying this over time produces the probability of
seeing this unit’s treatment history conditional on the past.

These weights can be used in a regression of the form

9(di—s:2.8) = Bo + Prdy + Badi—1 + Badyi—2

4.7 Decomposition Methods

Basic idea of decomposition

Far(y) — Fr(y) = / Far(y]e) far () do — / Fr(yle) fr(x)da
- / Fas (yl2) — Fr(yle)] for ()l + / Far(412) [far () — fi())d

4.7.1 Oaxaca-Blinder Decomposition

Ya—Up =TabBa—TpPp =Tp(Ba — BB) + (Ta —Tp)'Ba
We consider two groups, A and B, and an outcome Y, and a vector of predictors
. Main question for decomposition is how much of the mean outcome differ-
ence [or another summary statistic / quantile of CDF] is accounted for by group
differences in the predictors . The Oaxaca-Blinder decomposition refers to the
following decompositions:
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R=E[Ya] -E[Yp] =E[za] B4 —E[zs] B

Aggregate Decomposition
= (E[za] —E[z5))Ba+Efxs] (B4 — Bs)
Explained

Unexplained
Decomposition from B’s PoV (Threefold Decomposition)

discrimination

={E[za]l —Elzp]} Bs +E[z5] (Ba — Bs) + (E[za] —E[z5])(Ba — Bs)

interaction

endowments

Stipulating a non-discriminatory coefficient 8* (Twofold Decomposition)

Unexplained
={E[za] ~Elxp]} " +{E[xa] (B4~ ) +E[zs5] (8"~ Br)}
Explained E[z A’ 5A —Elzs]'65
=B 4 —B*

Detailed Decomposition
To examine the ‘contribution” of each variable to the observed gap, estimate

k k
lif ie B
Yi = Zwﬁﬁj + Zdixﬁéj teisdii= { 0 otherwise
=1 =1

so, (3; is the coefficient for group A, and 3, + ¢; is the coefficient for group B. A
t-test for §; is used to establish whether a variable is a source of the observed gap.

The contribution of each variable to th explained part is
—A —_B\ 7%
(@ —=z")p"

Defn 4.68 (Oaxaca-Blinder-Kitagawa as a Regression imputation estimator).

Let outcome models be linear V; = X;31 + v;if W; = land Y; = X;G0 +
Vo; if Wi = 0 where E [Vli] =E [1/]01‘ =0.

The difference in means decomposition is
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male earnings
explained component equation

female earnings
equation

>
>

>F

7 M

Figure 7: Oaxaca decomposition where D; is the ‘discrimination’ piece (Bazen,
2011). Dy # D, generically unless two groups have the same slope (which is
practically never the case)
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Zj

E[Y|W =1]-E[Y|W =0] =E[X|W =0] 8, — E[X|W = 0] B

EXIW =1] (81 = Bo) + (E[X|W = 1] = E[X|W = 0])Bo

EY'=YW=1]+E[Y°|W=1] —-E [Y°|W =0
TPATT, +E YW =1] —E [Y°|W = 0]

Unexplained component Explained Component

Sloczynski: SATT can be estimated by running the following regression:

YV, =a+7W;+ XiB+yWi(X; — X1) + ¢

Kline (2011) shows that this is ‘doubly robust’ and equivalent to a reweighting
estimator based on the weights

w(x) - dFX|W:1(X) _ 1—p e(x)
- dFqgw—o(x) p 1—e(x)

where p := Pr (W; = 0) is the treated share.

4.7.2 Distributional Regression

Section based on Chernozhukov, Ferndndez-Val, and Melly (2013). Reference pa-
pers:

e https://arxiv.org/abs/0904.0951

e https://ocw.mit.edu/courses/economics/14-382-econometrics-spring-2017/lecture-
notes/MIT14_382517_lec7.pdf

e https://cran.r-project.org/web/packages/Counterfactual/vignettes/vignette.pdf

Let F'x, denote the distribution of job-relevant characteristics (education, experi-
ence, etc.) for men when k£ = m and for women when k£ = w. Let Fy, x; denote
the conditional distribution of wages given job-relevant characteristics for group
j € {w,m}, which describes the stochastic wage schedule that a given group faces.
Using these distributions, we can construction F ;. , the distribution of wages for
group k facing group j’s wage schedule as

Fuiov) = [ i, le)dFy, @), y e T
For example, Fy, x,) is the distribution of wages for men who face men’s wage

schedule, and Fy,}y, is the distribution of wages for women who face women’s
wage schedule, which are both observed distributions. We can also study Fg|1),
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the counterfactual distribution of wage for women if they would face the men’s
wage schedule Fy, x,.

Fy<0|1>(y)z/ Fy, x, (ylz)dFx, ()
X

is the counterfactual distribution constructed by integrating the conditional dis-

tribution of wages for men with respect to the distribution of characteristics for
women.
We can Interpret Fy (o)1) as the distribution of wages for women in the absence of

gender discrimination, although it is predictive and cannot be interpreted as causal
without further (strong) assumptions.

Eapy = B = [Fap — Fﬁom} + [Fﬁmw ~ o))

structure

composition

Assumptions for Causal Interpretation

Under conditional exogeneity / selection on observables, CE can be interpreted as
causal effects. Sec 2.3 in ECTA 2013 paper spells this out in detail. Let (Y : j € J)
be the vector of potential outcomes for various values of a policy j € J, and X be

a vector of covariates. Let J denote the random variable that describes the realised
policy and let Y := Y be denote the realised outcome variable. When J is not

randomly assigned, the distribution of Y'|J = j may differ from the distribution
of Y*. However, under conditional exogeneity, the distribution of Y| X, J = j and
Y| X agree, and the observed conditional distributions have a causal interpreta-

tion, and so do counterfactual distributions generated from these conditionals by
integrating out X.
Let Fy-;(y|k) denote the distribution of the potential outcome Y}* in the popu-

lation with J = k € J. The causal effect of exogenously changing the policy
from [ to j on the distribution of the potential outcome in the population with the
realised policy J = k is Fy| 7(ylk) — Fy- ;(ylk). Under conditional exogeneity,
for any j, k, € J, the counterfactual distribution Fy- (j|k) (y) exactly corresponds to
Fy- .7(y|k), and hence the causal effect of exogenously changing the policy from

[ to j in the population with J = k corresponds to the CE of changing the condi-
tional distribution from [ to j, that is

Ey=15(ylk) = Fy 15 (lk) = Fy iey (y) — Fy iy (1)

Conditional exogeneity assumption for this section:
(Y jeguJix

K groups that partition the sample. For each population k, 3X;, € R? and outcome
Y),. Covariate vector is observable in all populations, but the otucome is only ob-
servatble in populations j € J C K. Let Fx, denote the covariate distribution
in the population k € K, and Fy, x; and Qy,|x,; denote the conditional distribu-
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tion and quantile functions in population j € J. We denote the support of X, by
X, C R% and the region of interest Y; by J; C R. We refer to j as the reference
population and & as the counterfactual population.

The reference and counterfactual populations in the wage example correspond to
different groups. We can also generate coutnerfactual populations by artificially
transforming a reference population. We can think of X, as being created through
a known transformation of X:

Xy = gr(X;), where gj, : X;— X

Counterfactual distribution and quantile functions are formed by combining the
conditional distribution in population j with the covariate distribution in popula-
tion k, namely:

Fy (i) (y) = /X Py, x, (ylz)dFx, (z), y € V)
Qy (i (T) = F;/_(j\k) (r), 7€ (0,1)

where (j, k) € JK and Fy ;.\ (1) = inf{y € V; : Fy(jj)(y) = 7} is the left-inverse
function of Fy ().
The main interest lies in the quantile effect (QE) function, defined as the difference

of the two counterfactual quantile functions over a set of quantile indexes 7 C
(0,1)

A(T) = Qy iy (T) = Qy iy (7), TET

Estimation of Conditional distribution
Fy, x, (yl2) = /( @i, ) < )
1

e method = "qr" default implements

Py x,(ylz) == + / 1{a'f;(u) < y}du

(e,1—¢€)

where ¢ is a small constant that avoids estimation of tail quantiles, and B(u) is the
quantile regression estimator

nj

Bj(u) = argmin, g, 3 J[u— 1{Ys < XjbH[5: — XGib)
i=1
e method = "logit" implements the distribution regression estimator of the

conditional distribution with the logistic link function
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Fy, x, (ylz) = A(2'B(y))

where A is the standard logistic CDF and §(y) is the distribution regression esti-
mator

"

Bly) = argmax, o, Y [1{Yji < y}log A(X];b) + 1{Y;; > y}log A(~X;b)]

i=1

4.8 Causal Directed Acyclic Graphs

based on http://www.stat.cmu.edu/ cshalizi/350/lectures/31/lecture-31.pdf ,Pearl
(2009), Morgan and Winship (2014), Cunningham (2020).

For an undirected graph between X,Y, and Z, there are four possible directed
graphs:

e X —»Y — Z (achain)

e X <+ Y <« Z (another chain)
e X+ Y — Z(aforkonY)

e X —»Y « Z (collisiononY)

With the fork or either chain, we have X 1l Z|Y. However, With a collider, X /L
Z|Y.

Causal effect of X on Y is written Pr (Y |do(X = z)). Basic idea is condition on
adequate controls (i.e. not every observed control). Here, controlling for U is un-
necessary and would bias the estimate of Pr (Y |do(X = x)).

/\
U——>A Y

4.8.1 Basics / Terminology

Defn 4.69 (Backdoor Path; Confounder ~ Omitted Variable).
A backdoor path is a non-causal path from A to Y. They are ‘backdoor” because
they flow backwards out of A: all of these paths point into A.

Here, A + U — Y, where U is a common cause for treatment and the outcome.
So, U is a confounder.
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A worse problem arises with the following DAG, where dotted lines indecate that
U is unobserved. Because U is unobserved, this backdoor path is open.

A—Y

Defn 4.70 (Collider).
U
A—mY
Colliders, when left alone, always close a backdoor path. Conditioning on them,

however, opens a backdoor path, and yields biased estimates of the causal effect
of AonY.

e Common colliders are post-treatment controls A — C < Y

o Another insidious type of collider is of the form A + --- = C - --- = Y,
where C is typically a lagged outcome.

Defn 4.71 (Back Door Criterion).

Vector of measured controls S satisfies the backdoor criterion if (i) S blocks every
path from A to Y that has an arrow into A (i.e. blocks the back door) and (ii) no
node in S is a descendent of A. Then,

Pr(Y|do(A=a)) =) Pr(Y[A=a,5=5)Pr(S=s)

Which is the same as the subclassification estimator. The conditional Expectation
E[Y|A = a,S = s] can be computed using a nonparametric regression / ML algo-
rithm of choice.

Defn 4.72 (Frontdoor Criterion).

M satisfies the frontdoor criterion if (i) M blocks all directed paths from Ato Y,
(ii) there are no unblocked back-door paths from A to M, and (iii) A blocks all
backdoor paths from M to Y.

Then,

Pr(Y|do(A)) =Y Pr(M=m|A=0a)) Pr(Y|A=d,M=M)Pr(A=d)
M a’

Pr (M|do(A)) Pr (Y |M, do(A))
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The above DAG in words

1. The only way A influences Y is through M, so there is no arrow bypassing
M between X and Y. In other words, M intercepts all directed paths from A to
Y.

2. Relationship between A and M is not confounded by unobservables - i.e. 1o
back-door paths between A and M.

3. Conditional on A, the relationship between M and Y is not confounded, i.e.
every backdoor path between M and Y has to be blocked by A.

With a single mediator M that is not caused by U, the ATE can be estimated by
multiplying estimates 7 x § (Bellemare, Bloem, and Wexler, 2020).

The FDC estimates the ATE because it decomposes a reduced-form relationship
that is not causally identified into two causally identified relationships.
Implementation through linear regressions:

M; =K+ ~vA; +w; 4)
Yi=a+dM; +yA; +v; 5)

Since E [M|A] = v is identified, Cov [w; A;] = 0in 4. Cov [M,v] = 0in 5. Assume
1 = 0. Then, write

mipc = E[Y|do(A)] =0 x 7

4.8.2 Mediation Analysis

(Imai, Keele, and Yamamoto, 2010) Pearl (2001), Robins(2003)

Consider SRS where we observe (D;, M;, X,;,Y;), where D; is a treatment indicator,
M, is a mediator, X; is a vector of pre-treatment controls, and Y; is the outcome.
The supports are M, X', ) respectively. Xs are partialled out.

Let M;(d) denote potential value for the mediator under treatment status D; = d.
The outcome Y;(d, m) is the potential outcome for unit i when D; = d, M; = m.
The observed variables can be written as M; = M;(D;),Y; = Y:(D;, M;(D;)).
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AN

d, a used interchangeably for treatment.

Assumption 7 (Sequential Unconfoundedness of Treatment, Mediator).

{Yi(d,m), M;(d)} L D;|X; ==

Random assignment of D (6)
No outcome mediation (7)

vd',d € {0,1} and (m,z) €e M x X

This requires the treatment to be conditionally independent of the potential media-
tor states and outcomes given X, ruling out unobserved confounders jointly affect-
ing the treatment on the one hand and the mediator and/or the outcome on the
other hand conditional on the covariates. (5) postulates independence between
the counterfactual outcome and mediator values ‘across-worlds’.

Effectively, Need M to be randomly assigned (approx).

Defn 4.73 (Natural Indirect Effect).

NIE;(d) = §i(d) := Yi(d, M;(1)) — Yi(d, M;(0))

Difference in Y holding treatment status constant, and varying the mediator. Sample
Average: Average Causal Mediation Effect (ACME)

6(d) :=E[d;(d)] = E[Yi(d, M;(1)) — Yi(d, M;(0))]
Defn 4.74 (Natural Direct Effect).
NDE;(d) = 6;(d) := Yi(1, M;i(d)) — Yi(0, M;(d))
Difference in Y holding mediator constant, and varying the treatment.

Defn 4.75 (Total Causal Effect / Treatment Effect Decomposition).
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6:(1) 5:(0)
=Y;(1, M;(0)) — Y(0,M;(0)) - Y;5(1, M;(1)) — Y (1, M;(0))
0,(0) 5:(1)

= 6i(d) +6:(1-d)
—— ————
indirect effect  direct effect

NDE + NIE defined on opposite treatment states

Defn 4.76 (Controlled Direct Effect (Acharya, Blackwell, and Sen, 2016)).
NDE conditions on potential mediator effects.For CDE, we set mediator at a pre-
scribed value m.
CDE;(d,d',m) = Y;(d,m) — Y;(d',m) m € M
Difference between NDE and CDE is what value mediator is fixed at. Restated:

wz(dv d/a m) = K(da m) - Y;l(d/a m)
Effect of changing the treatment while fixing the value of the mediator at some level m.

'(rb(dv d/v m) =E sz(da m) - Yz’(dlv m)]

Theorem 4.28 (ATE decomposition (VanderWeele and Tchetgen-Tchetgen(2014))).
Decomposing total effect with binary mediator

7(d,d') = ACDE(d, d',0) + ANIE(d, d)
Direct Effect Indirect Effect
+ E[M(a')[CDE(d, d', 1) — CDE(d, d’, 0)]]

Interaction

Fact 4.29 (Parametric Setup for ACME estimation).
Assume linear models for mediator M = T + U,, and Y = T +~vM + Uy.
Then fit the following regressions
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Yi=a1+ 7 Di+en (8)

Total effect
M; = oo +9YD; +€i2 9)
Y, =a3+ B D; +vM; + &3 (10)
~~
Direct Effect

Baron and Kenny (1986) suggest testing 7 = ¢ = 3 = 0. If all nulls rejected,
Mediation effect § = vy. Equivalently, mediation effect is 7 — § = 1) x . Estimate
variance using bootstrap / delta method.

Fact 4.30 (Semiparametric Estimation).
Assume selection on observables w.r.t. D, M.
Huber(2014)

Average direct effect identified by

B Y-D Y- (1-D) Pr((D = d|M, X))
b(d) = E KPr(D =1M,X) 1-Pr(D= 1|M,X)> " Pr(D=d|X) }

Average Indirect Effect identified by

B Y - 1p_g Pr(D=1|M,X) 1-Pr(D=1|M,X)
5(d)_E{Pr(D:d|M7X)< Pr(D=1  1—Pr(D=1X) ﬂ

implemented in causalweight: :medweight.
https://cran.r-project.org/web/packages/causalweight/vignettes /bodory-huber.pdf
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5 Semiparametrics and Nonparametrics

based on Tsiatis (2007), Wasserman (2006), and Kennedy (2015)

5.1 Semiparametric Theory

Observations Zi, ..., Z,, that take values in a measurable space (Z, 5) with dis-
tribution P . A statistical model P is a collection of probability measures on the
sample space, which is assumed to contain the data distribution .

The general goal is estimation and inference for some target parameter 1o = ¥(FPp) €
RP where ¢ = 1¢(P) can be viewed

o A nonparametric model P is a collection of all probability distributions

o A parametric model is a model that can be smoothly indexed by a Euclidian
vector § € R? with ¢ C 6.

o A semiparametric model is one that contains both parametric and nonpara-
metric parts.

5.1.1 Empirical Processes Background

A stochastic process is a collection of random variables {X (¢),t € T} on the same
probability space indexed by an arbitrary index set 7. An empirical process is a
stochastic process based on a random sample.

Defn 5.1 (empirical distribution function).

1 n
Fn(t) = ~ Y o lx<
i=1

IF,,(t) is unbiased and has variance

= _ 1 e _ Fl@)(1 -F())
V |Fa()] = 5V [nFa ()] = =2
This can be generalised to an empirical measure over a random sample X, ..., X,

of independent draws from a probability measure P on an arbitrary sample space
X. The empirical measure is defined as

1 n
P, = E;‘s)‘i

where ¢, is a dirac delta that assigns mass 1 at = and 0 otherwise.
For a measurable function f : X — R, we denote P,, f = £ > | f(X;).

Setting X = R, IF,, can be re-expressed as the empirical process {P,, f, f € F} where F :=

{]lmgt,t € R}

<+~ ToC

Defn 5.2 (Empirical Process).
Given an empirical distribution F,,, the corresponding empirical process is the
rescaled gap

Zn(x) = Vn(Fyn(z) — F(2))

Theorem 5.1 (Glivenko Cantelli Theorem).
the Kolmogorov-Smirnov statistic D,,

D,, := ||F,, = F||, = sup |F,(t) — F(t)| 20
teER

and

HF’!L - FHoo = Op (logn/n) = Op(\/l/7n)
A class of 7 measureable functions f : X — R is said to be a P—Glivenko-Cantelli
class if

sup [P, f — Pf| “30; Pf ::/ f(z)P(dz)
fer X
Theorem 5.2 (Dvoretzky-Kiefer Wolfowitz (DKW) inequality).

Ve > 0,P {sup

F(z) — ]ﬁn(x)’ > 5} < 2exp(—2ne?)

This allows us to construct a confidence set. For example, let £2 = log(2/a) The

2n :
nonparametric DKW confidence band is

(ﬁn — En, ﬁn + En)

Defn 5.3 (Statistical Functional and Plug-in Estimator).

A statistical functional 7'(IF) is any function of F. Examples include the mean, i :=
| xdF(x), variance 02 := (x — p)dF(x), and the median m = F~1(1/2)

A plug-in estimator of § =: T'(FF) is defined by 0, = T(@n)

Plugin estimator for a linear functional A functional of the form [ a(z)dF(z) is
called a linear functional. A plug-in estimator for it is

T(F,) = /a(x)dﬁn(a;) _ ! > a(x;)

Defn 5.4 (Gateaux derivative).
is defined as
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Lo(z) = lim 20— F +¢0) — 0(F)

e—0 3

The empirical influence function uses the empirical distribution function

=F. ()
—TN—
1—¢)F —6(F
e—0 3

The influence function Lg(z) behaves like the score function in parametric estima-
tion because of the MLE analogues

o Ly(z)dF(z) =0

o V[T(F.)] ~ [ I(@)dF(@)/n.

Defn 5.5 (Hadamard Differentiability). R
Gateaux differentiability is too week to ensure that functionals converge T'(F) —
T(F).

A function T' is Hadamard differentiable if, for any sequence e—0, and D,, satisfy-
ing sup,, | Dy (z) — D(x)| =0, we have

T(F + €TLD71) — T(F)
En

If T is Hadamard differentiable, T'(F) % T'(F)

—Ly(T; D)

Functional Delta Method If T'(F) is a linear functional,

/ Le(2)dG(z)

which is similar to the fundamental theorem of calculus, but for functional calcu-
lus.

= T(G) — T(F)

\/E(T(IE‘) —T(]F)) 4N 07/L2(x)d]F(a;)

|
=:y2

This allows us to construct standard errors as 7/y/n
5.1.2 Influence Functions

We are concerned with the statistical model where 71, ..., Z,, are random vectors
and the density of Z is assumed to belong to the class {pz(#;0),0 € Q}. The pa-
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rameter 6 can be decomposed into (37,n") ", where 39*! is the parameter of in-
terest and 7 is the nuisance parameter (which may be finite or infinite dimensional).
For simplicity, assume n"*?, so the dimension of dim(0) = p = ¢ + r.

Defn 5.6 (influence function).

Reasonable estimators 3,, of 3 are asymptotically linear, such that there exists a ran-
dom vector p?**(Z) such that E [¢(Z)] = 07! and E [¢(Z)p(Z) "] is finite and
non-singular.

Equivalently,

Z(p ) +0p(1/V/n)

where ¢ has mean zero (E [¢(Z)] = 0) and finite variance (E [p(Z)®?] < c0). This
is called the influence function because ¢(Z;) is the influence of the i—th observa-
tion on B\n N

By CLT, an estimator 3 with influence function ¢ is asymptotically normal with

WZ“O

By Slutsky’s theorem, the corresponding estimator

V(B 50)—>N(OQX1

Theorem 5.3 (Influence function uniqueness).
Any asymptotically linear estimator has a unique influence function (Tsiatis, 2007,
chapter 3)

—>N (071 E [pep'])

[ee'])

Example 5.4 (Examples of Influence functions).
Consider a setting where Z1,...,Z, ~ N (y,0?). The maximum likelihood esti-
mators are fi, = = > ' | Z;and 62 = 1 3" | (Z; — i,,)?. They are RAL because

Vi =) = <=3 ()
= (Z:)

Similarly,
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VG, — op) = 1/\/52 {(Zi — po)® = o5} + v/nlfin — po)
=t o(Z:) 0p(1)

covariance: ¢(z) = (x —E[X])(y —E[y]) — Cov [X,Y]
linear regression:

z—E[X]

VI {(y—E[Y]) - B(z —E[z])}

oz, y) =
M-estimators solve E [¢(X, §)] = 0 where ¢ is a score function. The influence func-
tion is

@Q(I) =E [VQQ(Xr 9)]_1 g(CC, 9)

which nests both MLE and GMM estimators.
https://j-kahn.com/files/influencefunctions.pdf

Theorem 5.5 (Geometry of Regular Asymptotically Linear Estimators).

An estimator (3, is said to be regular if, for each 6*, \/n(8,, — 8) has a limiting distri-
bution that does not depend on the local DGP. This rules out degenerate estimators
such as the super-efficient Hodges estimator.

Regularity allows us to write Z ~ pz(z,0),0 = (8",n"). Now define the score
vector for a single observation

dlo z,0
Sz ) = 210BPZ(E0)

0=0¢

which is the p-dimensional vector of derivatives of the log-likelihood with respect
to the parameters 6. This can further be partitioned

So(Z,60) = {S3(Z,00), 5] (Z,80)} " where
dlogpz(z,0) |
Ss(Z,600) = ———
B 0=0,
dlogpz(z,0)|""
S,(Z,00) = 228P21%:0)
! an 0=0,

These can be collected into a matrix of partial derivatives
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98(6) "

06
Let 3, bea Regular, Asymptotically Linear (RAL) estimator with influence func-
tion ¢(Z). Then, the following hold

F(Q)qxp =

E [¢(Z2)Sg (Z,60)] = T(0)
E [go(Z)S;(Z, l90)] = Iqxq

E [¢(2)S, (Z,00)] = 0gxr

Fact 5.6 (Converting an influence function into an estimator).
Let ¢ be a function satisfying the above RAL conditions, and for each 3 we have
an estimator 7),, () such that /7 [|7,,(8) — 10 ||;ax i Pounded in probability. Define

m(Z; B,m) = ¢(Z) = Ezp(ip.m) [0(2)]
and let B be the solution of

n

> m(Zi; B,7a(8) = 0

i=1
then 3, will be an RAL estimator with influence function ¢(Z).

Fact 5.7 (Robust estimators have bounded influence functions.).

Fact 5.8 (Influence Functions and Variance).
If E [pg(x)] = 0, we can write

Cov [e, (), 0o, (2)] = E [po, (x) e, ()]

Say we have an estimate 0 from a random sample. We can look at this sample as a
series of e— contaminations to the true distribution, each of which puts 1 weight on
the derivative. Then, for large enough N, we can represent the difference between

0 and 0 as a Taylor expansion
~ 1 &
0=0+— ;) + higher order t
+ - Zsoe(x ) + higher order terms

i=1

the higher order terms converge in probability to zero, which implies
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Vn(d —6) = % Z wo(xi) + op(1)

Practically, one can compute variances of complicated structural problems by com-
puting the empirical equivalents of influence functions and stacking. Given esti-
mators 64, ...,60) and observations ¢ = 1,..., N, create matrix with rows corre-
sponding to observations and columns corresponding to estimators

@ = [80917"%@9N]N><A4

Since the distribution of each estimator is the same as % > 1 we, (), the vari-
ance can be computed as

_ 1

A%
N

(@)

Fact 5.9 (M — and Z — estimation).
Distinction from Kosorok (2008)

e approximate Maximisers of data-dependent processes are known as M-estimators.

e approximate Zeroes of data-dependent processes are known as Z-estimators.

eg U,(B) =P, XY -X'B). ZCM

I?efn 5.7 (M-estimator (‘Maximum-likelihood-like’ / Extremum)).
6 is an estimator that maximises a scalar objective function that is a sum of N sub-
functions

N
1
arg max 0) = — w;, 0
g Qu(6) = 7 3 a(wi 0

MLE is a type of extremum estimator. So is GMM.

5.1.3 Tangent Spaces

Assume target parameter v is scalar. Influence functions reside in Hilbert space
L5 (P) of measureable functions g : Z—R with Pg? = [ ¢*dP = E [¢(2)?] < oo
equipped with covariance inner product (g1, g2) = P (g192).

Defn 5.8 (Tangent Space for parametric models).
the tangent space 7 for parametric models indexed by the real-valued parameter
6 € RIT! is the linear subspace of Ly(P) spanned by the score vector

T ={bSy (Z;600) : be R}
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where Sy(Z,0y) = m%pe(w”g:go is the score-function. If we can decompose 6 =
(1,m), we can decompose the tangent space as well and write 7 = Ty, @ 7,,. In this
formulation, 7, is known as the nuisance tangent space. Influence functions for ¢
reside in the orthogonal complement of the nuisance tangent space denoted by

T,-i={g € Lo(P) : P(gh) =0 YV h € T,}
—{g € Ly(P): h—TI(h | Ty), h € Lo(P)}

where II(g|S) denotes projections of g on the space S.

e The subspace of influence functions is the set of elements ¢ € 7, that satisfy
P(¢Sy) = 1.

e The efficient influence function is that with the smallest covariance P(¢?) and
is given by ¢er = P(S2%) " Sef

— Sef is the efficient score Seig = Sy — I1(Sy|T,)) = I(Sy|T, ).

e AlIRAL estimators have influence functions ¢ that reside in 7,;- with P(¢S,,) =
1

Defn 5.9 (Tangent spaces for semiparametric models).
A parametric submodel P. is indexed by a real valued parameter e (P. = {P. : ¢ € R})
is a set of distributions contained in the larger model P, which also contains the
truth Py € P.. A typical example of a parametric submodel is

P<(2) = po(2) {1 +eg(2)}

where E [¢(Z)] = 0 and sup, |g(z)| < M, |e| < 1/M , so pe(z) > 0. The parametric
submodel is sometimes indexed by g such that P. = P, ,

The tangent space 7 for semiparametric models is defined as the closure of the
linear span of scores of the parametric submodels. IoW, we define scores on para-
metric submodels P. as S.(z) = m%;;g(z) |e=0, and construct parametric submodel
tangent spaces 7. = {b' S.(Z) : b € R}.

Similarly, the nuisance tangent space 7, is the set of scores in 7 that do not vary
the target parameter

(P q)
7;7:{967-:6698—0:0}

In nonparametric models, the tangent space is the whole Hilbert space of mean-
zero functions.
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As before, the efficient influence function is the influence function with the small-
est covariance and is defined as the projection ¢ = II(¢|7). It can also be de-

fined as the pathwise derivative of the target parameter in the sense that P(¢S.) =
oY (Pe) |
e le=0-

Nonparametric Delta Method
T(F,) — T(F)

S (VR

~N(0,1)

fr\

Fact 5.10 (Confidence Bands).
Let § be a class of distribution functions F, let 6 be the quantity of interest, and C,
be a set of possible values of # which depends on the data X1, ..., X,.

e (, is a finite-sample 1 — o confidence set if

inf Pp(0eC,)>1—a V
ez 1o

e (), is a uniform asymptotic 1 — a confidence set if

liminf inf Pr(0 € C,) > 1—«
Feg

n—oo

e (, is a pointwise asymptotic 1 — a confidence set is

VEF € FliminfPr(0 € C,) > 1 -«
n—oo

Finite sample confidence set > Uniform asymptotic confidence sets succ pointwise
asymptotic confidence set.

Informally, a true confidence band comprises of two functions that bracket the c.d.f.
at all points with probability 1 — «. This should be contrasted to the pointwise
bands in common use, which bracket the c.d.f. with probability 1 — « at any given
point.

Defn 5.10 (Gaussian Process).

A gaussian process G indexed by a set A is a collection {G(z)},. 4 of Gaussian
random variables such that Vai,...,z; € A, (G(z1),...,G(zx))’ ~ MVN. The
function m(x) := E[G(x)] is a mean function and C(z,y) := Cov [G(x),G(y)] is
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the covariance function. A centered gaussian process is one whose mean function is
identically zero.

Va,y € A, B[|G() - Gy)f] = Cla,2) + Cly.y) — 20(a,y)

Example 5.11 (Brownian Motion / Wiener Process).
is a centered gaussian process indexed by [0, oo) whose covariance function is given

by
C(s,t) :== min(s,t) ,s,t >0

Theorem 5.12 (Donsker Theorem).

Zn, - Z =U(F) ; DR, |||.,) where U is a standard Brownian bridge process on
[0,1], which means it is a zero-mean Gaussian process with covariance function
E[U(s)U(t)] =sAt—st ,s,t€]0,]1]

which means for any bounded continuous function g : D(R, ||-|| ) =R, we have

and

5.2 Semiparametric Theory for Causal Inference

notes from Kennedy (2015) (epi-ish notation). Treatement denoted by A (“action’)
and controls denoted by L.

Target parameter (1) : whichmaybean ATEE [Y! — Y] orariskratioE [V!] /E [Y"]

ind SO on.
ssumptions

1. Consistency/SUTVA: A=aq = Y =Y“.
2. Unconfoundedness: Y* Il A|L
3. Overlap: Pr(A=a|L=1)>§>0 Vp(L=1)>0.
Then the ATE can be written
w:/ﬁ(E[Y L=1,A=1]—E[V |L=1,A=0])dFy,

This is the outcome regression (econometrics), subclassification estimator (statis-
tics), g-formula(epidemiology), backdoor criterion estimator (DAGology).

We suppose the datais Z := (L, A,Y) and its distribution Py admits to the follow-
ing factorisation:
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p(2) =p(y | l,a) p(a|1) p(l)

In semiparametric causal settings, one typically imposes parametric assumptions
on the treatment mechanism leaving the outcome mechanism unspecified. For
example, for the ATE, one might write

Parametric
—
p(zin,a) = ply [ 1, asmy) pla|l;e) p(l;m)
——
Nonparametric
where oo € R? but p = (n,,n;) represents an infinite-dimensional parameter that

does not restrict the conditional distribution of the outcome given covariates and
treatment p(y | I, a) and the marginal covariate distribution p(l).

Example 5.13 (Influence functions for causal estimands).
For IPW estimator

~ 1K AY (1-A)L
@”’Pw’ﬁ;w(L)*pﬂ(L)

The influence function is clearly

AY  (1-A)Y

orrw(2) = 25 T TR D)

— %o

since Yrpw — Yo = = 31| Gipw(Z) exactly.
In an observational study, 7(l) needs to be estimated, and suppose we do so with
a corectly specified parametric model 7(l; ) ,a € RY so that & solves some mo-

ment condition P,, (S(Z;a)) = 0. Then, we have § = (¢} pyy,a )T which solves
P, <m(Z; 5)) where
. — wipw (Zv 11[}5 Oé)
m(i6) = ( S(Z:a)

Under standard regularity conditions, we have

b—0,=P, <E [am%zofe‘))} B m(Z; 90)) +0,(1/v/n)

Example 5.14 (Efficient Influence function for ATE).

Fory =E [Y!' - Y°] = E[u(L,1) — p(L, 0)]. Under a nonparametric model where
the distribution of P is left unrestricted, the efficient influence function for ¢ is
given by
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&(Z;4,m) = mi(Z;n) —mo(Z;n) — ¢

where

]lA:a<Y - M(Lva))
ar(L) + (1 —a)(1 —w(L))

ma(Z,m) = ma(Z;m, 1) = + p(L,a)

Suppose the estimator 7) converges to some 7 = (7, 7). Then, P(m(Z,7)) = P(m(Z;no)) =

Yo
Given P(f(Z)) = [ f(z)dP to denote expectations of f(Z) for a new observation Z
and the decomposition

b — o = (P, — PYm(Z;7) — P(m(Z; ) — m(Z;10)) (11)

the first term can be shown to admit to the following result

(P, = PYm(Z;7) = (P, — P)m(Z;m0) + Op(l/\/ﬁ)

so that (P, — P)m(Z;n) is asymptotically equivalent to its limiting version (P, —
P)m(Z;no). This requires that M = {m(;n) : n € H} is a Donsker class, where
is a function class containing the nuisance estimator 7, or that # itself is Donsker.
We can then expand 11 to

¥ =t = (P = P)m(Z;7) + P{m(Z; ) — m(Z;m)} + 0,(1/v/n)

By the fact that 7 is bounded away from 0, 1 and Cauchy Schwartz, the middle
term |P(m(Z;7) — m(Z;7))| is bounded from above by

Y lmo(L) = 7L (L, a) — A(L, )|
ac{0,1}
So, if 7 is based on a correctly specified model, we only need i to be consistent to
make the product term P(m(Z;n) — m(Z;7)) = 0,(1/+/n) asymptotically negligi-
ble.
5.3 Nonparametric Density Estimation
Defn 5.11 (Histogram Estimator).

Given a vector of mutually exclusive bins By, ..., B; that partition supp X, and
v1,...,v; be the corresponding counts in each bin, the histogram estimator is de-
fined as
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fy =3 1,
i=1

Defn 5.12 (Smoothing Kernel).
A Smoothing kernel K : R—R that satisfies the following properties

1. K(z) is symmetric around zero and continuous
2. Integral properties

(a) [ K(xz)dz = 1: integrates to one

(b) [zK(x)dz =0

(o) [|K(z)|dx <
3. Decay. Either:

(a) K(x)=0if |z| > xo for some cutoff x5 OR
(b) |z| K(z)—0as || =0

4. [2?K(x)dx = k where £ is a constant

3(a) is usually preferred over 3(b), which allows us to truncate the domain of the
function to [-1, 1] for convenience.

Higher-order Kernels are kernels whose first nonzero moment is the pth moment.
These kernels can increase rates of convergence if f(x) is more than twice differ-
entiable, and can take negative values.

Defn 5.13 ((Rosenblatt-Parzen) Kernel Density Estimator).
Given a smoothing kernel and and abandwidth i > 0, the kernel density estimator
is

. 1 -1 X, —x
fay =13 i (X
n ; h ( h >
E {fk(x)] = f(x) + O (h?); bias decreases as h gets smaller.

vanishes as nh—oo.

Higher density implies higher variance - more data in a neighbourhood makes
the density estimation problem harder.

Haerdle et al (2004) find ‘optimal’ bin-width & for n observations is
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24ﬁ 1/3
hopt: n

5.3.1 Conditional Density and Distribution Function Estimation

Conditional Density R
~ x,
(yla) = L20)

f(x)

Conditional CDF

~ L5 G K (x4, x

RS G LA
/(=)

where G(.) is a kernel CDF (typically Normal), h is a the smoothing parameter

associated with y, and K}, (x;,x) is a product kernel.

This can be inverted to get the

Conditional Quantile Function
Jo(z) = inf {y Flylz) > a} =: F'(alz)

Conditional Mode

~

i(x) = max (o)

where g(y|z) is the kernel estimator of the conditional density.

5.4 Nonparametric Regression

Given a random pair (x,y) € R? x R, the regression function is
mo(x) = E[Y|X = x]

We aim to approximate this with m(-) when estimating nonparametric regressions.
n
m(x) =Y wi(x)y,
i=1
where the weights w; are estimated using different methods.

Defn 5.14 (K-Nearest Neighbours Regression).
Fix an integer k£ > 1.
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Zyi

1E€N (x)

where 9 (x) is the k-neighbourhood of x which contains the indices of the k closest
points.

Defn 5.15 (Nadaraya-Watson / Kernel regression).

N
(@) =Sy =Y wi(x)y;
i=1

where K is a kernel and the weights w;(z) are given by
K (*5%)
S K (5)

where K (-) is a kernel-function that assigns a value that is lower the closer z; is to
x, and h is the bandwidth. The estimate of E [Y|X = z] at x is a weighted average
of y;’s ‘near .

Stated differently,

w;(x) 1=

Y K(555)
m(z) is consistent and asymptotically normal. Assuming X has density f, Its vari-
ance is

(z) =

V [i(x)] = m /K2(u)du I (nlh>

Where 0%(x) = V[Y|X = x]
the bias for this estimator is

biasliy, (x)] = E [y, (x)] — m(z) ~ b (C;mf'(x) + Cym! () J;((f)))

A Nadaraya-Watson estimator with a uniform kernel is called a Regressogram.

Defn 5.16 (Local Linear Regression / loess).
Define the loss function

<+~ ToC

m(z) is obtained by regressing Y on X — z, with weights equal to / K (7). This
estimator is consistent for E [Y|X = z], with the same rate of Convergence as NW.

NW fits a Kernel-weighted constant (0-th order polynomial) near x; LLR fits a straight
line.

5.5 Semiparametric Regression
A partially linear model is given by
yi=xB+g(z)+ei=1...,n

where x; is a p— vector, z; is a scalar, and g(.) is not specified. Standard exogeneity
assumption E [e|x;, z;] = 0.
Robinson (1988) estimator is /n-consistent.

Defn 5.17 (Robinson Estimator).

yi — Efyilzi] = (xi — E[xi]2i]) B+ ¢

Yi X

where y; and x; are estimated using Kernel regression.

5.5.1 Index Models
Defn 5.18 (Single Index Model).

Y =g(x'B)+¢

with E [e|x] = 0. The term x’(3 is called a single index because it is a scalar. g(.) is
left unspecified, hence ‘semiparametric’.

Klein and Spady’s Semiparametric Binary Model

(B, 1) =D (1 —yi)log(1 — Gi(xiB)) + yi log(§-i(x;3) ))
i=1

5.6 Splines

Defn 5.19 (Regression Splines).
Giveninputs zy, ..., x, and responses y1, . . ., yn, fit functions f thatare k—th order
splines with knots at some chosen locations ¢y, ..., t,. This means expressing
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p+k+1

fl@)y= > Bjgi(x)
j=1

where 31, ..., Bptr41 are coefficients and g1, . . .
splines over the knots ¢4, ..., t,.
This is equivalent to the standard regression problem when we define

, gp+k+1 are basis functions for k—

G:gj(aci), i=1,....n,5=1,....,p+k+1
~ . 9
B = argmin |y — GBI|;

BERPHk+1

which gives the standard OLS solution B = (GTG) - G Ty. Regression splines are
linear smoothers.

Regression splines  exhibit erratic boundary behaviour . One solution to this is to
force lower degrees at the extremities.

o fisoforder k oneach [t1,%2],. .., [tp—1,tp]

e fisof degree (k—1)/2 on (—oo,t1] and [t,, 00)

e fis continuous and has continuous derivatives of orders 1,...,k — 1
Defn 5.20 (Smoothing Splines).
Given a simple non-parametric regression problem y; = g(x;) +¢;, with z; € [0,1],
the problem to be solved is

n 1

: 2
min i —g(xi)“+ A
ed i:1(yz g(xi)) o

roughness penalty

The solution to the above problem is a cubic smoothing spline, which is a piece-
wise cubic polynomial: a function with continuous first and second derivatives,
whose third derivative may take discrete jumps at designated points, called "knots’".
On each segment [z;, z;+1), we may write s(z) as a cubic polynomial.

Defn 5.21 (Generalised Additive Model (GAM)).
Semiparametric model of the form y = f(z) + ¢, where f(z) is typically imple-
mented using basis-splines

J

E[ylz] = Zgj(xij)

J

<+~ ToC

or ‘thin-plate” splines. Estimated using backfitting [mgcv in R].

5.6.1 Reproducing Kernel Hilbert Spaces

Defn 5.22 (Hilbert Space).

A Hilbert Space is an abstract vector space endowed with an inner product. Let X
be an arbitrary set and H be a Hilbert space of real-valued functions on X', endowed
by the inner product (-,-),,. The evaluation functional over the hilbert space of
functions # is a linear function that evaluates each function at a point x:

Ly : f—=f(x), VfeH.

A Reproducing Kernel Hilbert space is a Hilbert space (complete inner product
space) with extra structure such that the map L, is continuous at any f €

C>0st |La(f)l = [f(@) < Cllflly, VfeH

Example 5.15 (L2 Space).
Most common example of RKHS is L, space

L»[0,1] = {f [0,1]=R: /f2 < oo}
endowed with the inner product

(19) = [ )yl

with corresponding norm

1l = V) = ,//fzmdx

Defn 5.23 (Mercer Kernel).
A RKHS is defined by a Mercer kernel K (z,y) that is symmetric and positive def-
inite, which means that for any function f,

[ [ E@w@ sy =o

The main example is the Gaussian kernel

K(z,y) = exp <—H>

g
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Given a kernel K, let K, (-) be the function obtained by fixing the first coordinate
atz s.t. K, (y) = K(z,y). For the Gaussian kernel, K, is a Normal, centered at x.
We can create functions by taking linear combinations of the kernel. Let H denote

all such functions
k
=< f: ZajKIj (2)
j=1

which can be used to define an inner product

<fag> Zza7ﬁj 'Tuyj

Theorem 5.16 (Representer Theorem / The Reproducing Property of RKHS).
Let f(z) =Y, 0Ky, (x). Then,

ZO‘Z (zi,2) = f(x)

This also implies

<Kw7Ky> = K(z,y)

This implies that K is the representer of the evaluation functional. The completion
of H, with respect to ||-|| ;- is denoted by H i and is called the RKHS generated by
K.

Defn 5.24 (RKHS Regression).
Define m to minimise

n

Ri="(yi —m(x:)* + Mm%

i=1
By the representer thm, m(x) = Y ., ;K (z;,x). Plugging this into the above
definition,
= [|Y — Ka|* + Ao Ka
The minimiser over « is
a=(K+A1)""

and i(z) = 3, @, K (X,,z)
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Defn 5.25 (Support Vector Machines).
Support Vector Machines. Suppose Y; € {—1,+1}. Recall the the linear SVM min-
imizes the penalized hinge loss:

JZl—

The dual is to maximize

(o + B7X0)], + 118153

Zai - %Zaianin <XZ',Xj>
i i,J

subject to 0 < o; < C The RKHS version is to minimize

J = 2147 mm

Defn 5.26 (Linear Smoothers).

Estimators of the form m(z) = >, w;(2)Y; with weights w;(x) that don’t depend
on Y; are known as linear smoothers. Fittedvalues are ;i = Sy for some matrix
S € R**" depending on inputs and tuning parameters.

The effective degrees of freedom of a linear smoother is

v=df (i ZS”—trS

Defn 5.27 (Wavelet).
A wavelet is a function v such that

{23/21/)( —k);4 k€ Z}

is an Orthonormal basis for L, space. v is called a ‘mother wavelet’, which can be
constructed from a ‘father wavelet’ ¢.

5.7 Gaussian Processes

Based on Williams and Rasmussen (2006), Murphy (2012), and Scholkopf and
Smola (2018).

5.7.1 Bayesian Linear Regression

Center y, X such that y = y — 1. Likelihood is p(y|X, 3, 0?) =
Choose normal prior p(y|X, 8,0%) « exp(— 51z ||y — XA||,) or

N (y|XB8,02Iy).
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Conjugate prior is also Gaussian, which we denote by p(3) = N (8|80, Xo). Then,
the posterior is given by
This can be decomposed as follows

p(B1X,y,0%) = N (B|Bo, Zo) N (y|XB,0%Iy) =N (B|Bn,En)  Where
_ 1

By =N (Z0) ' Bo + EENXI?J

Ty =0 (0’E) + X'X) !

Fact 5.17 (Bayes - Ridge Equivalence).

Let likelihood be p(y|X, 3) = N (X3, 0%I) and let prior on coefficients 3 ~ N (0, 33,,).

1 _ —
pB%y) =N ( (8 Xy (4) ")
where A :=¢?XX' 4+ 5.

The predictive distribution is

p(fulxe X, y) = / p(f. 1% Bp(BIX, y)dB

=N (012)(; (A)_1 Xy, x, (A)_1 x*>

Realistic case where o2 isunknown we can show that posterior has the form [Mur-
phy pp 237]

p(lga 0—272)) = NIG(ﬁvaz‘IBNv ENa an, bN)
By =En((Z0) ' Bo + X'y)
Sy = (3o ' X'X)
Defn 5.28 (Kernel Trick).
Let ¢(x) : RP—RM be a mapping from D dimensional input space to M dimen-
sional feature / basis space. Let ®(X) be the aggregation of columns ¢(x) for all

observations. Then, the same formulation as above applies, with X, x replaced by
¢, ®, which gives the posterior predictive distribution
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fol % X,y ~ N(6] @ (K +071) "y,
(b;rzp(b* - ¢:qu)(K + U?z[)_lq)szﬁb*)

where K = 7%, ®.

In the above expression, the feature space always enters in the form or ®'%,®,
$+X¢, or ¢ Xp,. This means we can define a kernel k(x,x') = ¢(x)"S,¢(x'),
which gives us an equivalent dot-product representation k(x,x’) = ¥ (x) - ¥ (x')
where ¢ = 2;17/2¢(x).

If an algorithm is defined solely in terms of inner products in input space, then it
can be ‘lifted” into feature space by replacing the occurrences of those inner prod-
ucts by k(x,x’). This is called the kernel trick.

By replacing (z;, z;) with K(z;,z,), we turn a linear procedure into a nonlinear
one without adding much computation.

Example 5.18 (Kernel Trick for Ridge Regression).
We know that the ridge coefficient vector is given by

Br=(X"X+A1)'XTY
It can equivalently be written as
Br=XT (XXT+1)'Y

where XX " is a n x n matrix whose i, j elements are (x;, x;). Similarly, x "X T is
a n—dimensional vector with i—th element (x, x;). This turns the computation of
ridge coefficients into the computation of inner products between p— dimensional
covariate vectors.

Now, replace the inner product (x;,x;) with K(x;,x;), where K(-) is a known
function. This yields

XTXT = (K(X, Xl); ey K(Xa Xn))
XX =K = (K(X;,X;))1<ij<n

which turns the prediction into kernel ridge regression

Y=KK+AI)'Y

where one can use one of many kernel functions
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e linear kernel : K(x;,x;) = (x;,X;)
e polynomial kernel: K (x;,x;) = (1 + (x;,x;))%,d=2,3,...

e gaussian kernel: K(x;,x;) = exp(—v [x; — x;]|*), 7 > 0 (also known as
radial basis kernel)

e laplacian kernel: K (x;,x;) = exp(— ||x; — x;|), v >0

Defn 5.29 (Gaussian Process).

A Gaussian Process is a collection of random variables, any finite number of which have
a joint Gaussian Distribution.

A GP is completely specified by its mean function m(x) and covariance function
k(x,x"). A GP of a real process f(x) is specified as follows

x —m(x))(f(x") = m(x))] then

Example 5.19 (Bayesian Linear Regression as a GP).
let f(x) = (x)" B with prior 3 ~ N (0,X,). Then, the mean and covariance
functions are

E[f(x)] = ¢x)EB] =0
E[f(x)f(x)] = ¢x)E[B8"] o(x') = ¢(x)Zpo(x')

Square-Exponential covariance / Gaussian Kernel

Cov [1(x). )] = K3) = 0 (5 by~
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6 Maximum Likelihood

Setup Let {Z}} , be a sequence of iid rv’s with common CDF F(z]6*). We want

to estimate 0* € © C RF.
Since the rv’s are IID, we can write

N

Fy167) =TT f(wiler)

=1
Defn 6.1 (Likelihood Function).
L: >R

N

LOly) == [T f(vil0)

i=1
We usually work with the log of this £(0]y) := Zf\;l log f(y:|0), and drop the con-
ditioning on y though strictly speaking f(y, X|0) = f(y|X|0) f(X]0)

Defn 6.2 (Maximum Likelihood Estimator).
is the estimator that maximises the conditional log-likelihood estimator.

Ovrp = arg max £(6) = arg max Z log f(Z;|9)
0o oc® ]
solves the first-order conditions

L0L0) _ Ly~ duileinh) _,

N 90 N 00

Example 6.1 (Linear Regression).
conditional density:

N 2y _ 1 _(yi—x,ﬁﬂ)Q
Flonkes 18- )_EWQXP( 202)

Log likelihood:

(5, 0%) =~ log(2m) — 2 logo? — o (y ~ XB)'(y — XP)
= —%RSS(B) - %log(27m2) =
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Maximising this w.r.t. b, s> yields 3 = (X'X) " X'y, 6% = %ﬂz

Defn 6.3 (Score Function). oo
gradient vector S(0) := V{(0) = %

S(z,0) = %(;)(2;0)

Evaluated at 6*, this is the efficient score.
local maximum that solves the FOCs S(z,0) = 0, IOW

N
1 log f(Zil0)
N ; o6 °
Defn 6.4 (Fisher Information / Information Matrix Equality).

7(0) == E[S(0)S(0)] = E PW) 85(0)] o B;@(Z)}

06 00

A=B:=V[s;(0")] = E[s:(6")s:(0")] = E [;si(e*)]

Variance estimate V [9} =1la4-

Estimated as

N
R 1 9%0;(0)
1(0) = _N; 9000’

0=0pmLE

Example 6.2 (IM for OLS).
For OLS, parameter vector § = (5',02)") = (8',7)'.
Scores:

ot

T X'y -X

a5 (y — XB)

or n 1

Information Matrix / Variance
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1(0) = (azé{’X 22) — CRLB := (I(0))"" = <" (X(),,X)i 22>

n

6.1 Properties of Maximum Likelihood Estimators
Property 6.3 (Consistency).

As N—o0, probability of missing the true parameter goes to zero.

P16, —0] >¢) B 0Ve>0

Property 6.4 (Asymptotic Normality).

VN —6) S N(©0,Z(0)Y)

Y (9, & [525(9)] 1)

Equivalently,

06006
conditions: (1) 8 € ©, (2) ¢ is twice-differentiable

Property 6.5 (Efficiency).
Variance of MLE is the Cramer-Rao Bound; the asymptotic variance of the MLE is
at least as small as that of any other consistent estimator.

Theorem 6.6 (Cramer-Rao Inequality / Bound). ~

Let the pdf of ther.v. X be fx(z|6) for some 6y € ©. Let 6 be an unbiased estimator
for 6y. Suppose the derivative 9/960 can be passed under the integral [ f(z|0)dx
and [ 0(z) f(z|0)dz and suppose the fisher information

0%log f
06000’

() =-E [ (XH)]
is finite. Then,

Y [5()()} > I(0p)

If X1,Xo,...,X, are iid with common density f,(x|#), the implied bound on the
variance is NV P(X)} > T(6) 1
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Defn 6.5 (Asymptotic Efficiency).
Let X1, X5, ... be iid random variables with common density f,(x|0). A sequence

of estimates 0, ~, a function X1, X2, ..., Xy that satisfies

VN Oy — 0) SN (0,Z(0) 1)
whatever the true value of 6 € O is, is said to be asymptotically efficient.

Defn 6.6 (Semiparametric Efficiency Bound).

Suppose X1, Xo, ... areiid with density X ~ f(x|60, h(.)) where i(.) is an unknown
function. Next, we pretend to know the infinite dimensional parameter A () up
to a finite dimensional parameter +, in which we have a fully parametric finite-
dimensional parameter 6, thus we can calculate the Cramer-Rao Bound.

f(@l0,7) = f(]0, (7))

Partitioning the information matrix for (¢’,~')" and its inverse in

_ | Zoor Loy [T
I(ea’}/) - |:I'y’6 I»Y’Y/:| and I(ea’y) - Ifyaf I,y,y/

The Cramer-Rao bound implies that
ASV(0) > T = (Tyer — Toy (Toy) " Tygr)

This is true for any parametrisation of the unknown function A(.). The lowest pos-
sible variance for any estimator for § that does not use knowledge of i(.) has to
be at least as high as the lowest variance we can get if we know more, that is, the
Cramer-Rao bound for any parametric submodel. So, the semiparametric efficiency
bound is the largest lower-bound we can get for any parametric submodel.
Suppose we have a candidate Estimator f and a given parametrisation h(zx;-).
Then,

(Zoor — Loy (I,W)_1 Z,0)~! < Semiparametric Efficiency Bound < ASV(@)

For any estimator we can calculate the left hand side, for any parametrization we
can calculate the right hand side, so if we find an estimator and a parametrization
that the two are equal we have found the efficiency bound.

Theorem 6.7 (Equivariance of the MLE). X
Let 7 = g(0) where g is bijective, continuous, and differentiable. Let 6,, be the MLE
of 4. Then, 7,, = g(OAn is the MLE of 7.
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Defn 6.7 (Marginal Effect 2°1171),
For a regression of the form E [y|z] = g(2’3), one can estimate multiple ‘marginal
effects’. For the special case where E [y|z] = 2/, %

cally true.

= (3, but this is not generi-
e Average Marginal Eff Lo 1 OB [yi|x4]

ge Marginal Effect (AME): := 5 >, =5
e Marginal Effect at Mean (MEM) %| 5

Defn 6.8 (Factorisation Theorem / Sufficient Statistics).
Suppose t(z) is a sufficient statistic for . Then,

[ f(ilo) = g (t(x),0) h(x)
f(x) depends on the data z only through #(z), the sufficient statistic.

6.2 QMLE / Misspecification / Information Theory

If model is misspecified, f (-|z;,0) # po (-|z;) V6 € ©
The MLE converges to the best fitting 6 for the population (pseudo-true value)

N

1
0* = argmax plim — £;(0
00 N ; ©)

For the linear exponential family, the quasi-MLE is consistent even when the den-
sity is partially misspecified.

6.2.1 Robust Standard Errors
Asymptotic distribution of QMLE

where
- - 9S;(0) 1 < 9%44(6)
A=-E [H(ﬁ)} _E{ o0’ ]'9 n 2= 5000 10
=1
. 1<  0¢;

B:E[Si(e)si(e)}:ﬁi_l TR T

Defn 6.9 (Kullback-Liebler Distance).
let f(y|0) be the assumped joint density, and let i(y) be the true density. Then,

95



i o ()] - o (4]

Minimised when 30 s.t. h(y) = f(y|0o). QMLE minimises distance between f(y|6)
and h(y). Notation KL(h, f) denotes ‘information lost when f is used to approxi-
mate h".

Discrete version illustrates links to Entropy

——

cross entropy

J J J
v
KL[p||q] :== Y p;log P > pilogp; — > pjlogg; = —H(p) + H(p,q)
j=1 T =1 j=1

KL(pl|lg) > 0 and with equality IFF p = q.
K L “distance’, unlike Euclidian Distance, is not the same between f, g as g, f; i.e.
it is directional.

Defn 6.10 (Akaike Information Criterion (AIC)).
Akaike showed that using K-L model selection entails finding a good estimator for

By (o [log(f(2l0(0)))]

where z,y are independent, random sampels from the same distribution and ex-
pectations are taken w.r.t. the true distribution h. Estimating this quantity for
each model §f; is biased upwards. An approximately unbiased estimator of the
above target quantity is

For a general class of maximum-likelihood models,

AIC = —2log L(0]y) + 2K

For linear regression models, this simplifies to

n =9
AIC =nlogo® +2K ;57 = Limi€
n
Defn 6.11 (Bayesian Information Criterion (BIC)).
/
BIC =In (“) 4 kin(n)
n

n

6.3 Testing

To test the hypothesis Hj : o = 0 against the alternative, there are three classical
tests.
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We partition the parameter K-vector 6 into two parts (6, 67)’ s.t. the dimensions
of the two sub-vectors s.t. Ky + K; = K. 0, is a nuisance parameter: its value is
not restricted under the null.

Let 0, = (é()u, élu) be the unrestricted MLEs. If we are testing the restriction 6y =
0, then the restricted parameter vector is Op = (0, élr). IOW, test h(6y) = 0.

Defn 6.12 (Likelihood Ratio Test).
If null is true, ¢ at restricted model ((0, 61,-) should not be much smaller than ¢ at
the unrestricted model ((6o.,, 014)-
LR :=2x (£(B,) — £(0R))
Under the null, LR ~ x%, (where Kj is the number of restrictions being tested).

Defn 6.13 (Lagrange Multiplier Test / Score Test).
If the limiting ¢ is maximised at 6, = 0, the derivative of the ¢ wrt 6, at that point
should be close to zero.
LM = S(0r) [Z7(0r)|S(0r)

Under the null, LR ~ x%, (where Kj is the number of restrictions being tested).
Defn 6.14 (Wald Test).
Unrestricted estimates of 6, should be close to zero.

~ ~ -1,

Wi=N-@, (200) fo

Where 7% is the top-left of the information matrix (corresponding with the re-
stricted parameters). Under the null, W ~ x%, .

alternatively, W = h(6,)'Q~h(0,,)
where hy(0) ... hk,(0) are restrictions,

SEORXCY

evaluated at 6,,.

Defn 6.15 (Pseudo-R?).
McFadden’s Pseudo-R>
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6.4 Binary Choice

Defn 6.16 (Linear Probability Model).
Estimate the probability using OLS Pr (y = 1|z) = X3. V [y|z] = XB(1 — X3), so
heteroskedasticity is mechanically present unless all coefficients are zero.

Defn 6.17 (Logit and Logistic Functions).

Logit(p) = log <1fp)

1 er

Logistic(x) = 1+ exp(—x) T 1ter

Logistic regression fits logit(p;) = 3, where logit is the link function that scales
x}3 onto the probability scale. Alternatively, one can use ®(0, 1).

Defn 6.18 (Logit Parametrisation).

For Y; € {0,1}, assume latent index model Y;* = X3 + ¢;; Y; := Ly 5o. Y; is
bernoulli, so £ = Hf\il (1 —m)

i

Symmetric CDFs. Let m; = E[V;|X;] = Pr (Y; = 1|X;) = F(X[8) =1 -F(-XB)
e Probit: F(u) = ®(u)

e Logit:

—_ F(u) — A(U) — 1 — exp(u)

1+exp(—u) 1+exp(u)

- () = M) = (1= ) 2e

Model m = Pr(y = 1|z) Marginal Effect: g—;
Logit @) = 22 A @A) 1~ A('B)]5;
Probit O(2'5) (' B)B;
Clog-log | C(a'8) =1 — exp(—exp(z'B)) exp(—exp(z'B)) exp(z'B);
LPM z'B Bj

(8) = 3 (Vilog F(X[6) + (1 - Vi) log(1 — F(X[5)

Fact 6.8 (Score and Qols for binary choice).
Let f; :=f («}8); F; = F (/) be the density and CDF evaluated at ;3.

_ Jixi[y: — Fi)

31(0) Fz(l _F’L)
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Sample Score solves
;:1 (szz% - l_Fva»Tz) =0

Variance:

-1
TA fwix]
Vlys|z] = Fi(1 - F)
Marginal effect:
OPr (y; = 1|x;)
a.’I}i

Example 6.9 (Logistic Regression).

=f(z;8)8

Q6) = 16) =~ 3" (s Tog Aw6) + (1 — yi) ogl1 — A(0))

K3

Since for the logistic CDF, A’(v) = A(v) = A(v)(1 — A(v)), the score and hessian
can be written as

S(0) = [yi — Ax;0)]
H(O) = —A(x}0)[1 — A(2;0)]z;x; = —\(2,0) ;2]

6.5 Discrete Choice

In many Additive Random Utility Models (ARUMs), FF (e1 — €p) is logistic for mul-
tivariate extensions to logit. This assumes that the errors themselves are distributed
Gumbel/ type 1 extreme-value distribution

Defn 6.19 (Gumbel Distribution).

f(e) =exp(—€)exp(—exp(—¢)) —c0<e<e
and F (¢) = exp (— exp(—¢)).

6.5.1 Ordered
Random utility with multiple cutoffs ¢, ... ¢;, where ¢1 =0, ¢p; = oco.

Defn 6.20 (Ordered Logit).
Define y; latent variable, and
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0if —oo(= o) <y <in
Lif 1 <y <o

Yi

J if Y1 <y <oo(=1vy)
which means

exp (¢; — z;3)

Pr(y; < jlz;) = 1+ exp (1#] — 33;6)

Defn 6.21 (Ordered Probit).

Pr(y; < jlo;) = @ (¢; — ;) & Pr(y =k — 1|x;) = ®(ar — XB) — P(ar—1 — XB)

Both specifications yield a likelihood that is simply the product of binary logit/pro-
bit models that switch between adjacent categories for each observation.

N J
B, X) = My log (F (v — X[B8) — F (v;-1X]B))

i=1 j=1

Marginal effects are of the form

M’I'g;:j)‘z = G; (f (12@ —3’5'3) —f(z/}j,l _j-’B))

6.5.2 Unordered

Multinomial distribution := p(y;) = ]_[;]:1 ;ly’:j
N J
(ay) =33 15 log
i=1 j=1
Defn 6.22 (Multinomial Logit).
exp(z;3) exp(x;3;)

ij = Pr(yi = jlz;) = =
" Y 1+ exw(@)] iz exp (@(8)

where we adopt normalisation Pr (y = 0|z}3) = MJ—M for identifica-
j=1 SXP(&;

tion.
Coefficient interpretation:
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pj(ilz'i,,B) pj(wivﬂ)
po(z, B) pu(z,B)

which implies that the log-odds ratio is linear in x.

:exp(wﬂj)@log{ } =x,(B; —Bn) Vi hel,...J

Defn 6.23 (Conditional Logit).

Permits incorporation of choice-varying predictors X;;, nests MNL.
exp (X ! y B)

Tz exp (Xiih)

mi; = Pr(Y; = j|Xi;) =
Log likelihood of the form
n M M
l= Z ( Lij[2iBn] — log (Z exp x;ﬁz))
i=1 \h=1 1=1

Defn 6.24 (IIA).
Relative risk m;; /7;1, independent of other choices —{j, k}; choices are series of pair-
wise comparisons. p;(x;)/pn(xn) = exp[(x; — xp)B]. oW €;; L €, for j # k.

Defn 6.25 (Multinomial probit).
€; ~ia MVN (07 EJ)

—X;8 —XJ;B
Wij:/ / ¢(61j,...,€Jj)d€1j"'dEJj

— 00 — 00

where Xy = X — Xy € = € — €

6.6 Counts and Rates
6.6.1 Counts
Defn 6.26 (Poisson Regression).
SyIA) = A exp(=A)/y!
Poisson specification: A = exp(z}3). Yields log density
log f(y|z, B) = yi exp(x;8) — ;3 — log y!

Score:

s:(0) = — exp(@;B)z;yix; = @i (y; — exp(x;f))

solves
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S ol (3 — exp(alB)) =
Hessian
5 -1
H(B) = g(g):—exp(xﬁ)xx — Avar(j (;exp x}f3) a:x)
Assumes X := exp(z;f) = E[Y|X] =V [Y|X].
Marginal Effect: Since E [y|z] = exp ' for poisson, au::a[ym = E[y|z] ;. Parame-
ters can be interpreted as semi elasticities, since
OE [y|x] 1 O0logE [y|x]
ﬂ = X =
Ox E [y|z] Oz

Defn 6.27 (Overdispersed poisson).

E(Yi|X;) =X =exp(X/B) ; Var(V|X;) =V, =0%N\;0° > 1

Defn 6.28 (Zero Inflated Poisson (ZIP)).

define a bernoulli m; = 1w.p.0; for y = 0 observation, and specify separate models
for zero and nonzero data, with potentially different covariates on 6 and A. Yields
the following (difficult to maximise) likelihood

L= Zﬂl<9+1 0;) p()\)((l 6,) - ) )

Defn 6.29 (Negative Binomial Regression).

D5 +w) (o2 -1\%, , 2
p(yi) = ( A ><002 ) GOk
yﬂr(m)
E[Y;] = &, V[Y] = Ao2.

Fact 6.10 (NB2 Likelihood).
Let pi; = exp(@}8), ri = oo/ (o + i), g = apl ”

{ = Zlog I(yi +qi) — logI'(gi)—
i=1

log I'(y; + 1) + g; + logr; + y; log(1 — ;)
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6.6.2 Rates
e Survival: S(y) :==1—F(y)

e Hazard: A(y) =
e Cumulative Hazard A(y fo

Defn 6.30 (Kaplan-Meier).

Proportional Hazard Models
Conditional hazard rate A\(¢|z) can be factored as

Altlx, B) = &@ P(x,5)

baseline hazard exp(z’3)

baseline hazard (= 1 for exponential and ay®~! for weibull).

Parametric Model Hazard Survival
Exponential o exp(—~t)
Weibull yate~! exp(—t®
Generalised Weibull | ~yat*~! [1— pyte]H/H
Gompertz yexp(at) exp(—(v/a)(e*~1))

For survival models with censoring, Likelihood is often written as
H Ft:10)%5(t:10)'

where d; is a right-censoring indicator and ¢; is the observed time.

Example 6.11 (Weibull Example).

Weibull Density: f(y) = yay® ' exp (—yy®) , 9,0,y > 0. E[y] =y~ /T (a"' +1).
Specify v = exp(2'8), so E [y|z] = exp(—2'B/a)T(a~1+1). Then, the log-likelihood
is

40) = S {aif +loga+ (a — 1) logy: — explalf)ye)

99



FOCs are
N1 {1 — exp(a)B)yf }ai = 0

N~Ya™ ! +logy; —exp («18) y2 logyi} =0

Model needs to be correctly specified to be consistent. Unlike OLS or poisson.

6.7 Truncation and Censored Regressions

Fact 6.12 (Truncated Distribution Density).
Ifacrvy~ f(y) and is truncated at ¢,

fy) I
Pr(y>c) 1-F(c)

flyly >c) =

For the truncated normal distribution where y ~ N (uo, 0[2)) is truncated at ¢,
Elyly > c] = po + 0oA(v) , V[yly > ] = a3 {1 — A(v)[A(v) — 0]}

where v = (¢ — up)/oo and A(v) = 1?5;’()@ is the inverse Mills ratio / Hazard
function.

6.7.1 Tobit Regression

y; ifyf>c

*<C

) [ie. yis
c ify]

Censored Y; s.t. yf = f'z; + € ¢, ~ N (0,0%) and y; = {

censored from below at c].
Truncated MLE maximises

n

> (log f(yilx:,0) —log [1 — F(clx;, 0)])

i=1

log L, (0) =

with f and F denoting the density and distribution of y* respectively.
Type-1Tobit assumes y* is normally distributed, which gives us the following like-
lihood

L= Hl— (xi3/0)] HU Yol(y; — xiB) /0]

6.7.2 Censored Regression

Consider a model y; = 8 + €;; €;|z; ~ N (0,0?) and y; is not observed if y; > c.
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Yields log-likelihood

/ 2 ,
Uyilai; B,0%) = (—;log(UQ) - % (yl;xlﬁ) ) —log (1 % (Cj‘xzﬁ>)

6.8 Generalised Linear Models Theory

Semi-robust likelihoods belong to the Linear exponential Family of the following
form:

Defn 6.31 (Random Component).
Response observations y; are realisations of random variables Y; with densities of
the form

b(0)

f@&@ZM{W&M-Hm@>

6 C R is called the canonical / natural parameter, ¢ C Rt is the dispersion parameter.
E[Y]0,¢] = b'(6), V[Y0, 6] = a($)b" ()

1,2 2
Yilti — 51 i 1
I (i) :eXP{Q2 — % - ilog (27r02)}

o 20

Defn 6.32 (Systematic Component).
Linear predictor 7, := X/ j specifying the variation in Y accounted for by known
covariates.

Defn 6.33 (Link Function).

g is a transformation of the mean that addresses scaling. It is so called because it
links the expected value of the response variable E[Y'|0,¢] = p; = V/(6;) to the
explanatory covariates.

9(pi) =mi = X{B = =g " (X;P)
Since p; = ' (0;), under a canonical link ( g(p;) = 0:(1;)), 6; = X[p.

6.8.1 ML estimation
log likelihood

Score function
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function

S(B,y) = EN 0t _ E ggl 291' Zﬂi gm min Sn L(f(x;),y;) over fe€F subjectto R(f)<c
i=1 B J i=1 i Ofti O ﬁj i=1 function class complexity restriction
Yi — i 1 ag—l (’I]Z) N in-sample loss

x;
ai(®) Vlu]  Om ’

2. Estimate the ‘optimal’ level of complexity using empirical tuning
The FoC can be written as

Fact 7.1 (Discriminative vs Generative ML).

dlog L(6, ly) _x’ (W)_l ly—9]=0 Discriminative Model Generative Model

oB Goal Directly estimate E [y|z] | Estimate Pr (z|y) to deduce Pr (y|z)

where W is a weight matrix (which depends on 3). The fitted value What is Learned Decision Boundary Probability Distribution of the data
Examples Regressions, SVM GDA, Naive Bayes

~ _ _ _ -1 !/
y=m(x)=Ey|X =x] =g (z'B) Defn 7.1 (Loss Functions).

By a first-order taylor expansion, define L:(z,y) € RxY — L(zy) € R that takes as inputs predicted value z and real
data value y and outputs how different they are.

z=9H) +y—-y)Ve©)

This gives us an update rule

1

Least Squares: 3(y — z)*

» Logistic: log(1 + exp(—yz))
B = (X(W) 7 X)X (W) 2

Hinge: max(0,1 — yz)
repeat until convergence 300.

Model | Density Link
OLS Gaussian Identity
Logistic | Binomial Logistic
Logistic | Binomial Normal
Poisson | Poisson Log

Cross Entropy: —[ylogz + (1 — y) log(1 — 2)]

7 Machine Learning

7.1 Supervised Learning

Every Supervised ML algorithm essentially involves a function class F and a reg-
ulariser R(f) that expresses the complexity of the representation. Then, two steps

1. conditional on a level of complexity, choose best in-sample loss-minimising
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Table 1: Handy Dandy reference from Mullainathan and Spiess (2017, table 2)

Function class F Regulariser / Tuning Parameters R(f)

Global / Parametric Predictors
Linear 'z and generalisations Subset selection || 3|, = 2521 1,0
LASSO [1]l, = 35_, 15l

Ridge ||l = 35, 7}

Elastic Net o[, + (1 — o) ||

Local/Nonparametric predictors

Decision / Regression trees Depth, number of nodes/leaves, minimal leaf size, information gain at splits

Random forest Number of trees, Number of variables used in aach tree, size of bootstrap sample, complexity (above)
Nearest Neighbours Number of Neighbours

Kernel Regression Kernel Bandwidth

Mixed Predictors

Neural Networks (including Deep, Convolutional) Number of layers, number of neurons per layer, connectivity between neurons

Splines Number of knots, order

Combining Predictors
Bagging: unweighted average of predictors from bootstrap draws | Number of draws, size of bootstrap samples, individual tuning parameters
Boosting: linear combination of predictions of residual learning rate, number of iterations, individual tuning parameters
Ensemble: weighted combination of different predictions Ensemble weights, individual tuning parameters
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Fact 7.2 (Curse of Dimensionality).

take a unit hypercube in dimension p and we put another hypercube within it that
captures a fraction r of observations within the cube. Each edge will be e, (1) =
/P, For moderately high dimensions p = 10, €10(0.01) = 0.63;e19(0.1) = 0.8.
Need 80% data to cover 10% of sample.

Define d(p,N) as distance from the origin to the closest point. n = 500,p = 10 =
d = 0.52 [closest point closer to the boundary than to the origin].

d(p,N) = <1 B (;)1/1\7) 1/p

7.1.1 Regularised Regression

In general, we want to impose a penalty for model complexity in order to minimise
MSE [trade off some bias for lower variance].

Defn 7.2 (Ridge Regression).
Estimate the following regression

N
FB.Xy) =Y (v

i=1

J
—X[B)+ 1> B
j=1

B
T+ A

where X is a standardized design matrix [s.t. all Xs have unit variance]. Let X =
UDV’ be the SVD of X.
Then, ridge coefficients can also be written as

BRidge — (X/X + AIk>_1 X/y = Bj]_%idge _

39 — V(D2AI)"'DU'y Z d2 Y)V;

This can be used to compute the ridge coeffficient efficiently for a fine grid of As.

e Compute SVD of X and save U,D,V
e Compute and store w; = % (U;,Y)Vforj=1,...,p

e For each \,,,m = [M]
2

- compute v; = 75—
J

- compute By, = 37| %W;
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The solution vector is ‘biased” towards the leading right singular vectors of X,
which gives it the property of a ‘smoothed” Principal Components regression.

Fact 7.3 (Degrees of Freedom for Ridge (and other semi-parametric methods)).
For Ridge regression,

dof(\

)\+/\

Where ;s are the eigenvalues of the Covariance Matrix.

More generally, for any smoother matrix W, df (p) = tr(‘/N\/'), which may not be an
integer for semi/non-parametric smoothers. In the special parametric case of OLS,

W =X (X'X)"' X/, so the DoF is simply k.

Defn 7.3 (Lasso Regression).
Consider the objective function

N
JB.X,y)=> (v

i=1

J
—zB)+ A 115l
j=1

fit using sequential coordinate descent. Coefficient vector is soft-thresholded:

B}asso = sgn(ﬁj)max ( Bj -, 0)

where X is a standardized design matrix [s.t. all Xs have unit variance], and || is
the [; norm.

In both cases, pick tuning parameter X using cross-validation.

Defn 7.4 (Penalised Maximum Likelihood Regression).
ML analogue to LASSO. Define

6 = argmin (—0(0]Y,X) + X H0P||1)
)

where
Gl

1671, = >_ |6X]

k

Defn 7.5 (Elastic Net (Zou and Hastie 2005)).
Combines ridge regression and the lasso by adding a ¢, penalty to the LASSO’s
objective function

A
J(B) = lly = XBl + A 18l + 5 18113
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Defn 7.6 (Principal Components LASSO (Tay, Friedman, Tibshirani 2018)).
Generalise the ¢, penalty to a class of penalty functions of the form

BIvzvTs

where Z is a diagonal matrix whose diagonal elements are functions of the squared
singular values.
Define the following objective function

1 0
J(B) =5y - X85+ Bl + §VDd§—dfvTﬁ

Where D242 is a m x m diagonal matrix with diagonal entries equalling d3 —
J

d},d? — d% .... This penalty term gives no weight to the component of 3 that
aligns with the first right singular vector of X (i.e. the first principal component.
This gives it better predictive accuracy in some settings.

Comparing principal-coordinate predictions of ridge and pcLASSO:

N L.
XIBRidge = Z ﬁujufy
j=1"17

~ m d2
X BpeL = 2 J2 2 “J’U‘Ty
; & oz —d2) 7"

The latter corresponds to a more aggressive form of shrinkage towards the leading
singular vectors.

7.1.2 Classification

Training sample (x;,y;) where y € YV := {—1,+1} (can relabel to Bernoulli). A
predictor m : X—)), where the labels are produced by an (unknown) classifier f.
Let P be an (unknown) distribution on X. The error of m w.r.t. f is defined by

Re.s(m) = B [m(X) # f(X)] =B [{z € X : m(x # f(2))}] where X ~ P

The empirical risk is defined as

~ 1 <&
R(m) = — D Lo u
i=1
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A perfect classifier (in the sense that Rp ;(m) = 0) does not exist, so we aim for
Probably Approximately Correct (PAC) learners that have Rp ;(m) < e w.p. 1-4.
The space of models m is restricted to be in finite set M. It can be shown that
Ve,0,P, f,if n > e~ 1log[(6) " |M]|, then Rp f(m*) < & w.p. > 1 — § where

m” € argmin [n Z ]lm(mi)_yi]

meM i—1

Defn 7.7 (Vapnik-Chervonenkis Dimension).
loosely represents the expressive capacity of a set of functions.
Consider k points {x1, ..., z)} and the set

By = {m(x1),...,m(z) : form e M} ={-1,+1}"

we say that m shatters all the points if | Ej| = 2%, i.e. all combinations are possible.
Linear functions can shatter 2 points.
The VC dimension of M is

VC(M) :=sup {k s.t. M shatters {x1,...,z}}

Defn 7.8 (Support Vector Machines).
Lety € {—1,1}. A linear classifier can then be written as h(z) = sgn(H (z)) where

d
H(z)=ag+ Zaixi
i=1

Suppose 3 a hyperplane H(z) s.t. Y;H(z;) > 1 Vi.
The hyperplane H (z) = do + Zfil a;x; that separates the data and maximises the
d 2

‘margin’ is given by minimising 1/2 3 °%_, aj subject to Y; H (z;) > 1.

Defn 7.9 (Boosting and Sequential Learning).

Typically, the function space M is large and complex, so a natural idea is to learn
iteratively. Loosely, estimate a model m; for y from X, which produces error ¢;.
Next, estimate my for ¢; from X, which produces €3, and so on. So, after k steps,

m*(-) = mi() +ma(-) + ... ma(-)
N S—~—
~ Yy ~ £1 ~ Ek—1
where the first error is y — m(z) and so on, and can also be seen as the gradient as-
sociated with the quadratic loss function, ¢ = V. So, an equivalent representation
is
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m® = m*E=Y ¢ argmin Zé yi — mF (), h(xs)
€k,i

where 7 is a space of ‘weak learners’ (typically step functions). To ensure ‘slow’

learning, one typically applies a shrinkage parameter ¢; = y — ami(x1) a € (0,1).

Arthur Charpantier’s series on the probabilistic foundations of econometrics and
machine learning cover this and more and have an excellent bibliography

e Econometrics

— https://freakonometrics.hypotheses.org/57649
- https://freakonometrics.hypotheses.org/57674
- https://freakonometrics.hypotheses.org /57693
— https://freakonometrics.hypotheses.org/57703

e ML

— https://freakonometrics.hypotheses.org/57705
— https://freakonometrics.hypotheses.org /57745
— https://freakonometrics.hypotheses.org /57782
- https://freakonometrics.hypotheses.org/57790
- https://freakonometrics.hypotheses.org/57813

o Bibliography https://freakonometrics.hypotheses.org/57737

7.1.3 Goodness of Fit for Classification

Defn 7.10 (Calibration and Discrimination). e calibration: Bin predicted proba-

bilities  into bins {gx}, and within each compute )A/gk (average predicted
probability) and Y, . Plot the two average against each other. In a well cali-
brated model, the binned averages trace the identity line.

° discriminaAtion: Discrimination is a measure of whether Y=1 observations
have high Y, and correspondingly " = 0 values have low Y. Many measures;
listed below
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Figure 8: AUC

Defn 7.11 (Confusion Matrix).

Observed Y =1 Y =0

Predicted positive (Y > ¢) True Positive (TP) False Positive (FP)
Predicted negative (Y <c¢) | False Negative (FN) True Negative (TN)
Total Positive(P) Total Negative(N)

e Accuracy = (TP +TN)/(P + N) - Overall performance
e Precision = TP/(TP + F'P) - How accurate positive predictions are

o Sensitivity = Recall = True positive Rate = T'P/P - Coverage of actual pos-
itive sample

e Specificity = True Negative Rate = T'N/N - Coverage of actual negative
sample

e Brier Score =

Refinement

Zlv;(yfi_yi)?_Zlvi(n_yk)ﬁjvink(n(l—n))

Calibration

e F1 Score = : hybrid metric for unbalanced classes

27P
2TP+FPVFN
Fact 7.4 (Receiver Operating Curve (ROC) / Area Under the Curve (AUC)).
Is the plot of TPR vs FPR by varying the threshold c.
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Total
population

Predicted

condition
Predicted  positive
condition  predicted

condition

negative

True condition

Condition positive

True positive

False negative,
Type II error

True positive rate (TPR), Recall,
Sensitivity, probability of detection,

¥ True positive

Power = s ndition positive

False negative rate (FNR), Miss rate

_ _Z False negative
2 Condition positive

Condition negative

False positive,
Type I error

True negative

False positive rate (FPR), Fall-out,
probability of false alarm

_ __ % False positive
~ X Condition negative

Specificity (SPC), Selectivity, True
negative rate (TNR)

_ _ 2 True negative
3 Condition negative

Prevalence
_ 2 Condition positive
Z Total population
Positive predictive value (PPV),

Precision =

Z True positive
7 Predicted condition positive

False omission rate (FOR) =
 False negative

Accuracy (ACC) =

2 True positive + £ True negative
Z Total population

False discovery rate (FDR) =

2 False positive
Z Predicted condition positive

Negative predictive value (NPV) =
Z True negative

¥ Predicted condition negative

Positive likelihood ratio (LR+)

- TPR
= FPR

Negative likelihood ratio (LR-)

_ ENR
~ TNR

Figure 9: Wikipedia table for confusion matrix

7 Predicted condition negative

Diagnostic
odds ratio
(DOR) =

F, score =

. Precision - Recall
% 2 Precision + Recall

106



Hidden layer k

Input layer Hidden layer 1 Output layer

Figure 10: Neural Network Components

Defn 7.12 (Random Forests).
Suppose we have a training set { (X, Y;, D;)}2_,, a test point z, and a tree predictor

fi(x) = T(x; {(X:, i, Di)}iLy)
Equivalently,

lz.cox)

@) = 3 ai(@)Yi where a(@) = o2y

where X is partitioned into leaves £(z), where leaves are constructed to maximise
heterogeneity between nodes . Do this until all leaves have 2x minimum leaf size
observations. Regression trees overfit, so we need to use cross-validation + other
tricks.

Random forests build and average many different trees 7" by

e Bagging / subsampling training set (Breiman)

e Selecting the splitting variable at each step from m out of p randomly drawn
features (Amit and Geman)

B
(@) D Ty (o (X0, Vi, DY)
b=1

Defn 7.13 (Neural Network).

Generalised nonparametric regression with many ’layers’, with components out-
line in 10. For the i'" layer of the network and j*" hidden layer of the unit, we
have
i _ [T (4]
z; =w; T +b;
where w, b, z are the weight (coefficient), bias (intercept) and output respectively.
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ReLU Leaky ReLU

g(z) = max(ez,z)

with e € 1

g(z) = max(0,z)

Figure 11: Activation Functions

Defn 7.14 (Activation Function).
Activation functions are used at the end of a hidden layer to introduce non-linearities
into the model. Common ones are

Neural networks frequently use the cross-entropy loss function.

Fact 7.5 (Fitting Neural Networks).

Learning rate is denoted by 7, which is the pace at which the weights get updated.
This can be fixed or adaptively changed using ADAM.

Back-propagation is a method to update the weights in the neural net by taking
into account the actual output and desired output. The derivative with respect to
weight w is computed using the chain rule and is of the following form

OL(zy) _ OL(zy) 0a 0=
dw  da Oz 0w

So the weight is updated

1. Take a batch of training data
2. Perform forward propagation to compute corresponding loss
3. Perform back propagation to compute gradients

4. Use the gradients to update the weights over the network

7.2 Unsupervised Learning

There is no distinction between a label/outcome y; and predictor X; in a wide
variety of problems. The goal of unsupervised methods is to characterise the joint
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distriution of the data X using latent factors, clusters, etc.

Defn 7.15 (Principal Components Analysis).
Original data z; in R¥. We approximate orthogonal unit vectors w; € R* and
associated scores [ L < k weights z;;| to minimise reconstruction error

L
T — E 2 Wi
=1

where Z; = W z; subject to the constraint that the smoother matrix W is orthonor-
mal. Equivalently, the objective function can be written as

J(W,Z) = || X - WZT|| where Zis N x L with z; in its rows.

The optimal solution sets each w; to be the I-th eigenvector of the empirical covari-

n 2

1 & 9 1
J(X’B)ZEZH%—%H :EZ
=1 1

1=

ance matrix. Equivalently, W=V 1, which contains the L eigenvectors with the
largest eigenvalues of empirical covariance matrix ¥ = 1 " | @;x).

Defn 7.16 (Truncated SVD).
If we rank singular values of the data matrix X, we can construct a rank L approx-
imation, the truncated SVD

X~ U:,l:lezL,l:LV;/,l;L
This is identical to the optimal reconstruction X =7ZW'
Fact 7.6 (Dimension selection for PCA).

J
Z A, = error(L)

j=L+1

The error is the sum of remaining eigenvalues of the covariance matrix. Total vari-
ance explained = (sum of included eigenvalues)/(sum of all eigenvalues)
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8 Bayesian Statistics

8.1 Setup

Notation: per the Murphy textbook, some statements use notation D := {(x;, yz)}fil

as shorthand for data.

Theorem 8.1 (Bayes Theorem).

__[(X16)](6)
iﬁlﬁ ~ Tr(X]0)f(8)de ~ lé(?df;@

Example 8.2 (Bayesian Updating Steps). 1. Use Bayes Rule to come up with a pos-
terior probability of some hypothesis H,, given event E. Your prior is P(H,,).
P(E|H.,)P(H.,)
(E|H,)P(H,) + P(E|Hg)P(HY)

P(H,|E) = 5

Call the posterior probability P(H/,).

2. Given second event £, use posterior probability from step 1 as your prior in
the second update step.
P(E'|Hy)P(H,)
(E'|H.)P(H,) + P(E'[HE)P((Hy)<)

PHE) =

Defn 8.1 (Exchangeability).

A sequence of random variables y,...,y, is finitely exchangeable if their joint
density remains the same under any re-ordering or re-labeling of the indices of
the data.

p(yla .. ayn) = p(yz(l)a s 7yz('n))

Exchangeability justifies use of the prior: If the data are exchangeable, then there is
a parameter 6 that drive the stochastic model generating the data and there exists
a density over 0 that does not depend on the data itself. The data are conditionally
iid., given the prior 6.

Independence vs. Exchangeability: Independence is a stronger condition than
exchangeability (it is a special case of exchangeability). Exchangeability only re-
quires that the marginal distribution of each random variable is the same, i.e.
p(y1) = p(y2). Independence requires that p(y1]y2) = p(y1). As a result, you can
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have exchangeability in situations where you do not have independence, most no-
tably sampling without replacement. If the marginal probabilities are unknown,
then we only have exchangeability (not independence) even if the samples are
drawn with replacement, due to the possibility that there is only one unit with a
particular value of y.

Fact 8.3 (Posterior Quantities of Interest).

With the full posterior, one can compute Posterior Mean, median, and mode (the
latter is sometimes called the Maximum A Posteriori estimate).

One can also compute

Defn 8.2 (Highest Posterior Density Region R(9)).
, which is a region such that the the parameter lies in the region with probability
l-a

1 —a=Pr(0eRO)y) = / p(6]y)do

R(6)

Defn 8.3 (Posterior Predictive Density).

Consider out-of-sample prediction for a single observation §. The posterior pre-
dictive density is

o0

p<g|y1,...,yn>:/ (10,1, .

— 00

7yn)p(0|y17 cee 7yn)d9

Because ¢ is independent of y conditional on # (exchangeability), we can simplify
this as

o0

p<g|y1,...,yn>:/ (10,1, .

— 00

7yn)p(0|ylv s 7yn)d9
— [ p@oplelun.-...un)as
This is just the data density for y multiplied by the posterior density for 6.

Example 8.4 (Posterior predictive density for Bernoulli trial).
Consider § ~ Bernoulli(6). The posterior predictive density is

1
p(ily) = / p(716)p(6]y)do

- /O 69(1 — 0)'~Tp(0ly)do
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So if we want to know the posterior predictive probability p(g = 1|¢), we can com-
pute it as

p(7 = 1/6) = / 0p(0]y)d6
= E[f]y]

which is the posterior mean.

Defn 8.4 (Uninformative Prior vs. Informative Prior).

An uninformative prior on ¢ produces a posterior density that is proportional to
the likelihood (differing only by the constant of proportionality). This implies that
the mode of the posterior density is the § that maximizes the likelihood function.
An informative prior on 6 yields a posterior mean that is a precision-weighted
average of the prior mean and the MLE.

Stan dev team recommendations: https://github.com/stan-dev/stan/wiki/Prior-
Choice-Recommendations

Theorem 8.5 (Bernstein-Von Mises Theorem / Bayesian CLT).
Oly ~* N (é,z(é)—l)

As N—o0, the likelihood component of the posterior becomes dominant and as
a result frequentist and bayesian inferences will be based on the same limiting
multivariate normal distribution.

Defn 8.5 (Bayesian Model Selection).
To choose between Bayesian models, we compute the posterior over models

p(Dlm)p(m)
2 memP(m, D)

which allows us to pick the MAP model m = arg max p(m|D). If we use a uniform
prior over models p(m) « 1, this amounts to picking the model wich maximises

p(m|D) =

p(Dlm) = / p(D|8)p(6]m)d6

which is called the marginal likelihood / integrated likelihood / evidence for
model m.

8.2 Conjugate Priors and Updating

Defn 8.6 (Improper Priors).
Priors of the form f(6) ¢ ¢ > 0 are improper because [ f(0)df = co. Improper
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priors generally not a problem as long as resulting posterior is well defined.

Fact 8.6 (Flat priors are not invariant).
Suppose X ~ Bernoulli (p), and we choose prior f(p

)= 1. Defme transformation
1 =log(p/(1 — p)). Resulting distribution of ¢ is fy,(¢) =

1+e¢)2

Defn 8.7 (Jeffreys’ Prior).
Method of constructing invariant priors.

£(6) < I1(6)'/2. For multiparameter model, () o |I1(6)]*/*

Example 8.7 (Jeffreys PI‘IOI‘)
Giveny = h(f), 2 = 2 = Sv % and

16,\/
e _ oL (0 oo
ov2 062 \ 9y 00 H~2

Taking expectations wrt sample density sends second piece to zero (since E [2%] =
0), so

2
10)=70) (5) = [T = ze)”
Defn 8.8 (Conjugate Prior).

Analytically tractable expressions for the posterior are derived when sample and
prior densities form a natural conjugate pair, defined as having the property that
sample, prior, and posterior densities all lie in the same class of densities.
Exponential family is essentially the only class of densities to have natural conju-
gate priors.

A one parameter member of the exponential family has density for N obs that can
be expressed as

00
oy

L(yl0) =[[exp((a

Example 8.8 (Beta-Binomial Updating).
Let X;,..., X, ~ Bernoulli(p), and we take prior f(p) =
posterior is of the form

f(plz") o f(p)Ln(p) =p

Instead we take f(p) = Beta («, 8). Uniform prior is a special case with o = 5 = 1.
In general, the posterior is of the form

+0(y) +c(0) uly)) ocexp (Na(9) +e(6)y U(y)>

1. By Bayes thm, the

S(L=p)" ™ =p="i(l—p)" ="
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fplz"™) =

I(n+2) s
TGrOrm—ss " ¢

plz™ ~ Beta (Zml +1,n— Zml + 1)
~ Beta (o, 3')
rbeta(n, shapel, shape2)

1—p)r 2z

Quantity Formula
A 1 1
Posterior Mean - @ domi+ Tt
o + Zx,+1+n72x7+1 n+2
/
-1 .
Posterior mode - @ - 2 i
o +p8' -2 n
O[/ﬁ/

Posterior variance

(04'4—5')2(0/ “rﬁ/ + 1)

Posterior predictive distribution ~ Beta-Binomial(n, a, b)
~ Beta-Binomial(n, « + Z i, 8 +n— Z x;)

library(extraDistr)

rbbinom(n, size, alpha, beta)

_ b1 —=00)
V(HO;OQB)

And compute the hyper-parameters o and 5 for our prior distribution as

a =6y
B =~(1-0)

Surprisingly this works! See Jackman p.55 for a worked out example.

Example 8.9 (How to find Beta hyper-parameters using a prior proportion and vari-
ance).
Suppose we have a proportion from a previous study 6y, with variance V (y; cv, §).
Then we can create a constant
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Example 8.10 (Gamma-Poisson Updating).
LetYy,...,Y, ~ Poisson(\). This means that

N

exp(—A) Vi

plyy = T =2
i=1 v

x A Y exp(—n)
We specifiy a Gamma prior on A, which has density

a

I'(a)

p(Aja,b) = A4 exp(—bA)

So then the posterior for A is
P(Aly) o p(A)p(y|A)
o A% Lexp(—bA)AZ=Yi exp(—n))
= A= Vit oxp(— (b +n))
~ Gamma(z yi +a,b+n)
~ Gamma(a’, ")

rgamma(n, shape, rate)

A flat priorisa = b = 0.

Quantity Formula

/ .
Posterior Mean @ _ M

b’ b+n

-1 i -1

Posterior mode a _ Y yita
v b+n
a  Yyita

Posterior variance @2~ (b+n)?

Posterior predictive distribution ~ Negative Binomial(y, §)
1

b+1)

rnbinom(rnbinom(n, size, prob)

~ Negative Binomial(a, 1 —
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Example 8.11 (Dirichlet-Multinomial Updating).

K
p(Olaq, ... ax) o H 9?"_1
j=1

K
p(yl0) o [ 6
j=1

where y; is the count of observations in category j. For 3 categories, the posterior
is:

p(01,02,1 — 0 — Oay) oc 90TV 1ggeTv =l (1 g, — gy )stys—l
~ Dirichlet(a + y1, a2 + y2, a3 + y3)

Example 8.12 (Normal-Normal updating).
y ~ N (p,0?)., where 2 is known but mean y is not known. The joint density of

yis

£lul0) = [[2ro®) 2 exp (02 e (- o 0)

i=1

Given a normal prior 6 ~ N (1, 7?) = f(u) x exp (— (92_7’5)2 ), we can write the

posterior density of the form

s 0l) xexp (g 0 = 7 oo (A5 ) e (-5 (2220

where 1 = 72(Nij/o? + pr?) and 72 = (N/o? + 1/72)~1. Posterior mean is a
weighted sum of prior mean ;i and sample mean 3 with weights that reflect the
precision of the likelihood via No? and prior 72.

Three cases (ref. Jackman p.80-94):

1. Variance known, mean unknown. Model:

w~ N(,uo,O'g)
y ~N(u,0%)
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Quantity Formula Marginal posterior density of u:

mol(ap) +9(Z) ok o? p(p) ~ Student:T (i1, /03 /ma, 1)
Posterior Mean T - =7 5 T Ho— 5 )
72 + % nos +o nog +o ~ brms::rstudent_t(n, df, mu = 0, sigma = 1)
_1 where
. , 1 n ogo?
Posterior variance -+ = =73
oy O 0° + noy ny=mng+n
_ Moo + 1y
Posterior predictive distribution  ~ N'(72,6%) H n
ji = Moo L1 b=t
no n
1 n -1 O’% = 51/1/1
=+ |5+ N
o? o2 2 _\2 , nomn 2
0 S1=wog +(n—1)> (v —7) +n71(y—#0)
i=1

2. Variance and mean both unknown. Prior densities: . L o .
Posterior predictive distribution for ¢:

o2) — o2Vp(o2
1;((/:;'02; i} ﬁgrlmiﬁio )0'2/’110) p(ily) ~ Student-T(u1, 01\/(n1 + 1)/n1, 1)

p(0?) ~ Scaled-Invese-x? (v /2, vooia /2) where

ny =ng+n
Conditional posterior densities: ! ot

[y = Nojo + Y
plo® y ~ N(ps, 0% /m1) ™
02|y ~ Scaled-Invese-x? (11 /2, v10% /2) vp=vy+n
2
g1 = Sl/ljl
where v .
_ on , _
ny=ng+n S1 :1’0‘78‘*‘(”—1)Z;(yi—y)g‘f‘TT(ZU—MO)2
1=
n +ny
= 0Ho Y
! 3. Improper reference prior. Prior densities:
Vi =1y+n
N
2 _ 2 2 non 2 2 2
V1o = vgog + Z(yz ¥+ -y n(uo ) p(p,0°) x 1/o

i=1

<+~ ToC 112



Posterior densities Likelihood Conjugate prior | Posterior hyperparameters
plo®,y ~ N (g,0%/n) n n
_ N 32 Bern (p) Beta («, 3) a+ >y z,f+n—>» z;
1 . i ? (3]
o?ly ~ Scaled-Invese-xQ(n 5 Zi:l(g y) ) ; ;
Bin (p) Beta (a, 5) a+Zwi,5+ZNi —Zwi
which implies i=1 i=1 i=1
NBin (p) Beta (a, 8) a+mrn, B+ Z T
— 5 i=1
’u— ~t n
n—1
V/S/((n —1)n) Po () Gamma (a,8) | a+ Y zi,B+n
i=1
Posterior predictive distribution Multinomial(p) | Dir (a) o+ Z 2@
) ) n 1 =1
p(gly) ~ Student-T(g, s/ — —,n — 1) Fact 8.15 (Conjugacy for Continuous Distributions).
Likelihood | Conjugate prior Posterior hyperparameters
where
) 1 & , Unif (0,6) | Pareto(zy,, k) max {x(n), Tm } , k+n
s° = (v—9) "
n—1 1:21 Exp (A) Gamma («, ) a—&—n,ﬂ—i—in
1 n i=1
y=- Z Yi Ho Do @ 1 n
n 4 2 2 ~ i=1 =4
i=1 N (/1'7Uc) N <M07J()) <0,(2) + 0'(2;71 / 0_8 + O,Z ’
Fact 8.13 (Simulation from Posterior). <12 4 n2>
Posterior can often be approximated by simulation. 70 1262 Y (s — )2
N (pe,0?) | Scaled Inverse | v +n, —2 =1\ 7
e Draw 91,...,03 Np(9|iLn) Chi—square(l/, 0_8) v+n
e Histogram of 61, ..., 0p approximates posterior density p(6|z™) N (1,0%) | Normal- VA I n:E, P o4 g ,
v+n
Methods for this: Markov-Chain Monte-Carlo, Metropolis-Hastings, Hamilto- scaled Inverse 1 V(T — \)?
nian Monte-Carlo Gamma(\,v,a,8) | B+ = Z(ml — 1)+
2~ 2(n+7)

Fact 8.14 (Conjugacy for Discrete Distributions).
8.3 Computation / Markov Chains

Defn 8.9 (Stochastic Process { X : ¢t € T'}).
is a collection of random variables.

Defn 8.10 (Markov Chains).
The process {X,, : n € T'} is a Markov Chain if
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Pr (Xn = X|X0, e 7Xn—1) =Pr (Xn = 1‘|Xn_1)

Defn 8.11 (Monte Carlo Integration).
First rewrite the integral to be evaluated / = fab h(z)dx as follows

I= /ab h(z)dz = /abw(x)f(x)dx

where w(z) = h(z)(b — a) and f(z) = ;1. Since f is the probability density for
a uniform r.v. over (a,b), we can write I = E; [w(X)] where X ~ Ula,b]. If we
generate X1,..., Xy ~ Ula,b], by LLN,

Defn 8.12 (Reversihility / Detailed Balance).
The goal is the generate sequences 0,02, . ..
generate samples from the conditional if

from f(0]y). An MCMC scheme will

P(0;10;-1)f(8;-1ly) = P(0;-116,)f(8,|y)

where P(6;|0,) is the pdf of 6; given 8,. The LHS is the joint pdf of 6;,6;_, from
the chain, if 8;_; is from f(6|y). Integrating RHS over df;_, yields f(0;|y), so
the result states that given 8;_, is from the correct posterior distribution, the chain
generates 6; also from the posterior f(0|y).

Defn 8.13 (Gibbs Sampling).

Basic idea - turn high dimensional problem into several one-dimensional prob-
lems. Suppose (X,Y) has joint density fx y(z,y). Suppose it is possible to sim-
ulate from conditional distributions fx |y (z|y) and fy|x (y|z). Let (Xo, Yo) be start-
ing values. Assuming we have drawn (X, Yy), ..., (X;,Y;), we generate (X, 41, Yi11)
as follows

o Xot1 ~ [fxy(z|Yn)
® Vi1 ~ fyix(y[Xnt1)

. for multiple parameters

Example 8.16 (Gibbs for Univariate Normal).
.Lety; SN (1,0?). Define precision 7 = 1/0?

o Likelihood: f (y|u, 7) ~ 7/2 exp (A7 0 (yi — p)?)
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e (Noninformative) Prior: mp, 7 ~ 7

Posterior Distribution

1 n
7 (u,7ly) ~ 7D exp <_27 > (- u)2>
i=1

full conditionals:

=N (g, (n1)7")

=T (5, X (v — 1))

However, it is typically impossible to write out or sample from full-conditionals.

m(plT,y)

o (7lpy)

Defn 8.14 (Metropolis Algorithm).

Let g(y|z) be an arbitrary, friendly distribution we can sample from. The condi-
tional density ¢(y|z) is called the proposal distribution. MH creates a sequence of
observations Xy, ... as follows Choose X arbitrarily. Suppose we have generated
X0, X1,...,X;. Generate X, as follows

e Generate proposal Y ~ ¢(y|X;)

e Evaluate r := r(X;,Y) where

r(z,y) = min {

e Set

Y wpr
Xig1 = { P
X; wpl—r
Defn 8.15 (Expectation Maximisation).

Let x; be observed and z; missing. The goal is to maximise the log-likelihood of
the observed data

Zlogp x;|0) = Z [Zp x;, 2i|0) ]

Cannot push log inside the sum because of unobserved variables. EM tackles the

problem as follows. Define complete dataloglikelihood as .(0) := >, log p(x;, z;|0).

This cannot be computed, since z; is unknown.
Instead, define Q(0,0'~') = E [(.(6|D,0'~')] where t is the iteration number and
Q is called the auxiliary function.
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e Expectation (E) Step: Compute Q(6,0'~!), which is an expectation wrt old
params 6",

e Maximisation (M) Step: Optimise the () function wrt 6.

Compute 0" = arg maxy Q(6, 0"~1). For MAP estimation, 8" = arg maxy Q(0, 6~ 1)+

log p(0)

Example 8.17 (EM for probit regression).
Probit has the form p(y; = 1|z;) = 1,,50 where z; ~ N (23,1) is the latent vari-
able. The complete data log likelihood, assuming a NV (0, X¢) prior on 3.

U(z,B|X0) =logp(y|z) +log N (2|X3,1) + log NV (8]0, 30)

= izzllogp(yi\zi) - %(Z - XB) (2 —XB) — %ﬁ’ (20) ™" B + const

The posterior in the E step is a truncated Gaussian

dpi) s -
tit+ gy M yi=1
p(ziﬂﬂivﬂ):{ A if v =0
Hi = B(u,) Yi

where y; = x3. In the M step, we estimate 3 using ridge, where u = E [z].
. -1
b— (%) x

8.4 Hierarchical Models

Defn 8.16 (Heirarchical Priors).
Parameters in a prior are modeled as having a distribution that depends on hyper-
parameters. This results in joint posteriors of the form

fO,7ly) o< L(yl0)  fOI7) f(r)
—— = ~—~
likelihood parameter prior hyperparameter prior
Represented by the graphical model 7 — 6—=D.

We are typically interested in the marginal posterior of 6, which is obtained by
integrating the joint posterior w.r.t 7.

By treating T as a latent variable, we allow data-poor observations to borrow strength

from data rich ones.

<+~ ToC

8.4.1 Empirical Bayes

In hierarchical models, we need to compute the posterior on multiple layers of
latent variables. For example, for a two-level model, we need

p(n,0|D) o p(D|6)p(0|n)p(n)

We can employ a computational shortcut by approximating the posterior on the
hyper-parameters with a point-estimate p(n|D) = d;(n), where ) = arg max p(n|D).
Since 7 is usually much smaller than 8 in dimensionality, we can safely use a uni-
form prior on 7. Then, the estimate becomes

f = arg max p(Dly) = argmax [ / p<D|0>p<e|n>de}

marginal likelihood

This violates the principle that the prior should be chosen independently of the
data, but is a cheap computational trick. This produces a hierarchy of Bayesian
methods in increasing order of the number of integrals performed.

Example 8.18 (Cancer Rates across cities).

Suppose we measure the number of people in various cities NV; and the number of
people who died of cancer z;. We assume z; ~ Bin (V;, §;) and want to estimate the
cancer rates §;. The MLE solution would be to either estimate them all separately,
or estimate a single 6 for all cities.

The hierarchical approach is to model #; ~ Beta (a, b), and write a joint distribution

N
p(D.6,n|N) = p(n) [ [ Bin (x| N;, 0;) Beta (6;, )
i=1
analytically integrate out ¢;

N
i=1

B HBeta(a+xi,b+Ni — ;)
e Beta (a, b)

=1

where 7 := (a,b). We can also put covariates on 0; = f(x}5).
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8.4.2 Hierarchy of Bayesianity

Method Definition

Maximum Likelihood 6 = arg max p(D)|6)
0

MAP Estimation 0 = argmax p(D|0)p(0|n)
0

Empirical Bayes n = arg max/p(D|0)p(0|n)d9 = argmax p(D|n)
n

n

MAP-II 1) = arg max = /
n

Full Bayes p(6,m|D) o< p(D|0)p(0|n)p(n)

8.5 Graphical Models
Defn 8.17 (Chain rule of probability).
Any joint distribution can be represented as follows
p(z10) = p(@1)p(@2|®1)p(23| 32, 1) - . P(T0]T1:V-1)

where V' is the number of variables [and we have dropped the parameter vector
0]. It follows that

The joint distribution p(x) = p(z1, ...,z k) can be written as

K
p(x) = [[ plax/Par)
k=1
where Pa;, denotes the parent nodes of x, which are nodes that have arrows point-
ing to x.

Defn 8.18 (Conditional Independence).
X and Y are said to be conditionally independent iff the conditional joint can be
written as the product of the conditional marginal.

X L Y|Z & p(X,Y|Z) = p(X|Z)p(Y|Z)

Defn 8.19 (d-separation).
If the condition A L B|C, it must be the case that all paths are blocked. All paths
are blocked iff

e Arrows on the path meet either head to tail or tail to tail at the node, and the
note is in the set C
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p(D|0)p(0]n)p(n)do = argf,rlaxp(Dln)p(n)

e Arrows meet head to head at the node, and neither the node nor any of its
descendents is in the set C

8.5.1 Empirical Bayes

Example 8.19 (James-Stein Estimator for batting averages (Efron and Morris)).
We suppose that each player’s MLE value p; (his batting average in the first 90
tries) is a binomial proportion,

p; ~ Bi(90, P;) /90
Here P; is his true average, how he would perform over an infinite number of tries;
TRUTH ; is itself a binomial proportion, taken over an average of 370 more tries

per player.
At this point there are two ways to proceed. The simplest uses a normal approxi-
mation to (7.17)

pi~N (P, o)
where o is the binomial variance
og = p(1 —p)/90

with p = 0.254 the average of the p; 's. Letting x; = p;/09, applying (7.13), and
transforming back to pJS = 0¢/i]5, gives James-Stein estimates

~ _ N —3)o? _
P =p+|1- ()02] (i —P)
> (pi — )
A second approach begins with the arcsin transformation

z; = 2(n +0.5)Y2sin ™!

np; +0.375\ /2
n+0.75
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9 Dependent Data: Time series and spatial statistics

9.1 Time Series

A time series is a sequence of data points {w, },_, observed over time. In a random
sample, points are iid, so the joint distribution f(wy,...,wr) = Hthl flwy). In
time series, this is clearly violated, since observations that are temporally close to
each other tend to be more similar.

Defn 9.1 (Stochastic Process).

is a sequence of random variables {...,Y_q,Yp,Y1,...} that are indexed w.r.t the
elements in a set of indices {Y; : t € T}. Hypothetical repeated realisations of a
stochastic process look like

0o
{wgl)vwg)a s 7w§")}

t=—o0

The index set 7 may be either countable, in which case we get a discrete time process
or an uncountable, in which case we get a continous time process.

State Space  We assume Faset) € Rs.t. Vt € T,Y; € V. Then, ) is called the
State Space of the stochastic process.

Defn 9.2 (Martingales).

Consider a random process {Y;},~, and an increasing sequence of information
sets {F;};, i.e. collection of o—fields s.t. Fy C Fi...Fs C F. If Y; belongs
to the information set F; and is absolutely integrable [i.e. y; € Lo(F;) N L1(F)],
and E [Yi11]|F] = Y VE < oo then {Yt}fi o is called a martingale. In words, the
conditional expected value of the next observation, given all the past observations,
is equal to the most recent observation.

Defn 9.3 (Autocovariance).
The autocovariance of Y; is the covariance between Y; and its j" lagged value
Vit =BV — ] [Yiej — prr—j]

the variance covariance matrix of y = {y;} is given by

Y0 "o YT-1
st Yo

Viyl=1 . .
Yr-1 --- M Yo

the j'" order correlation coefficient p; := v, /7o.
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Defn 9.4 (Stationarity = 7(0)).

Arandom process is said to be stationary if the distribution functions of (X, , X, . ..
and (Xy, 4, X¢,4; ... ) are the same V4, ..., tx, h € Z.

A process is said to be covariance (or weakly) stationary if

1L EY]=pnVteT
2. vt =EB[Ys — ] [Yiej —ppe—jl =Vt €T

i.e. neither the mean nor the autocovariances depend on the date ¢; stationary
expectation, variance, and covariance. Most relevant variables aren’t stationary,
but their detrended or first-differenced versions may be.

Defn 9.5 (Markov Process).

If Xy, X1,... is a Markov Process,

Pr (X7L+1 < 33|X1a e 7Xn) =Pr (X7L+1 < Jj‘Xn)
that is, the conditional distribution of X,,;; given X1, ..., X,, does not depend on
X, ., X0 .

Markov Chain A Markov chain is simply a Markov process in which the state-
space is a countable set. Since a Markov chain is a markov process, the conditional
distribution of X;;1| X1, ..., X; depends only on X;. The conditional distribution
is often represented by a Transition matrix where

Py = Pr (X =X, =1d) 5i,j=1,...J
If P is the same V¢, we say the Markov chain has stationary transition probabilities.

Defn 9.6 (Ergodic Processes).

A stationary process is ergodic if any two variables positioned far apart in the se-
quence are almost independently distributed.

{z:} is ergodic if, for any two bounded functions f(.) in k + 1 variables and ¢(.) in
[ + 1 variables,

lim [E[f(2¢,...,2008)9(Teq N, - Topien)]| —
N—oo

B [f(@e, . meqp)]| E[g(zegn, - Tepgen)][ =0

ie. limj 00y =0

Sufficient condition for ergodicity is z; be covariance stationary and »~ 77 ;] <
00

Ergodic processes have the following property

117



T-1

th] = > (T—liv

j=1-T

\Y

this result implies that

lim V

T—o0

T 0o
jfzxt] =Y <o
t=1

j=—o0

This permits us to swap is for ¢s and derive Asymptotic theory with dependent
observations, such as LLN and CLT.

Defn 9.7 (Brownian Motion).
A family of r.v.s {X;} indexed by a continuous variable ¢ over [0, c0) is a Brownian
Motion iff

1. X(0)=0

2. {X (si+t;)—X (Si)} over an arbitrary collection of disjoint intervals (s;, s; +
t; are independent r.v.s

3. Vs,t>0,X(s+1t)— X(s) ~N(0,¢)

Defn 9.8 (White Noise).
White noise is a sequence {¢;} whose elements have mean zero and variance o2,
and for which ¢,’s are uncorrelated over time

1. Ele] =0
2. E [5?} = o2
3. E[Etﬁtfj] = OV] # 0

Defn 9.9 (Moving average : MA(q)).
A moving average of order ¢, M A(q) is a weighted average of the ¢ most recent
values of a white noise defined as

Y}/:/L+€t+916t_1+"'+9q+6t_q

Defn 9.10 (Autoregressive : AR(p)).
An autoregressive process of order p, AR(p) is given by Y; as a linear combination
of p lags of itself and one white noise

Yi=p+Yia+-+ Y, +e
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Defn 9.11 (Autoregressive Moving Average: ARMA(p, q)).
ARMA(p, q) combines AR(p) and MA(q)

YVi=ptetet+bieia+ - +0+eqg+diYia+ -+ oYy
MA(q) AR(p)

Theorem 9.1 (Wold Theorem).

Consider AR(1): Y; = pY;_1 +¢&;. Since thisholds at ¢, itholdsatt—1 — Y;_; =
pYi_o + €4_1. Substitute into original to get Y; = p(pY;—2 + 1) + &;. Repeat ad
infinitum to obtain, as long as p < 1

Y, = Zpsstfs
s=0

In other words, AR(1) = MA(c0) ; they are different representations of the same
underlying stochastic process.

Wold Representation: All covariance-stationary time series processes can be rep-
resented by / decomposed into a deterministic component and a M A(oco)

Defn 9.12 (Time Trends).
In a stationary process, E [z;] = u, which is seldom true. A less restrictive assump-
tion that allows for nonstationarity is to specify the mean as a function of time.

E[z;] = a + pt specify x; = a + 5t + £;; € stationary

Defn 9.13 (Random walk = I(1)).

is a a process such that E [z¢|z—1, i—2,...] = z4—1.

Ty =Tp_1+¢e, e ~N (O, 02) = AR(1) process with ¢ = 1 =: Unit Root. Rewrite
as

t
Ty =Tt—1+E =0+ E €j
J

Random walk with drift

t
xt:xt71+5+5t:5t+5t+5t,1...51+xo:xo—i-ét—i—Zej
J

Defn 9.14 (Unit Root Tests).

For the following model #; = pa;—1 + &4, & ~ N (0,0?) = AR(1)

test p = 1. Distribution of p under the null p = 1 is non-standard: CLT not valid.
test to use: Dickey Fuller, Augmented Dickey Fuller, Phillips-Perron.
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Defn 9.15 (Cointigration).
Lety, ~ I(1) Axy ~ I(1). y, and z, are said to be cointegrated if 3¢ s.t. y,
I(0). For example, let

— Yy ~

Y = PBry + &y

Ty = Ty—1 + Ut

where (g4, v;) is white noise. Then, y;, z; ~ I(1), but y; — fa; ~ I(0), with cointe-

gration vector a = (1, —f3).

Defn 9.16 (Hodrick-Prescott (HP) filter).

decomposes an observed time series X;,t = 1,2,...,n into a trend X, and a sta-

tionary component X, = » = X, — X, so that the trend {X t} minimises
1 1= - = 2
EZ (X =X +w= > (Kewr = K1) = (X = X))
=1 t=2

Penalty for incorporating fluctuations

w is a tuning parameter. In quarterly data, w = 1600.

9.1.1 Regression with time series

Basic assumption in conventional OLS with time series isE [y, |z1, . . ., 27| = E [y, |z,] =

x} 3. Equivalently, y, = 2} + ¢, E [¢4|X] = O where X = (z1,...,z7)". The second
classical assumption is E [¢7|z] = 0 V; E [g4,—;] =0V ¢, 5.
E [us, us—;|X] # 0 is called autocorrelation. Fix: Newey-West HAC consistent

variance estimator ‘meat’

T
5_761» JIfIt —j
t=j5+1

~ o~ m j 1
VFO+Z(1M)(F +Fl)WhereF :Ti—]
=1

with variance estimated the normal way

Defn 9.17 (Error Correction Mechanism).
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Consider the model
Yo = 0 + ayi—1Poxs + Bixi—1 + &
Subtract y;—; and add —Bpx¢—1 + Bozi—1 to the Lh.s. we get

Y — Y1 =0 — (1 —a)ys—1 + Bo(we — x¢—1) + (Bo + P1)xe—1 + &t

and

Ay =6+ foAxy — (1 — a)(yp—1 — yxi—1) + &4

where 7 is the long run effect

_ Bo + 51

11—«

Defn 9.18 (Testing for trend-breaks - sequential Chow Test).

A Quandt Likelihood ratio test begins with no knowledge of when the trend break
occurs [although researchers typically know of the timing for substantive reasons],
and sequentially estimates the following model

AY; =logV; —logYi_y = a + 80Dy (7) + &

where AY; is the first difference of the outcome, and D;(7) is an indicator variable
equal to zero for all years before 7 and one for all subsequent years. The researcher
varies 7 and tests the null that §p = 0, and the largest F-statistic is used to determine
the best possible break point. Use Andrews (2003) critical values to account for
multiple-testing.

9.2 Spatial Statistics

Defn 9.19 (Spatial Stochastic Process, Autocorrelation).

A spatial stochastic process is a collection of random variables y(u) indexed by
location u: {y;,i € D C R%}, where D is either a continuous surface of a finite set
of discrete locations.

For each location u, y(u) is a random variable, and thus needs to be modeled. Basic
approach is to assume E [y(u)] , V [y(u)] exist, and decompose

y(u) = m(u) +e(u)
N~ ~~
mean function  error

mean function m(u) = E [y(u)] and stochastic error process e(u) s.t. E[e(u)] = 0.
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9.2.1 Kriging - modeling m (u)
Main reference: Christensen (2019, ch 8)

Defn 9.20 (Universal Kriging).

Assume linear structure for m(u). p known functions of w, z1(u), ..., zp(u) s.t.

p
m(u) =) Bj;(u)
j=1
A special case of this is the Ordinary Kriging model where

m(u) = p

for unknown p. The most basic model is Simple Kriging where

m(u) = pio
with known py.

Fact 9.2 (BLP of spatial data: Kriging).
Assume the universal kriging model m(u) = 3% 8;x;(u) holds, we have data on

locations uq, . . ., u,, and that we wish to predict the value of y(ug). The model can
be written
Y =Xg3+e
Ele] =0
Covle] =X = [0y;] = o(uj,uj) i, =1,...,n

J10
Let ZYO = :

0no

The best linear unbiased predictor of yy is
o = 268 +0'(Y = XP)
where § = (X’S71X) 7' X’S71Y and § = 5! Sy,

9.2.2 Spatial Autocorrelation: Modelling e(u)

Spatial Autocorrelation is expressed as
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o(u,w) := Cov [y(u), y(w)] = Cov [e(u), e(w)] = o(w,u)
= Efy(u)y(w)] — E[y(w)]E[y(w)] # 0 Vi # j

Covariance is often modelled in terms of an unknown parameter 6, in which case
we write o(u, w; 8). Assumptions made about e(u) include

1. second-order stationary

2. strictly stationary

3. intrinsically stationary

4. increment stationary

5. isotropic

Covariance functions can be modelled 3 basic ways:

1. Specify a particular functional form on the stochastic process generating the
random variables {y;,i € D}, from where covariance structure follows

2. Model the covariance structure directly, typically as a function of a small
number of parameters

3. Leave covariance unspecified and estimate it nonparametrically

Defn 9.21 (Stationarity).
A process y(u) is said to be strictly stationary if Yk, locations u, . . ., uy, and Borel
sets C1,...,C} , and any vector h € RY,

Pr(y(u1) € C1,...,y(ux) € Cr) = Pr(y(us + h) € C1,...,y(ux + h) € Cx) (12)

i.e. the joint density is translation invariant. In particular, m(u) = m(u + h), so

m(u) = (13)

Also, o(u,w) = o(u+ h,w+ h). Let h = —w, so o(u,w) = o(u — w,0), and so the
covariance function is a function of © — w alone. To make this explicit, we write

o(u,w) =o(u—w)=oc(h) (14)

If y(u) is strictly stationary and the joint distribution of all the random variables in
12 is multivariate gaussian, the process is called a Gaussian Process.
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A second-order (weak) stationary process satisfies 13 and 14, but may or may not
satisfy 12.
An increment-stationary process satisfies 13 and

Pr(y(uz) —y(u1) € Cr, ..., y(ux) — y(ug—1) € Ck) = (15)
Pr(y(uz +h) —y(ur + h) € Cr,...,y(ur + h) — y(uk—1 + h) € Cy) (16)

Brownian motion is increment-stationary but not stationary.

Defn 9.22 ((Semi-)Variogram).
These are defined directly on increment-stationary processes. For a process satis-
fying 13, the semivariogram is defined

s w) = 5B ly(w) — y(w)]* = 3V [y(w) — y(w)]

= {Viy(w)] + Vy(w)] - 2Cov [y(w), y(u)]}
={o(u,u) + o(w,w) — 20(w,u)}

The variogram is 2v(u,w). For an increment-stationary process, v(u, w) = y(u +
h,w + h) ¥V h, and we write

Y(w,w) = y(u—w,0) = y(u—w) (17)

Anintrinsically-stationary process satisfies 13 and 17. All second-order stationary
processes are intrinsically stationary, but not vice versa.

Fact 9.3 (Semivariogram estimation).

For a linear model, stipulate a nonnegative definate weighting matrix, and fit
Y=XB+e ,Ele] =0 ;Covle] =Xg

to obtain residuals ¢y = Y — X B . For any vector h, there is a finite number V;, of
pairs of observations y;, y; for which u; — u; = h. For each of these pairs, list the
corresponding residual pairs, (€os, €0i(n)),? = 1,. .., Na. If Nj > 1, the traditional
empirical covariance estimator is

L

i=1

5(h) = (—h)

The traditional empirical semivariogram estimator in ordinary kriging (no covari-
ates) is
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1 Np,
~ —_— . — . 2
y(h) = N, > Wi = viw)

i=1

Defn 9.23 (Isotropy).

A second-order stationary process is said to be isotropic if
o(u—w) = o(|lu—wl)

An intrinsically stationary process is isotropic if

V(u = w) = (|fu = wl])

Defn 9.24 (Spatial Autoregressive Processes).

y—p=pW(y—pe)+e=I—-pW) ' +e
where W is a N x N weight matrix. a spatial lag for y;

Wy, = Z WijYj
J

Defn 9.25 (Direct Representation of Spatial Autocorrelation).
A parsimonious specification of a small number of parameters for the covariance
matrix is typically presumed.

Cov [ei, 5] = o> f(dij, ©)

where ¢;, ¢; are residuals, o2 is the error variance, d; ; is the distance between ¢, j,
and f is a distance decay function such that % < 0and |f(d;j, )| <1, withp e ®
being a p x 1 vector.

Defn 9.26 (Moran’s I).
The generalised Moran’s I is a weighted, scaled cross-product
nY iy D Wi (i — U)W — )

D it 2o Wi 2o (Yi — 9)?

7 :=

Its expected value is —%.
A test for Moran's I involves shuffling the locations of points and computing Z S times.
This produces a randomization distribution under Hy.

A Monte-carlo P-value is

1+ 50 1psr,,
S+1

j)\:
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9.2.3 Spatial Linear Regression
A simple spatial regression is
y=pWy+XB+¢
the solution is
B=xxX")"X(T1-pW)y
Its reduced form is
y=(I-pW) ' XB+(I-pW) ‘e

The spatial lag term induces correlation between the error and explanatory vari-
ables, and thus must be treated as an endogenous variable.

A spatial error model is simply an linear model with a non-spherical but typically
parametric structure in the error covariance matrix.

y=XB8+ AW¢+n
———

Composite error €

,n~N (0,021)

E[e'] = Q(6)

Example 9.4 (Kelly (2020)’s ’Direct’ standard errors).
A covariance function decomposes into a systematic part and idiosyncratic noise
as follows

i =0?C(|li — j|| , w) + 7°1;; = 0*Cyy + 71

where C'is a correlation function, || — j|| is the distance between points i, j.
Kelly recommends using a Whittle-Matern function defined next. These parame-
ters can be fitted on the error distribution to estimate the covariance matrix.

Defn 9.27 (Covariance Function).

A covariance function Cov (Y'(x),Y (x')) describes the joint variability between a
stochastic process Y'(-) at two locations x and x’. This covariance function is vital
in spatial prediction. The fields package includes common parametric covariance
families (e.g. exponential and Matern) as well as nonparametric models (e.g. ra-
dial and tensor basis functions).

When modeling Cov (Y (x),Y (x)) , we are often forced make simplifying assump-
tions.
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e Stationarity assumes we can represent the covariance function as
Cov(Y(x + h),Y(x)) = C(h)

for some function C : R? — R where dim(x) = d.

e - Isotropy assumes we can represent the covariance function as
Cov(Y(x+h),Y(x)) = C(|[h])
for some function C' : R — R, where || - || is a vector norm.
Exponential :
Cov (Y (x),Y (x) = C(r) = pe /% + 6% 14sr

Matern:

Cov(Y(x),Y (x)=C(r)=p @1@; (g) K, (;)) T+ 0%,

where K, is a modified Bessel function of the second kind, of order v
Matern covariance depends on (p, 8, v, %), while exponential depends on p, 0, 5?),
where

o 0: is the range of the process at which observations become uncorrelated
e p: marginal variance / "sil’
e o2 : small scale variation such as measurement error
e v : smoothness
Fact 9.5 (Workhorse Spatial Regression).

ACinY ACinX  ACin errors
—~ N ~
y=Xv+Wy+WX0+ WrA +¢

Here, W is a weight matrix (typically row-standardised), so WM is a spatial lag.
In spatial econometrics, the above form nests many popular regressions

e Spatially Autoregressive (SAR) Model: A=60 =0
e Spatiallylaggedz: 3=A=0
e Spatial Durbin Model: A =0
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e Spatial Error model : 3 =X =0

Fact 9.6 (The Reflection Problem).
In the Social Interactions Literature (e.g. Manski (1993)), the above expression is
written in the form of conditional expectations

Endogenous Contextual

yi=xy+Ew) 5 +ERilw] 6 +Eplw] A +e
7 4 7 7 [ 7 7

Correlated

in practice, the expectations are replaced with empirical counterparts IAE(y|wl) =
Wy and so on, so the estimation steps are isomorphic.

Define unobservables as v = Wv + ¢, and assume they are uncorrelated with
observables x; that is, there is no sorting and no omitted spatial variables. Then,
we can write

y=Xv+ Wys+WX60 + v
Premultiplying by Wy gives

Wy = WXy + WWyjs + WWX0 + Wu

This shows that Gy is correlated with v, i.e. E [v|Wy] # 0, and least square esti-
mates of the above regression are biased.

If we assume W is idempotent (by constructing a block-diagonal, transitive ma-
trix), we can simplify the above expression to

Wy = WXZ —_i_g +Wu/(1—-p5) Plugging in definition for Wy
y=Xy/(1=B)+WX(y8+0)/(1 =)+ v+ Wuvp/(l-f)
— e N
gl g v

In summary, 3,6 cannot be separately identified from the composite parameters
B, 6. This is the reflection problem of (Manski, 1993).

9.2.4 Spatial Modelling
Based on Rue and Held (2005) and various lecture notes.

Defn 9.28 (Conditional / Markov Independence).

x1, z2 are conditionally independent given x5 if, for a given value of x3, learning
x2 gives one no additional information about z;. The density representation is
therefore
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f (.’B) =f (.CCl |5€3) f (JC2|.’L‘3) f (Tg)

which is a simplification of the general representation.

f(x) =f(x1|xe, x3) f (z2]zs) f (x3)
Theorem 9.7 (Factorisation Criterion for Conditional Independence).

Al ylz & f(x,y,2) = g(z,2)h(y, 2)
for some functions f, g, and Vz with f(z) >0
Example 9.8 (AR1 GMRF).

T = daia+erie PN (0,1) ] < 1
This can be re-expressed as
Te|T1, i1 ~N(pxy_1,1) VE=2,....n
So,forz, ,x; ,1<s<t<m,
xs L x| {zst1,...,x0—1} f t—5>1

In addition to the conditional distribution, also assume the marginal distribution of

z N (0,1/(1 — ¢)?), which is the stationary distribution of this process. Then,
the join distribution of x is

f(x) ="f(x1)f (z2]|z1) ..., f(Tp|THno1)

= (2737;/2 |Q‘1/2 exp (—;X/QX)

where Q is a precision matrix of the form

1 =0
6 1+¢* —o

—6 1+¢ —o

—¢ 1
This tridiagonal form is due to the fact that z; 1L z; if |[i — j| > 1 given the rest
of the sequence. This is generally true for any GMRF: Q;; = 0 ,i # j = x; 1L

xjl{zy : k#1, 5}
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While the conditional independence structure is readily apparent from the preci-
sion matrix, it isn’t evident in the covariance matrix ¥ = Q !, which is completely

dense with entries 1

T1-

Entries of the covariance matrix 3 only give direct information about the marginal
dependence structure, not the conditional one.

¢|i—j|

Uij

Defn 9.29 (Spatial Gaussian Process (GP)).

A spatial process Y (s) s € D C R? is said to follow a Gaussian Process if any real-
isation Y = (Y (s)1,...,Y(s),) at the finite number of locations s1, ..., s, follows
an N— variate Gaussian. More precisely, let ;i(s : D—R denote a mean func-
tion returning a mean at location s (typically assumed to be linear in covariates
X(s) = (1, X1(s),..., Xp(s))) and C(s1,sz) : D*-R* denote a covariance func-
tion. Then, Y (s) follows a spatial Gaussian process, and Y has a density

fy (y) = (\/12—7) = exp {—;(y - (3 (y - u)}

Where p = (u(s1), ..., pu(sn))" is the mean vector and 3 = {C(s;,s;)},; is the
N x N covariance matrix. Evaluating this density requires O(/N3) operations and
O(N?) memory, which means it does not scale well with large datasets. See Heaton
et al. (2019) for overview of alternatives.

Defn 9.30 (Conditional Autoregressions (Besag 1974)).

Let « be associated with some property of points (typically location), with no nat-
ural ordering of the indices. The joint density of a zero-mean GMREF is specified
by each of the n full-conditionals

zilx_i ~ N (Z Bijs, (’f)i_l>

JigFi
these are called CAR models. The associated precision matrix is
Q=Qi = L
Y —kiBi; 1F ]
which is symmetric and positive-definite.

Defn 9.31 (Gaussian Markov Random Field (GMRF)).
A random vector x = (z1,...,2,) € R" is called a GMRF wrt a labelled graph
G = (V, &) with mean p and precision matrix Q > 0 iff its density has the form
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fla) = (2m) Q2 exp (5@ = Qe — o)

and Q;; # 0 & {i,j} € EVi # j. If Q is completely dense, G is completely con-
nected. In spatial settings, Q is typically sparse [depending on how neighbours
are defined. ]

Key summary quantities

1
Qii

> Qijlay — py)

Jige~i

E[zi|z_i] = pi —

e Prec(z;,xz_;) = Qi; and

—Qij

V@i Qjj iF

Corr(xi, Zj |m—ij) =

Fact 9.9 (Markov Properties of GMRFs).
Let « be a GMRF wrt G = (V, £). The following are equivalent

1. Pairwise Markov Property: x; Lz |lx_;; if {i,j} €ENIF]
2. Local Markov Property; ; L& (; ne(i)} | Tne(i) Vi € V

3. Global Markov: 4 Lz |z for disjoint sets A, B, C where C separates A, B
and A and B are nonempty.

Defn 9.32 (Linear Gaussian Process Models).
let the spatial process at location s € D be

Z(s)=X(s)B+w(s) ,Vse€D

where X(s) collects a p— vectors of covariates for site s, and 3 is a p-vector of
coefficients. Spatial dependence can be imposed by modelling {w(s) : s € D} as a
zero-mean stationary Gaussian Process. Distributionally, this implies that for any
$1,...,8, € D, if weletw = (w(s1),...,w(sy,))’, and O be the parameters of the
model

w|® ~ N (0, 2(0))

where 3(@) is the covariance matrix of a n-dimensional normal density. We need
3(®) to be Symmetric, PD for this distribution to be proper.
Special cases:
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e Exponential Covariance Matrix: ® = (¢, ¢, k) 2(0©) = ¥I + xkH(¢), where
the ¢, jth element of H(¢) = exp(—||s; — s;|| /¢). The nugget’ ¢ is the vari-
ance of the non-spatial error, x dictates the scale, and ¢ dictates the range of
the spatial dependence.

e Matern Covariance: © = (¢, k, ¢,v) > 0 for distance = := ||s; — s;||.
Covlii,,m,4] = § T 1w VRO RVIE/) i 0
v+ K if t=0

where K, (z) is a modified Bessel function of order v.

Defn 9.33 (Linear GMRF Models).

Specifying ¥ directly can be awkward when dealing with irregular spatial data
[i.e. every real use case].

So, random effects w are modelled conditionally. Let w_; denote the vector of w
excluding w(s;). Model w(s;) in terms of its full-conditional.

n

w(s;)|w_;, ® ~ N (Z cijw(sj),ni_l) ,i=1,...,n

j=1
where ¢;; describes the neighbourhood structure.

1. Besag (1974) proved that if Q is symmetric PD, with &; in the diagonals and
—K;ci; in the off-diagonals. w|® ~ N (0,Q™!). Simplest version assumes
common precision parameter x; = 7.

2. Intrinsic GMREF: f(w|®) ~ 7(N=D/2exp(—w'Q(7)w). When ¢;; = 1 for
neighbours (i.e. adjacency matrix instead of distances), it simplifies further
to

(W[®@) ~ 7D/ exp (; S (wlsi) - w(sm?)

i~

Defn 9.34 (Gaussian Process Spatial GLMs).
Let{Z(s) : s € D} and {w(s : s € D)} be two spatial processeson D C R4(d € Z7).
Assume Z(s;)s are conditional independent given random effects w(s1), . . ., w(sy),
and that Z(s;) follow some common distributional form, and

E[Z(si)|w]=pu(s;) Vi=1,...n

Let n(s) = h(u(s)) for some known link function h(-) e.g. h(z) = log (ﬁ) for
logit. Assume linear form for projection
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n(s) = X(s)B+w(s). Spatial dependence via w|® ~ N (0, X(©)), where X is often
Matern.
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A Mathematical Background

A.l
1.

A.2

Proof Techniques

Direct Proof / modus ponens: If R is a true statementand R = Sisa
true conditional statement, then S is a true statement. Direct proofs typically
involve backwards-forwards reasoning - take all statements that follow from R
that might relate to S, list them in R. Then, take all statements that follow
from S, list them in S. Then, look for statements r,s € R x S that have a
straightforward proof, and write proof of the form R —= r = s = 5.

Contrapositive: Since every conditional statement is equivalent to its con-
trapositive, proving () = —P is equivalent to proving P — Q.

. Proof by contradiction: Assume P is true, and assume Q is false [i.e. —Q is

true], and show that -9 = S (using P and other possible intermediate
results) where S is known to be false. Conclude that —@Q must be false, so
must be true, and we have proved that P — Q.

Induction [only applies to statements pertaining to well ordered sets| A/

e Assume a base case - P(0) is a true statement
e Prove whenever P(k) is true, P(k + 1) is true

e Therefore P(n) is true for every n € N

Set Theory

A set is a collection of objects. E.g. R, Q, Z, N.
Set operations:

Intersection: AN B
Union: AU B
Difference: A\ B:={z:x € ANz ¢ B}

cartesian product: A x B := {(a,b) :a € ANb € B}

Defn A.1 (Power set).
Set of all subsets of S is itself a set. Denoted as J3(.5)

ICl > [R] > |Q| > |Z] > |N]|
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Relations
reflexive
transitive
Preorder
symmetric not symmetric
Equivalence | induces ~ Order
relation relation
complete
Weak
order
bounded . .
antisymmetric
. Total order
Lattice = (Chain)

Figure 12: Types of Relations

A.2.1 Relations

Given two sets X and Y, any subset of their Cartesian product X x Y is called a

binary relation. For any pair of elements (z,y) € R C RX xY = zRy.

Properties of binary relations:

reflexive tRx Vx € X

transitive if tRy A yRz — xRz

symmetric If tRy —

yRx

antisymmetriclf tRy AyRe — z =y

asymmetric if tRy = —(yRx)

complete if either z Ry

or yRx orbothVx,y,z € X

Defn A.2 (Equivalence Relations).
An equivalence relation R on a set X is a relation that is reflexive, transitive, and
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symmetric. Given an equivalence relation ~, the set of elements that are related to
a given element a :
~(a)={reX:z~a}

is called the equivalence class of a. e.g. Indifference ~ preference relation is an
equivalence relation, but the preference relation > is not because it isn’t symmetric.

Defn A.3 (Order Relations).

A relation that is reflexive and transitive but not symmetric is called an order re-
lation: = > y. This is also called a weak order. > is not an order relation because it
is not reflexive (and is called a strong order). Every order relation also induces an
equivalence relation: z ~y & x> yAy >

An ordered set (X, >) consists of a set X together with an order relation > defined
on X.
A.2.2 Intervals and Contour Sets
Given an ordered set and two elements a,b € X s.t. b = a, we can define
o The open interval (a, b) : set of all elements strictly between a and b.

e The closed interval [a, b] : set of all elements between a and b s.t. [a,b]{z €
X:axz<xb}

Analogously, for arbitrary ordered sets, (X, =) we can define

e Upper contour set = (a) := {x € X : & = a} : set of all elements that follow
or dominate a

o Lower contour set < (a) := {z € X : x < a} : set of all elements that preced
a in the order =

A partial order is a relation that is reflexive, transitive, and antisymmetric.

Defn A.4 (Meet and Join).

The join of a partially ordered set S is the supremum and is denoted \/ S. max(a, b)
is sometimes written a V b.

The meet of a poset is the infimum and is denoted A S. min(a,b) is sometimes
written a A b.
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A.2.3 Algebra

Defn A.5 (Groups).
A set G and an operation ® : G x G—G defined on G. Then G := (G, ®) is called a
group if the following conditions hold:

1. Closure of G under ®: Va,y € G,z Qy € G

2. Associativity: Vz,y,z2 € G, (2 Qy) @z =2® (y ® z)

3. Neutral element: e e GVz € Gst. zQe= eQr =1
4. Inverseelement: Vz € G,y € G: 2 Qy=eAyQxr =c.
5

. if additionally Vz,y € G : 2 ® y = y ® z, then G is an Abelian/Commutative
group

(Z,+), (R™*™ +)(R\{0},.) are all groups

Defn A.6 (Vector Spaces).
A real valued vector space V' = (V, +, -) is a vector space with two operations

+:Vx V=V
S Rx V=Y

Where
1. (V,+) is an Abelian Group
2. Distributivity

e VAeR z,yeV: A -(x+y)=A-z+ Xy
e VAYpeRxzeV:(A+¢) - z=X-z+¢-x

3. Associativity : VA, e Rz € V: A- (¢ - x) = (M) - x

4. Neutral Item wrt outer operation: Ve € V:1-z ==

A.3 Analysis and Topology

Preliminaries:
Vectors : x := (21, ,xp), where z; € R
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A.3.1 Metric Spaces
Defn A.7 (Euclidian Distance).

& 1/2
da(z,y) = [l —ylly == (Z(x - yi)2>

i=1
Requirements for a metric(e.g. ds : R? x R—R Vz,y,v € RF):
o dy(z,y) =0 = =y: apointis at zero distance from itself
o do(x,y) = da(y, x) : distance is symmetric
o do(x,y) < da(x,v) + da(v,y) : triangle inequality
We can generalise this definition to arbitrary nonempty sets S.

Defn A.8 (Metric Spaces).
A metric space is a nonempty set .S and a metric of distance p : § x S=>RVz,y,v €
Ss.t.

° p(r,y) =0 x=y
* p(z,y) = p(y,z)
e p(z,y) < p(x,v) + p(v,y)

For example, (R, d5) is a metric space. Many additional metric spaces in R are
generated by a norm.

Defn A.9 (Norm).
Anormon X C R* isamapping X > z — |z|| € Rst. Vz,y € RFandy € R
satisfying

e Nonnegativity: ||z|| > 0 Vz inX

e Non degeneracy: ||z||=0< 2 =0

e Homogeneity: [z = |1/ ||

e Triangle Inequality: ||z + y| < ||z| + ||yl

Each norm ||.|| on R generates a metric p on R* via p(z,y) := ||z — y||.

E.g. |lz]l, == (X1, 22)!/2 generates euclidian distance ds.

The pair (X, ||-||) consisting of a vector space X together with a norm ||-| is called
a normed linear space.
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Defn A.10 (Banach Space).
Abanach space(X, ||-||) is a normed linear space that is a complete(in the Cauchy-
convergence sense) metric space with respect to the metric derived from its norm.

Defn A.11 (p-norm).
Also known as Minkowski Norm
A class of norms that includes |||, as a special case is the ||. |, defined by

k 1/p
]|, == <Z |xl|p> r € RF

i=1
[[-1l,,8 give rise to a class of metric spaces (R¥,d,) where d,(z,y) = ||lz — yll, Y.y €
R¥,

Examples:
e 1: Taxicab
e 2: Euclidian
e 00: Chebychev

Defn A.12 (Frobinius Norm).
Frobinius Norm of a matrix A is

Al = 2. = y/trace(A’A)

Defn A.13 (Sup, Inf).

a,b € R, [a, b] denotes the set of real numbers satisfying a < 2 < b. ( or ) denotes a
strict inequality (i.e. closed from above or below).

If S C R is bounded from above, Jy s.t. z < y Vz € S.. Then y is the least upper
bound or supremum of sup {z : € S}. If S is not bounded from above, we write
SUp,cs = O0.

Similarly, the greatest lower bound of a set or infimum is denoted inf ;¢ 5 (x) Vinf {z : € S}

Defn A.14 (Sequences, Liminf, Limsup).

Asequence 1, ¥, ... T, isdenoted by {z;} ;- or {z;} when the range of the indices
is clear.

Let {z;} be an infinite sequence of real numbers and 35 s.t. (1)Ve > 0,3N s.t. Vn >
N,zp, < S+ceand (2)Ve > 0and M > 0,3In > M s.t. ,, > S — . Then, S is the
lim sup {z,, }.

If {x,} is not Bounded from above, lim sup z,, = co.
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Defn A.15 (Cauchy Criterion).

A sequence (z,,) in a metric space (5, p) is said to be a Cauchy sequence if, Ve >
0,3N € Ns.t. p(xj,z;) < € whenever j,k > N (intuitively, points in a Cauchy
sequence get tighter together).

Let (x,,) be a sequence of vectors in RF. Suppose for any € > 0, In € Ns.t. Vp,q >
n, p(z?,27) < e. Then, (z,) has a limit.
More basic definition: {a,}>2 ;—Aif Ve > 0,IN s.t. Yn > N, |a, — A| < €

e {a,b,}—+AB
e {a,+b,}—A+B

Sequences
Let S = (S, p) be a metric space. A sequence (x,) C S is said to converge to
zx€S >0,INeNst.n>N = p(z,,z) <e

Theorem A.1.
A sequence in (S, p) can have at most one limit

Defn A.16 (e ball).
centered on z € S with radius € > 0 is the set

B(e,z) :={z€ 5 :p(z,z) <€}
Set Definitions

Defn A.17 (Bounded Set).

A subset E of S is called bounded if E C B(n,x) for some = € S and some suitably
large n € N (intuition - some arbitrarily large € ball can fit F inside it).

A sequence (x,,) in S is called bounded if its range {z,, : n € N} is a bounded set.

Defn A.18 (Closed Set).

A set F' C S is closed IFF for every convergent sequence contained in F, the limit
of the sequence is also in F'.

A closed set contains all its limit points. That is , if (x}) is a convergent sequence
of points in S, then limy,_, =, is in S as well.

Defn A.19 (Open Set).

A subset of an arbitrary metric space S is open iff its complement is closed, and
closed iff its complement is open.

A set S € R* is called open if, Vx € S3e > 0s.t. y € B(e, ), p(z,y) < eisinS.

If F is a closed, bounded subset of (R, ||.||), then sup F € F.

e AsetS C R” is open iff its complement is closed.
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e the union of any number of open sets is open

e the intersection of a finite number of open sets is open.
e the intersection of any number of closed sets is closed
o the union of a finite number of closed sets is closed.

Defn A.20 (Boundary and Closure).

A point z € Sis called an interior point of S if the set {y : p(y, z) < €} is contained
in S for all € > 0 sufficiently small. A point is called a boundary point if {y :
py, ) < e}NS¢isnon-empty forall e > 0 sufficiently small. The set of all boundary
points in A is denoted by 0.A.

The closure of a set S is the set S combined with all points that are the limits of
sequence of points in S.

Defn A.21 (Complete Set).
A subset A C S is said to be complete iff every cauchy sequence in A converges to
some point in A.

Defn A.22 (Compact Set).
The set K C S is called compact if every sequence contained in K has a subse-
quence that converges to a point in K.

Defn A.23 (Convex Set).
A set S C R* is called convex if, YA € [0, 1] and a,a’ € S, we have A+ (1 —\)a’ € S.
(i.e. all convex combinations of two points in a set are also in the set).

Theorem A.2 (Bolzano-Weierstrass).
Every bounded sequence in euclidian space (R*, ds) has at least one convergent
subsequence.

Theorem A.3 (Heine-Borel).
A subset (R¥, dy) is precompact in the same iff it is bounded and compact.
IOW : Compact < Closed A Bounded

Theorem A.4.
All metrics on R¥ induced by a norm are equivalent.

A.4 Functions

A function f from set A to B, writtenas A > z — f(z) € Bor f : A—»Bisarule
associating every element in A to one and only one element in B. The point b is
also written as f(a), and is called the image of a under f. For D C B, theset f~!(D)
is the set of all points in A that map into D under F, and is called the preimage of D
under F. f~1(D):={a € A: f(a) € D}

a function f : A— B is called
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e injective / one-to-one if distinct elements of A are always mapped into distinct
elements of B

e surjective / onto if every element of B is the image under f of at least one point
inA
e bijective if a function is both injective and surjective

Defn A.24 (Continuous functions).

Areal valued function f on R is continous at pointa if Ve > 0,35 > 0 s.t. p(,a) <
§ = [f(z) - fla)] <e

Equivalently, lim,_,, f(z) = f(a)

A function is said to be continuous on the set S C R* if, Va € S A Ve > 0,35 >
0s.t. V{z : p(z,a) < 6}, |f(x) — f(a)| < e. Equivalently, in lim,_,, f(x), we require
the sequence of points that converge to a to be entirely in 5.

e The sum of two continuous functions is continuous
e The product of two continuous functions is continuous

o The quotient of two continuous functions is continuous at any point where
the denominator is nonzero

Defn A.25 (e, § definition of limit).

lim f(z) = L<=Ve>0,30>0,st.0<|z—¢c|<d=|f(x)— L|<e

r—cC

Defn A.26 (Lipshitz Continuity).
Given two metric spaces (X, px), (V, py), a function f : X—) is called Lipshitz
continuous if 3K € Rs.t. Vai,z0 € X,

py (f(x1), f(22)) < Kpx (1, 22)

such a K is referred to as a Lipshitz constant for the function f.
A Real valued function f : R—R is Lipschitz if 3K > 0 such that

[f(21) = fla2)] < Koy — a2

This limits how fast a function can change. Every function that has bounded first-
derivatives is Lipshitz continuous. A differentiable function is Lipshitz if and
only if it has a bounded derivative.

Defn A.27 (Holder Continuity).
A function defined on X is said to be Holder of order o > 0 if 3M > 0 such that

py (f(x), f(y)) < Mpx(z,y)* Yo,y € X
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this is also called Uniform Lipshitz.

Theorem A.5 (Continuity).
A function f S—Y is continuous iff the preimage f~'(G) of every openset G C Y
is openin S.

Defn A.28 (Continuous function).
f is continuous if Ve > 0,36 > 0 s.t. |z —xo| < Ve = |f(z) — f(zo)| <e

Theorem A.6.
Let function f S—Y, where S,Y are metric spaces and f is continuous. If K C S
is compact, then so is f(K), the image of K under f.

Example A.7 (Gamma Function).

[[a] == /000 to e tdt = /0 (log(1/8))* " dt
Beta function : B(a, 3) = I'(«) - T'(8)/T(a + B)

Theorem A.8 (Weirstrass Maximum Theorem).

Let f : k=R, where K C (5, p) (an arbitrary metric space). If f is continuous and
K is compact, then f attains its supremum and infimum on K.

In case of continuous functions on compact domains, optima always exist.

Defn A.29 (Differentiability).
The function f : R—R is differentiable at x if

(f(@) = f(=0))

Jlim R(x) = (@ —0)

= f'(=0)
,ie. (f(z) — f(xo))/(x — xo) has a limit as x—xo.
The derivative of f at zy is this limit and is denoted f'(z0) or 9|,_,,

Fact A.9 (Restrictiveness of Function Classes).

Differentiability C Continuity C 3 Limit ie. not all functions with limits are
continuous, not all continuous functions are differentiable.

More generally,

Continuously Differentiable C Lipshitz Continuous C o— Holder Continuous
C Uniformly Continuous C Continuous

Fact A.10 (Properties of differentiable functions).

e Linearity: f,g : X—=Y are differentiable at o, then f + ¢g and o f are differ-
entiable at x with V (f + ¢) () =V f () + Vg (z); Vaf (z) = aV f (z)
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e Chain Rule: g - f differentiable with Vg - f (z) = Vg (f(x)) -V f (z)

Theorem A.11 (Rolle’s theorem).
Let f : [a,b]—>R, f is continuous and differentiable. f(a) = f(b) = 3¢ €
[a,b] s.t. f'(c) = 0.

Theorem A.12 (Mean Value theorem).
f i [a,b]—=R, f is continuous and differentiable. Then,

Defn A.30 (Epigraph of a function).
The epigraph of a function f is epif := {(z,t) :} f(x) < t (ie. area above the
function).

Defn A.31 (Concavity and Convexity for Real-valued functions).
Let f : [a,b] >R, z,y € [a,b];t € (0,1). Then,

o Fisconvexif f((1—t)x+ty) < (1—t)f(x)+tf(z). f/ > 0: ie. the epigraph
of f is a convex set.

e Fisconcaveif f((1—t)z+ty) > (1 —t)f(z)+tf(x). [/ <0

A.4.1 Fixed Points

Defn A.32 (Fixed Point).
Let T : S—S5, where S is any set. An 2* € S is called a fixed point of 7" on S if
Ta* = 2",

If S C R, then fixed points of T" are those points in S where T' meets the 45 degree
line.

Theorem A.13 (Brouwer’s Fixed Point Theorem).

Consider the space (R¥, d), where d is the metric induced by any norm. Let S C R¥,
and letT': S—S. If T' is continuous and S is both compact and convex, then 7" has
at least one fixed point in S.

Defn A.33 (Mapping Categories).
Let (S, p) be a metric space. T : S—S is a map. it is called

o nonexpansive if p(Tx, Ty) < p(z,y) Vz,y € S

o contracting if p(T'z, Ty) < p(x,y)Vz,y € S,x #y

e uniformly contracting with modulus A € [0,1) if p(Tz, Ty) < Ap(x,y) Va,y €
S,z #y
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Theorem A.14 (Hahn-Banach Fixed Point Theorem).

Let T : S—.S, where (5, p) is a complete metric space. If T' is a uniform contraction
on S with modulus A, then T  has a unique fixed point 2* € S. Moreover for every
x € Sand n € N, we have p(T"z,2*) < N"p(z,2*) = T"z—x* as n—oo

A.5 Measure

Defn A.34 (o — field / Event Space).
A o-algebra (also o-field) is a collection F of subsets of €2 that

e Qe FADe F:includes Q itself and the null set
e Ac F = Q— A=: A® € F: is closed under complement
o Ay, Ay, € F = |2, A; € F:is closed under countable unions.

This is effectively the definition of the event space S for a sample space €.

Defn A.35 (Measure).
A measure ;1 on a set X assigns a nonnegative value ;(A) to many subsets of X.
For a collection F subsets of €2, a measure is a map

w: F—10, 00]

Given A € F, u(A) is a measure of the ‘size” of set A.
A function p on a o— field A of X is a measure of

e Null empty-set: () =0
e Non-Negativity: VA € A,0 < y(A4) < oo = p: A—[0, 0]

o Countable Additivity: If A;, A, ... are disjoint elements of A (i.e. A;,NA; =

0 Vi # j),
2 (U Ai) = ZM(Az‘)

Existence ensured by Caratheodory’s Extension Theorem.
Examples of measures u:

o If X is countable, let (A) = #A = number of points in A. This counting
measure can be defined for any subset A C X, then the o— field A is the
collection of all subsets of X =: X = 2%, the power set of X.

o If ¥ =RF, define u(A) = [...4 [dx1...dzy
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Defn A.36 (Borel Set).

Given a topology on (2, a Borel o-field is a o field generated by the family of open
subsets of (2, i.e. the smallest o field that contains all the open sets.

The Lebesgue measure of a set A can be defined implicitly for any set Bin a o — field
B called the Borel sets of R™. B is the smallest o — field that contains all ‘rectangles’

(alabl) X oo

Example A.15 (Uncountable Sample Spaces).

Suppose 2 = R. We say that I C R is a bounded interval if Ja,b,a < bs.t. I €
{[a,b], (a,b), (a,b],[a,b)}. Define C! := {I C R, I is a bounded interval}, the small-
est o— algebra that contains C! is denoted by B! and is called the Borelian o —algebra
Thus, a countable union of open intervals belongs to the Borelean o-algebra. Since
every open subset of R can be written as a countable union of open intervals, it is
therefore also a Borelean set. The closed subsets are Borelean since a closed set is
the complement of an open set.

Defn A.37 (Lebesgue Measure).

Basic problem: how to assign each subset of R¥, i.e. each element of B(R¥) a real
number that will represent its ‘size’.

With R",n = 1,2,3, u(A) is the length, area, or volume of A, respectively. y is a
Lebesgue measure on R¥.

Defn A.38 (Measure Space).
If Ais a o—field of subsets of X, the pair (X, A) is called a measurable space, and
if ;1 is a measure on A, the triple (X, A, 11) is called a measure space.

Defn A.39 (Probability Space).
A measure . is called a probability measure if (X)) = 1, and then the triple (X', A, )
is called a probability space.

X (ap,bp) i={z €R”1a; <x; <bj,i=1,...,n}

Defn A.40 (Measurable functions).
If (X, A) is a measurable space and f is a real-valued function on X, f if measure-
able if

fFYB)={zcXx: fx)eB}c A

for every Borel set B.

A.6 Integration

Anintegral is a map assigning a number to a function, where the number is viewed
as the area/volume ‘under’ the function. Given a measure space (€2, F, ;) and a
measureable function f : Q—R, an integral [ fdyu is a map from f to number such
that the following three properties hold
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o If f >0, then [ fdu >0
o VaeR, [apdp=a [ ¢du
o [(f+9)du= [ fdu+ [gdu

Defn A.41 (Riemann Sums).

Suppose f is a bounded function defined on [a, b]. An increasing sequence P :=
{a =29 <1 <22 <--- <y =b} defines a partition of the interval. The mesh
size of the partition is defined to be

|P| = max{|x; —x;—1|:i=1,...,N}

To each partition we associate two approximations of the area under the graph of
f, by the rules

N
U(f,P):= Z sup

N
L(f,P):=)_ inf f(&)(x; — ;1)

these are called the upper and lower Riemann Sums For any partition, U(f, P) >
L(f, P).

Defn A.42 (Riemann Integrabhility).
A bounded function f defined on an interval [a, b] is said to be Riemann integrable
if

b
irlgf U(f,P) =sup L(f, P); / f(z)dz =: Reimann Integral
P a

Suppose f is piecewise continuous, defined on [a, b]. Then, f is Reimann integrable
and

b N j b—a
/a f(x)dx:NlE)nm;f (a—l-‘]jv.(b—a)) N

Theorem A.16 (Fundamental Theorem of Calculus).
If f is continuous on [a,b] then F(z) := [ f(t)dt is differentiable on the open
interval (a,b) and F'(z) = f(x) Vx € (a,b). F is called the anti-derivative.

b
[t =r) - F@
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Defn A.43 (Indicator Function).
Given a measurable space (2, F) and a set E € F, we define an indicator function
fe : Q=R defined by

f E (UJ) =1, c€E
This function is measurable.

Defn A.44 (Integration of Simple Functions).

Any function f of the form f(w) Y"1 | a;lyep, Ya; € RA Ey,...E, € F constitutes
a finite partition of 2. A countable sum of measurable functions is measurable,
which implies that f is measurable. Then we define

/fdu = a;u(E
=1

Defn A.45 (Lebesgue Integral / Integration of Measurable Functions).

For any measurable function f, define f* := max{f,0} and f~ := max{—f,0},
which are also measurable. We also have f = f* — f~ and |f| = f* — f~. When
either [ f~dpor [ f~dpu is finite, we define the integral

[ tan= [ sran= [ rau

Whenboth [ f~dpand [ f~du are finite, we say f is integrable w.r.t. 1. Lebesgue
integrals intuitively slice the function horizontally, while Reimann integrals slice
vertically.

A.7 Probability Theory

Defn A.46 (Kolmogorov Axioms).
The triple (Q2, S, P) is a probability space if it satisfies the following

e Unitarity: Pr(Q) =1
e Non Negativity: Vs € S,Pr(a) > 0Pr(a) e RAPr(a) < oo
e Countable Additivity: If A;, A,, ...,

A; = 0], Then
P (U Ai> => P(A
=1 =1

Other properties for any event A, B

€ S are pairwise disjoint[i.e. Vi # j, A; N
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e ACB = Pr(A) <Pr(B)

Pr(4) <1
e Pr(A)=1-Pr(A°
e Pr()=0

Stated differently:

Defn A.47 (Probability).

Let P be a probability measure on a measurable space (€, B), so (£, B, P) is a prob-
ability space. Sets B € B are called events, points ¢ € £ are called outcomes, and
P(B) is called the probability of B.

Let (£, B) be a measurable space. Let PP : B—[0, 1] be a ‘set” function mapping the
o— algebra of subsets of £ into the real line. We say P is a probability measure if,
forevents A,B € &,

1. 0 < Pr(A) < 1: Events range from never happening to always happening
£) = 1: Something must happen

2. Pr(
3. Pr () = 0: Nothing never happens

4. Pr(A)+ Pr(A°) = 1: A must either happen or not happen

5. Pr (U2 4,) =Y Pr(A,): o— additivity for countable disjoint events

e Boole’s Inequality Pr (U2, 4,,) < > >° | for any sequence of events

6. Monotonicity: for events A, B;A C B = Pr(A) < Pr(B)

Defn A.48 (Random Variable).

A measurable function X : Q—Rst Vr € R{weQ: X(w) <r} € &£ (event
space) is called a random variable. In other words, a random variable is a function
from the sample space to the real line R, and the probability of its value being in a
given interval is well defined.

Defn A.49 (Probability Distribution).
The probability measure Px living on (R, B(R)) such that for any A € B(R),

Px(A) = P({le € &: X(e) € A}) = P(X € A)

for Borel sets A is called the distribution of X. The notation X ~ (@ is used to
indicate that X has distribution Q = Px = Q.
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Defn A.50 (Cumulative Distribution Function).
Map F : R—0, 1] such that
Fx(z)=P(X <z)=P({e€&: X(e) <z}) =t Py((—00,2])
forxr e R
Properties of CDF FF (u)
e Boundary property: lim,, o F (u) = 0,lim, oo F(u) =1
e Nondecreasing: F (z) < F(y)ifz <y

e Right continuous: lim,, |, F (u) = F (z)

A.7.1 Densities

Theorem A.17 (Radon-Nikodym).
If a finite measure P is absolutely continuous wrt a c— finite measure x, then 3 a
nonnegative measurable function f s.t.

P(A)=/Afdu =t/fllAdu

The function f in this theorem is called the Radon-Nikodym derivative of P with
respect to y, or the density of P with respect to p, denoted

Defn A.51 (Absolutely Continuous Random Variables).
If a random variable has density p wrt Lebesgue measure on R, then X or its dis-
tribution Py is called absolutely continuous with density p. Then, from R-N,

x

Fy(z) = P(X < ) = Py ((—00,2]) = / pu)du

Using the fundamental theorem of calculus, p can be found from the CDF Fx by
differentiation, p(x) = Fk ().

Defn A.52 (Discrete Random Variables:).
Let X, be a countable subset of R. The measure x := u(B) = #(X N B) for borel
sets B is also called counting measure on Xy. Then,

/fdu= > flx)

rEX)
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Suppose X is a random variable s.t. P(X € X)) = Px(Xp = 1). Then, X is called
a discrete random variable.
The density p of Px w.r.t. ;s satisfies

POY €)= Px(A) = [ pdu= 3 p(o)1a)

rEX)

In particular, if A = {y} s.t. y € Xy, then X € A < X =y, and so

P(X =y)= Y pa)lgy(z) =py)
TEXp

The density p is called the mass function for X.

A.7.2 Moments

Defn A.53 (Expectation:).
If X is a random variable on a probability space (£, B, P), then the expectation of
X ~ Px (i.e. density p), is defined as

E[X] := /XdP: /a:dPX(x) = /xp(:v)d(x)

For discrete RV X with P(X € Ay) = 1 for a countable set &), if ;4 is counting
measure on Xy, and p is the mass function given by p(z) = P(X = z),

E[X]:= /deX(:L') = /xp(x)du(:r) = Z ap(z)

rEXp

Defn A.54 (Variance).
The variance of a random variable X with finite expectation is defined as

VX]=E[X -EX])”
If X is absolutely continuous with density p,
VIX) = [ (@ EX)?pla)do

If X is discrete with mass function p,

> (@ —E[X])’p(x)

TEXp

VIX]
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A.7.3 Random vectors
If X1,...,X, are random variables, then the function X : £—+R" defined by
X 1 (6)
X(e) = ,e€é&
Xn(e)
is called a random vector. The definitions above extend naturally to random vectors,

e.g. the distribution Py of X is

Px(B)=P(X € B):=P({e€&:X(e) € B})

for Borel sets B € R"™. The expectation of a random vector X is the vector of
expectations

E [X]
Elx]=| :
E[X,]

A random vector is said to be absolutely continuous if the CDF can be written as

Defn A.55 (Random Matrices).
A matrix W is called a random matrix if the entries W;; are random variables.

F($1,$27...,$n)

Defn A.56 (Covariance).
The covariance of a random vector X is the matrix of covariances of the variables in
X

[Cov(X)]i; = Cov(X;, X;)
If  =E[X] and (X — p)’ is the transpose of the mean deviation, then

Cov(Xy, X;) 1= B [Xi — ] (Xjp5) = E[(X = p)(X = p)'];

SO

Cov(X) = E[(X — p)(X — p)'] = E[XX] -

A.7.4 Product Measures and Independence

Let (X, A, 1) and (), B, v) be measure spaces. Then 3 a unique product measure
pwxvon (X xY AV B)suchthat (uxv)(Ax B)=u(A)v(B)VA € A, B € B. The
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o-field AV B is defined formally as the smallest 0 — field containing all sets A x B
withAe A, B € B.

Theorem A.18 (Fubini).
Integration against the product measure ;1 x v can be accomplished by iterated

integration against i and v, in either order
[ <) = /[/f £, ) )]du /Vflydu )}dv( )

Defn A.57 (Independence of random variables).

Suppose X; : @—R,1 < i < m are random variables.

X1,Xa,..., Xy, are indepepndent for all By, By, ...,

true that

B,,, Borel subsets of R, it is

Pr(X;, € B;,Vil<i<m)=Pr(X, €B))...Pr(X,, € Bp)

A.7.5 Conditional Expectations

Defn A.58 (Conditional Probability).
Given two r.v.s X,Y with finite second moments, E [Y'|X] is defined as a (X )—
measurable function m(X) such that

m(.) arg’rlnin Ep [Y — m(X)]?

For continuous X, Y € R? with pdf f(z,y), For any y* € R, the conditional proba-
bility of the event {Y" < y*} := Py |x (Y < y*|z) is defined as a function satisfying

*

/ Py x (Y < y*|z)fx(dz) =Pxy(X < 2™ Y <y*)Vz* € R

The conditional CDF is

*

Fyix(y*) =Py ix (Y <y'lz) = /j J;ifxgj))

——
conditional density f(y|x)

dy

Defn A.59 (Bounded Lipshitz Distance).
Let X ~ Fx;Y ~ Fy. Define the the class of ‘Bounded Lipshitz functions” with
Lipshitz constant 1 as

BL(1) := {h :RoR st |h(x) — h(z)] < |z —y|A ilé% |h(z)| < 1}
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Then the Bounded Lipshitz Distance is
dpr(Fx, Fy) = sup [Epy [(X)] = Eg, [2(Y)]]
heBL(1)

Fx and Fy are said to be ‘close’ if dgr (Fx, Fy) is small.

A.7.6 Order Statistics

Fact A.19 (Distribution of Order Statistics).

Suppose X1, Xo, ..., X, are up r.v.s with distribution F,, (). To each w € § define
max {Xi,...,X,} (w) = max{X;(w),..., X, (w)}. We want the distribution F of
max {X1,...,X,}

G(r)=Pr({w € Q;max{Xy,..., X} <r})

N
HPr (X; <)

i=1

= Pr (N, [X; <)) =

N
= [[F70)=F()

If F' has a density, G has a density too

g(r) = G'(r) = nF" " (r)f (r)

More generally, the distribution function of X,,) is given by F(,,)

IE‘(m) (t) = Z?:m )
—F(t))"—% ,—co <t < o0

(m’IF(t)i( 1
Severini (2005, chap 7).

Example A.20 (Max of  iid U [0, 1] vars).
has a distribution with denisty g(r) = nr"~—1

Example A.21 (Distribution of second highest value Y2).
(Useful for Vickrey auctions)

Fy (r) = F™(r) + m(1 = F(r))F™ ' (r)
fy2 (1) = m(m — 1)(1 = F(r))F™ 2 (r)f(r)

<+~ ToC

A.8 Linear Functions and Linear Algebra
A.8.1 Linear Functions

Defn A.60 (Linear Function / Homomorphism).
A function f : X—Y between two linear spaces X, Y is linear if it preserves the
linearity of sets X and Y through the following properties (V 1,2 € X)

f(@1) + f(w2)
e Homogeneity f(ax1) = af(x;)

o Additivity f(x; + z2) =

o f:V—W linear and bijective is called an isomorphism

o A linear function that maps onto R is called a linear functional.

A linear function that maps onto itself is called a linear operator |/ automor-
phism.

Every linear function mapping from a finite-dimensional domain X can be rep-
resented by a matrix.

Fact A.22 (Typology of Linear functions).
Linear Functions f(az; + (1 — a)x2) = af(x1 + (1 — ) f(x2) Imply

o Additivity : f(x1 + x2 = f(x1) + f(x2) generalises to

— Convex Functions f(ax1 + (1 — a)z2) < af(x1) + (1 — a) f(z2) gener-
alises to

- Quasiconvex functions f(ax; + (1 — @)x2) < min(f(x1, z2)
e Homogeneity: f(ax) = af(x) generalises to

- Homogeneous functions f(ax) = o* f(z) ,a > 0 generalises to

— Homothetic functions f(x1) = f(x2) = f(axz1) = f(axz) a >0

Defn A.61 (Inner Product / Dot Product).
An inner product on a vector space V' is a mapping (-,-) : V' x V=R that satisfies,
Ve,y,z € V AainR

o (z,2)>0and (z,2) =0 2 =0
o (z,y+2z) = (z,y)+(z,2)

o (z,ay) =a(z,y)

o (z,y) = (y,7)
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n
2y = (@y) =z,
=1

This generalises to an inner product of two functionals u, v : R—R where

b
(u,v) = / u(z)v(x)dx
An inner product defines a norm |[v|| = /(v,v). This gives us a restatement of

the Cauchy-Schwartz inequality |(z, )| < ||z| [|y]]
Defn A.62 (Orthogonal / Orthonormal Vectors).

1. (xz,y) =0 = z.Lly (Orthogonality). Furthermore, if ||z|| = 1 = ||y||, then
they are said to be orthonormal.

2. (z,y) = £1 = xparalleltoy

Defn A.63 (Symmetric, Positive Definite Matrices).
A € R"*" is symmetric, positive definite if Vo € V : &’ Az > 0.

Defn A.64 (Hadamard Product).
For conformable matrices A and B with identical dimensions, the element-wise
product
Cij = Q5 X bij VZ,j S dlm(A) =A0®B
is called the hadamard product.

Defn A.65 (Euclidian Norm).
Euclidian norm of a vector € RY is defined as

& == v/ (@, x)

Fact A.23 (Angle between two vectors ).
Angle between u and v is given by

cosf = 7<u,v>
[l vl

Theorem A.24 (Cauchy-Schwarz Inequality).
@, )| < [l vl
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Defn A.66 (Trace).

N
Trace(A) = Z Qnn
n=1

For conformable matrices A, B; tr(AB) = tr(BA)

Defn A.67 (Eigenvalues and Eigenvectors).
For a square matrix A, scalar A and vector x that satisfies Az = Az constitute an
eigenvalue and eigenvector respectively.

Defn A.68 (Orthogonal / Orthonormal Matrix).
A square matrix A € R"*" is orthogonal iff its columns are orthonormal so that

AA' =T=A'A — A=A
Defn A.69 (Kernel, Rank Nullity).
For ® : V—W, we define the kernel /null space as
ker(®) := & (0w ) = {v eV :d(v) =0y}
and the image/range
Im(®):=2(V)={weW|FveV:o(v)=w}

The dimension of the image is called the rank of ®. The dimension of the kernel
is called the nullity of ®. If X is finite dimensional,

rank @ + nullity ® = dimX

This is the rank-nullity result
A linear function ® has full rank if rank®(X) = min{rank X, rankY}

Defn A.70.
Nonsingular Matrices
A matrix A € R, «,, with columns ay, ... a,, is non-singular or one-to-one if

A is one-to-one < ay,...ay is a basis < kerA = {0}

A.8.2 Projection

Defn A.71 (Projection).
Let V be a vector space and U C V is a subspace of V. A linear mapping 7 : V—=U
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is called a projection if 72 = m o 7 = 7. Since homeomorphisms can be expressed
by a transformation matrix, projections can be represented as a projection matrix
P, with the property P2 = P. Projection matrices are always symmetric.

Example A.25 (Projection onto general subspaces).

We look at orthogonal projections of vectors y € R™ onto lower dimensional sub-
spaces X C R™ with dim(X) = m > 1. Assume (&1, ..., Z,,) is an ordered basis
of X. Therefore, any projection 7y () = Y i, A\iz; = XA. The problem, then, is
to find Ay,..., A\, coordinates of the projection (with respect to basis X) where
mu(x) = BAgiven X = [z1,..., @] € R™™and A = [A,..., A\’ € R™. The
solution is the familiar OLS coef vector

A= (X'X)" X'y

where (X’X) ™" X’ is also called the pseudo-inverse of B, which can be computed

as long as (X'X) " is full rank.
The projection matrix is therefore

P,=X(XX) "X
Defn A.72 (Gram-Schmidt Orthogonalisation).

Anybasis (by, . .., by,) of an n— dimensional vector space V' can be transformed into
an orthogonal/orthonormalbasis (u, . .., u,) wherespan[bi,. .., b,] = spanfuq,...,u
as follows

U ‘= bl

Uk = bk - 7Tspan['u,l,‘..,'u;c_l](bk) k= 2’ -

where the kth basis vector b, is projected onto the subspace spanned by the first
k — 1 constructed orthogonal vectors w, ..., ux_1.

This is the same as FWL Theorem, but older.

A.8.3 Matrix Decompositions

Defn A.73 (Spectral / Eigenvalue Decomposition).
A square matrix A admits to an eigen-decomposition if it can be factorised as A =
QAQ ! where

e Qis an x n matrix whose ith column is the eigenvector g; of A (orthogonal
matrix)

e A is a diagonal matrix with corresponding eigenvalues A;; = A;

<+~ ToC

Fact A.26 (Orthogonal Matrices).
If Q,N are N x N orthogonal matrices

e QT = Q!isalso orthogonal
e QN is orthogonal
o det(Q) € {—1,1}

Defn A.74 (Cholesky Decomposition).
If A is positive definite, then it admits to

e A = RTR where R is non-singular upper triangular
e A = LL” where L is non-singular lower triangular

Defn A.75 (QR Decomposition).
If Aisa N x K matrix with full column rank, 3 a factorisation A = QR where

e Qis an orthogonal matrix
e Ris K x K upper triangular and nonsingular (invertible)

Example A.27 (QR Decomposition for OLS).

8= X)71 X'y is often numerically unstable, so we can define X = QR. The,
the OLS estimate can be written as 8 = (R) -t Q’y. The homoscedastic variance is
% [,6] — 02 (X'X)"" = (RR) ' 02

Using the same decomposition, y = Xﬁ =QQ'y.

Defn A.76 (Singular Value Decomposition).
Any n X p matrix Z may be written as

Z=UxV’

where U is a n x n orthogonal matrix, V is a p x p orthogonal matrix, and X is a
n x p diagnonal matrix with non-negative elements.

Example A.28 (SVD of covariance matrix equivalence with spectral decomposition).
For a square covariance matrix X'X, if X = USV’, then

X'X = vsTuTusv’ = vDV’

where D = S2 contains the square singular values. In other words,

U = evec(XX'), V = evec(X'X), S? = eval(X'X) = eval(XX’)
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A.8.4 Matrix Identities

For conformable matrices A, B, C,

A(B+C)=AB+AC
A+B'=AT +B'
AB'=B'A"
(AB)™' = (B) ' (A)"
trace(ABC) = trace(CBA) = trace(BCA)

A.8.5 Partitioned Matrices

Defn A.77 (Partitioned Matrices).
It can be useful to partition a matrix as follows

X1 o X
X: E '.' E :|:

X1 X12]
Xml Tt an

Xo1 Xoo

Multiplying a partitioned matrix with a stacked vector c

X1 X2 |a
Xo1 Xoa| |e2

_ [ Xna + Xise
Xaic1 + Xosca

Fact A.29 (Inverse of 2 x 2 partitioned matrix).

xc- |

1 _ _ _ _
X111 Xi9 _ Xlll +X111X12F2X21 (Xll) ! _(Xll) 1X12F2
Xo1 Xoo —F> X0y (X11)71 F>

1 -1
where F, = <X22 — Xo1 (X11) Xl?)

A.9 Function Spaces

Almost all of this is based on / stolen from Larry Wasserman
http:/ /www.stat.cmu.edu/ larry /=sml/functionspaces.pdf and Racine, Su, and Ul-
lah (2013).

Defn A.78 (Function spaces).
Let U be any set, let bU be the collection of all bounded functions s.t. f: U—=R (i.e.
sup,eyp | f(x)| < oo and let
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doo(f,9) == If — glloo = sup |f(x) — g(z)|
xeU

Spaces of functions can be treated as linear vector spaces

Defn A.79 (Inner Product and Norm in function spaces).

<ﬁ@=/f@ﬂ@ﬂ

which leads to a norm for functions

nﬂ@:/}%mm

Defn A.80 (Eigenvalues and Eigenfunctions).

An operator O is a higher-order function that maps from one function to another.
A derivative and integral are both operators.

Operators can have eigenvalues and eigenfunctions such that

Of =Af
exp ax is an eigenfunction for both differentiation and integration.

Defn A.81 (Hilbert Space #).

is a complete (:= every Cauchy sequence in the space converges to a point in it),
inner product space. Equivalently, it is a vector space endowed with an inner product
and an associated norm and metric such that every Cauchy sequence has a limit in H.
Intuitively, it means it doesn’t have any ‘holes” in it (Q is not a complete space
because v/2 is missing from it).

Every Hilbert space is a Banach space but the reverse is not true in general. In a
hilbert space, || f, — f|| =0 as n—o0.

If V is a hilbert space and L is a closed subspace then Vv, 3y € L called a projection
of v onto L that minimises ||v — z|| over z € L. The set of elements orthogonal
every z € L is denoted L. Every v € L can be written as v = w + z where z is the
projection of v onto L and w € L.

Example A.30 (R).
, the set of random variables defined on a common probability space {X,F, u}
is a Hilbert space with inner product (X,Y) = E[XY], associated norm || X| =

VE [X?] and metric || X — Y.
Example A.31 (L2 (w)).
the space of Borel-measurable real functions f on R given density w(z) satisfying

ffooo f(x)?w(r)dr < co and associated norm ||f|| = +/(f, f) and metric ||f — g|| is
a hilbert space.

139


http://www.stat.cmu.edu/~larry/=sml/functionspaces.pdf

Defn A.82 (Orthogonal / Direct Sum).
If L and M are spaces such that every ¢ € L is orthogonal to every m € M, then
we define the orthogonal sum as

LeM={l+m:leL,meM}

A set of vectors {e;, t € T} is orthonormal if (es, e;) = 0 when s # t and ||e;|| = 1VT.
This is also called an orthonormal basis. Every hilbert space has an orthonor-
mal basis. A Hilbert space is said to be separable if there exists a countable
orthonormal basis.

A9.1 L,spaces

Let F be a collection of functions [a, b] — R. The L, norm on F is defined by

b 1/p
1£1, = ( / f<x>|"dx>

For p = oo, we define the sup norm || f||, = > . |f(z)].
The space L, (a, b) is defined as

Ly(a,b) := {f fa, bR : || £, < oo}

Every L, space is a Banach Space.

e Cauchy Schwartz: ([ f(x)g(:z:)d:c)2 < [ fA(x)dx [ ¢*(x)dx
e Minkowski: || f +gll, < [Ifll, + llgll, wherep > 1
e Holder: |[fgll, <|[fll, llgll, where (1/p) + (1/q) =1

Example A.32 (L, space).

Functions where || f ||§ < oo are said to be square-integrable, and the space of square-
integrable functions is called L,. Many familiar results from vector spaces carries
over into L.

Ls(a,b) is a Hilbertspace. The inner product between two functions f,g € La(a,b)
is f: f(2)g(z)dz and the norm of f is || f||> = ff f?(x)dz. With this inner product,
Ls(a,b) is a separable Hilbert space; that is, we can find a countable orthonormal
basis ¢1, ¢2,...;, thatis [|¢;|| =1 Vj, and f; ¢i(x)g;(z) = 0 Vi # j. It follows that
if f € La(a,b),

oo b
fl@) =Y 0;¢;(x) where0; = / f(x)p;(z)dx
j=1 @
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are the coefficients. Parseval’s identity f: fP(a)de =377 63,
The span of L is

{Zajqﬁj(x) SA1, ..., 0 € R}
j=1

The projection of f = Zj’il 0;¢;(z) onto the span {¢1, . ..
which we call the n-term linear approximation of f.

s On}is fo =300 0;0;(x),

Defn A.83 (Bases in function space).
A sequence of functions 1, ... can be considered a basis. An orthonormal basis
is one that admits to

oo

F= (i)
j=1
Mononomials 1, z,z2, ... are a basis for L on [0, 1] and R, but they aren’t orthog-

onal.

Example A.33 (Famous Bases).

A popular basis for L, on [0, 1] are the sines and cosines, which may be written
as ¢1 = 1, o, = sin2knz , Por1 = cos2kmz. Coefficients in this expansion are
referred to as the Fourier transform of the original function.

A cosine basis on [0, 1] is

do(x) =1, ¢j(x) = V2cos(2mjz) ,j=1,2,...

Legendre basis on (—1,1) is

1 1
Py(z)=1, Pi(z)=z, P(zx)= 3 (32 —1), Pi(z)= 5 (52° = 3z),...
The Haar basis on [0,1] consists of functions
{o(x), ¥ju(z):j=0,1,....,k=0,1,...,27 — 1}

where

1 fo<z<l1
¢(z) = { 0 otherwise
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Yin(z) = 29/% (292 — k) and

1
—1lifo<z < =

[\

P(z) =

1if L <zr<l1
if =
2 ==
This is a doubly indexed set of functions so when f is expanded in this basis we

write ;
f Z Z jkw]k

=1 k=1

where a = [; f(z)¢(x)dz and Bj = [y f(

ple of a wavelet basis.

x)¢ i (z)dz. The Haar basis is an exam-

Defn A.84 (Holder Spaces).
Let (8 be a positive integer. Let 77 C R. The Holder space H(f3,L) is the set of
functions g : T' — R such that

g V() —gP V@) <Lz —y|, forallz,yeT

The special case 8 = 1 is sometimes called the Lipschitz space. If 3 = 2 then we
have

9'(x) = g'(y)| < LIz —yl,

Roughly speaking, this means that the functions have bounded second derivatives.

for all z,y

Multivariate version There is also a multivariate version of Holder spaces. Let T C
R?. Given a vector s = (s1,...,54), define |s| = sy + -+ + s84,8! = s1!--- 54!, 2° =
xit - xyt and

osittsa
S1 Sd
Oxi* - -- 0z

The Holder class H (3, L) is the set of functions ¢ : T' — R such that

D* =

[D*g(x) = D*g(y)| < Lz — y||*~ V!
for all 2,y and all s such that |s| = 8 — 1

Defn A.85 (Sobolev Space).
A Sobolev space is a space of functions possessing sufficiently many derivatives
for some application domain. Formally,
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Let f be integrable on every bounded interval. Then f is weakly differentiable if
there exists a function f’ that is integrable on every bounded interval, such that
L f Y f(s)ds = f(y) — f(x) whenever z < 3. We call f’ the weak derivative of f. Let
Dif denote the j™ weak derivative of f

The Sobolev space of order m is defined by

Winp = {f € Ly(0,1) : [D™ f[| € Lp(0, 1)}

The Sobolev ball of order m and radius c is defined by

Wanp(€) = {1+ F € W, 1D 1], < c}

Defn A.86 (Mercer Kernel and Theorem).
A Mercer kernel is a continuous function K : [a, b] X [a,b] — R such that K (z,y) =
K (y,x), and such that K is positive semidefinite, meaning that

iiK (I’i7l’j) CiCj Z 0

i=1 j=1

for all finite sets of points z,...,z, €
function

[a, b] and all real numbers ¢y, ..., ¢c,. The

m—1 TN -1 m—1
1 V(2 —u)m Ty — )
Ky =) oty /O (m— 1) du

k=1
is an example of a Mercer kernel. The most commonly used kernel is the Gaussian
kernel

lz—y|2

K(z,y)=e

Defn A.87 (Reproducing Kernel Hilbert Spaces).

Given a kernel K, let K, () be the function obtained by fixing the first coordinate.
That is, K, (y) = K(x,y). For the Gaussian kernel, K, is a Normal, centered at z.
We can create functions by taking liner combinations of the kernel:

k
= Z a; Ky, (x)
j=1
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Let Ho denote all such functions:

k
Ho = {f:Zaijj(x)}

Given two such functions f(x) = Z?:l a; Ky, (x) and g(z) = X711, B Ky, (x) we

define an inner product

(f.9)=(f.90k =) Z @i K (i,y;)

i

In general, f( and ¢g) might be representable in more than one way. You can check
that (f, g) k is independent of how f( or g) is represented. The inner product de-
fines a norm:

WMV@MVZE%WM@M@%Mm
7 k

where o = (o, . . ., ak)T and K is the k x k matrix with K;;, = K (z;, zx)
The Reproducing Property
Let f(z) = >, a; K, (x). Note the following crucial property:

This follows from the definition of (f, g) where we take g = K. This implies that
(K., K;) = K(x,z)

This is called the reproducing property. It also implies that K, is the representer
of the evaluation functional.

The completion of H, with respect to || - ||k is denoted by H i and is called the
RKHS generated by K.

Evaluation Functionals. A key property of RKHS's is the behavior of the evaluation
functional. The evaluation functional ¢, assigns a real number to each function. It
is defined by ¢, f = f(x). In general, the evaluation functional is not continuous.
This means we can have f,, — f but ¢, f,, does not converge to ¢, f. For example,
let f(z) = 0and f,(z) = /nl (z <1/n?). Then | f, — f|| = 1/y/n — 0. But
dofn = v/n which does not converge to dp f = 0. Intuitively, this is because Hilbert
spaces can contain very unsmooth functions.
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But in an RKHS, the evaluation functional is continuous. Intuitively, this means
that the functions in the space are well-behaved. To see this, suppose that f,, — f.
Then

so the evaluation functional is continuous.
A Hilbert space is a RKHS if and only if the evaluation functionals are contin-
uous.

Theorem A.34 (Representer Theorem).
Let ¢/bealoss function dependingon (X1, Y1), ..., (X,,Y,)andon f (X1),...

Let fminimize
C+g(Ifl%)

where g is any monotone increasing function. Then f has the form
n
f@) =Y aik (ai,2)
i=1
for some aq,...,a,

A.10 Calculus and Optimisation
A.10.1 Calculus

Defn A.88 (Derivative).
The derivative of a function f at point , when defined, is the tangent to the func-
tion at x.

— = lim
ox h—0

of flx+h) - fz)
h

Defn A.89 (Gradient, Jacobian, Hessian).
For function f : R™—R, we define the

me =

of
Oxn

which collects the partial derivatives in a column vector.
The matrix of partial derivatives of f is called the Hessian, denoted by H(x)
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8%f 82f &% f
Oz dx10xy ' Ox10xn,
H(x) = : .
8% f 8% f
52 0a o o 52

For a vector-valued function f : R"—R™, we can construct the Jacobian, which
collects all m x n partial derivatives.

Vfi(z) s=fi(x) % fi(x) a5, (@)
of _|VE@ | 10w 2 f(w) a0, f2()
Vin@)] Lain@) i@ o o fn(@)

Theorem A.35 (Taylor’s theorem).
f : R—>R admits to Taylor expansion around « such that

#(a (a s M(a n
f!)(x—a)Jr 2(!)(5661)2"’”;0 n(!)(l’*a)

f(z) = f(a) +

For a function with multiple arguments f : R*¥—R, the second-order Taylor expan-
sion around the point x is

700 % Flxo0) + (x — x0) - ¥ (x0) + 5 (x — x0)H()(x — x0)

Fact A.36 (Sufficient Conditions for Local Maxima and Minima).
Let f(x) have continuous first and second order partial derivatives in the e— neigh-
bourhood of the optimum x.

o If Vf(x0) = 0 and H(xy) is positive definite, then x¢ is a local minimum.
o If Vf(x0) = 0 and H(xo) is negative definite, then xg is a local maximum.

Theorem A.37 (Generalised (Everett) Lagrange Multiplier Theorem).
Let A1, ..., Ay, be nonnegative real numbers, and suppose xo maximises the La-
grangian M (x, )

M(x,A) = f(x) = Y Ajgi(x)
j=1
Then, x, maximises f(x) subject to constraints (z € S)

g9;(x) <gj(x0) ,i=1,...m
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Theorem A.38 (Inverse Function Theorem).

If ¢ : U—R? is differentiable at a and D, is invertible, then 3U’, V' such that
a € U CUwp(a) € V' ANy : U—V'is bijective. Further, the inverse function
v : V/'—=U’ is differentiable.

Theorem A.39 (Implicit function theorem).

LetU C R%*! beadomainand f : U—Rbe a differentiable function. If z € R%Ay €
R, we’ll concatenate the two vectors and write (z,y) € R4+,

Suppose ¢ = f(a,b), and 9y, f(a,b) # 0. Then, 3U’ > aA differentiable function
g:U—=Rst gla) =bA f(z,g9(x)) =cVazelU.

Further, 3V’ 3 bs.t. {(z,y)|lz €U,y e V', f(z,y) = ¢} = {(g9,9(x))|z € U'}. IoW,
Vo € U', f(z,y) = chas a unique solution y = g(z) € V.

Fact A.40 (Differentiating implicit fns using tangent planes).
Let f : R?—R be differentiable and consider the implicitly defined curve

I':={(z,y) €e R*|f(z,y) = ¢}

(ie. alevel set of f). Pick (a,b) € T, suppose 9, f(a,b) # 0. By IFT, we know y—
coordinate of this curve can locally be expressed as a differentiable function of x.
Directly differentiating f(x,y) = c w.r.t. x gives

dy _ 7amf(aab)

dy
O + 00 0 =0 G = 3, 7 b)
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Function Rules f(x) I ()

z? az® T
e” o
log & %
Differentiation Rules Linear Rule  (af + bg) a% h %
ProductRule  (f-g9)"  f'(x)g(x) + f(2)g'(x)
QuotientRule /g 1129 (fg)(x)i; (z)g'()
Chain Rule flg(@)) g—g %

Matrix Derivatives Leta,x € R™, and A be a conformable matrix

o LAx=A

° %A:B:A’

e Za'Axz=(A+Ax
° a%az’Am = xx’
o Llog|Al=(A)!
General Results from Optimisation Theory Luenberger (1997) and Rustagi (2014)

e Projection Theorem - In R¥, the shortest line from a point to the plane is
funished by the perpendicular from the point to the plane. Core idea carries
through to higher dimensions and infinite-dimensional Hilbert Space
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e Hahn-Banach Theorem: given a sphere and a point not in the sphere, there
exists a hyperplane separating the point and the sphere.

e Duality: The shortest distance from a point to a convex set is equal to the
maximum of the distances from the point to a hyperplane separating the
point from the convex set.

o Differentials: Set derivative of the objective function to zero.

A.10.2 Linear Programming

Maximise

max Z =c¢'X

subject to

x>0

where x € R" is the choice vector, ¢ € R" is a given vector, A € R™*" is a known
matrix of constants, and b € R™ is a vector of constants.

Defn A.90 (Standard form of Linear programs).
By introducing m slack variables y1, ..., Ym, ¥y = (Y1,---,Ym) ' for every inequality
with y > 0, we can convert every linear programming into its standard form

min Z=(c'x' +0"y) subject to

Ax+Iy=Db
x2>0,y>0
Defn A.91 (Primal and Dual).
Primal
min ¢'x s.t.
Ax>b
x>0

Dual
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max b'y s.t.
Y

ATy <ec
y>0 ,y eR™™
Theorem A.41 (Duality Theorem).

A feasible solution x; to the primal is optimal IFF there exists a feasible solution
Yo to the dual problem such that

CTXO = bTyo

Dantzig’s Simplex method, Karmarkar’s Algorithm.

A.10.3 Nonlinear Optimisation

minimise[maximise] f(x) s.t.
gl(x) <a; 12177k

x>0

Y

Saddle Point Suppose we have x,y € R"” and ¢(-) is a real valued function. Then,
(%0,¥0),%X0 > 0,y0 > 0 is a saddle-point of ¢(x,y) if

(x0,y) < ¢(x0,¥0) < ¢(X,¥0)
Vx,y > 0.

B(x0.¥0) = minmax o(x,y)

¢(X0>YO) = m}gx m)in ¢(Xa y)

Defn A.92 (Quadratic Program).

1
Q=a'x— ixTBx s.t.

C'x<d
x>0

<+~ ToC

where a € R*, B € R"*" is symmetric, positive definite, C € R™*k is a matrix of
constraints, and d € RF.

Constrained Maximisation

Fact A.42 (General Proposition).

We want to maximise f(z) subject to g(x) = ¢ (implicitly defined by S := {g = c}).
Suppose Vg # 0Vx € S. If f attains a constrained local maximum (or minimum)
at a on the surface S, 3A € R s.t. Vf(a) = AVg(a).

Generic problem of the form

Defn A.93 (Lagrangian).

max  f(x1,x2) s.t. g(x1,22) = b
x1,x2ER™
First, write
E(x17$27)‘) = f(xlvxZ) + A [9(55172172) - b}

differentiating wrt =1, x2, A yields FOCs

oL

[z1] : pr fi(w1,22) + Ag1 (w1, 22) =0
€1
oL

[z2] : e Ja(x1,2) + Aga(21,22) = 0
o
oL

[A] : BN =g(z1,22) —b=0

which gives us three (potentially nonlinear) equations with three unknowns (z1, z2, A),

that can be solved simultaneously.
To check sufficiency, the second-order condition analogue is the determinant of the
bordered hessian matrix

0 —g1(z1,22)  —g2(z1, 72)
BH(z1,22,\) = | —g1(z1,22)  fui(21,22)  frz(21,22)
—g2(z1,22)  far(w1,22)  for(w1, 72)
If detBH > 0, then it is negative definite, which implies that the (z7, x3) that solves
the system is indeed a local maximum.

Defn A.94 (Hessian, Definiteness).
The Hessian for of a C? [twice differentiable] function f : R"d—R is defined by the
matrix
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0101 f 0201f ... 0401 f

0102f 0202f ... 040af
Hf = ) . )

010af 020af ... 0q0af

o If (Av) - v < 0 Vv € RY, A is said to be negative semi-definite.

[ ]
p—

f

[ ]
p—

(Av)

(Av) - v < 0 Vo € R?, A is said to be negative definite.

f (Av)-v > 0 Vo € RY, A is said to be positive semi-definite.
(Av)

o If (Av) - v >0 Vv € RY, A is said to be positive definite.
Numerical Optimisation

Root-finding We want to evaluate the roots of the equation
y=f(z)=0,z€eR
Assume the inverse of f, denoted f~! exists.

z=f"y) =g(y)

Finding the root of f(z) = 0 is equivalent to evaluating ¢(0) = «.
Canonical newton-raphson is

iy = 1 f(z4)
fr ()
Quasi-Newton General version of update rule:
ol
0r11 =0, — Mg - Ak%(ek)
Step length A = 1 for both N-R and BHHH.
Defn A.95 (Newton Raphson).
set Ay = (H(9)™!
Update rule:
f' (i)
T =T )

For Log-likelihood,
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0000’ 00

Defn A.96 (Berndt-Hall-Hall-Hausman (BHHH)).
Uses Information-matrix equality. Set A, = & (S(6x)S(6x)’) to be outer product of
scores

s = 0~ (5 @) 550 =0~ (HE) ' s(0)

N -1
1 ol ol
Ay = (N ; 69(9’“)69’(9")>
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