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Discrete and Continous Treatments
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Setup

• For i.i.d. observations i ∈ {1, .., N}, we observe {Yi, Xi, Wi}N
i where:

• Yi ∈ R is the outcome
• Wi ∈ {0, . . . , K} is the treatment assignment
• Xi ∈ Rk is the covariate vector

• We posit the existence of potential outcomes Y 0, . . . , Y k for each unit. Vertically concat them
into a ‘science table’ that is N × K .

• Treatment effects (estimands) are defined as functions of potential outcomes, and since
(K − 1)/K of them are unobserved, we need assumptions to use estimators to compute them
using data.

• Extent of missingness is increasing in the number of treatments: 1/2 for binary, (K − 1)/K for
discrete, ≈ 1 for continuous
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Identifying counterfactual means and friends : Discrete Treatments

• Causal Consistency / SUTVA : Yi =
∑

k
1Wi=kY

k
i . What does this assume?

• i’s outcome is only affected by i’s treatment status. This may not be the case in many settings,
e.g. with peer effects/interference/spillovers/contagion.

• In such settings, the potential outcomes are indexed by Y W. In the extreme case of unrestricted
interference, the ‘science table’ has width Kn. Need new assumptions / different estimands.

• Unconfoundedness: Y 1, Y 0 ⊥⊥ Wi|Xi. Treatment is as good as random given covariates.
• Overlap: 0 < πw(X) < 1. Each unit has positive probability of treatment.

Then, the Counterfactual mean is non-parametrically identified, as are causal contrasts. Augmented IPW (Robins et al 1994)

Γ̂(w)
i = µ̂w(X)︸ ︷︷ ︸

Outcome Model

+ 1Wi=w

π̂w(X)︸ ︷︷ ︸
(Inv) Propensity score

(Yi − µ̂w(X))︸ ︷︷ ︸
(Residual

• µ̂w(·), π̂w(·) are nuisance functions (potentially) high-dim quantities incidental to low-dim target (marginal mean,
causal contrast).

• All nuisance functions are henceforth cross-fit [allows any good ML for curve fitting - Chernozhukov et al 2018]
• Implementations: grf::causal_forest, npcausal::ate, poirot::aipw, and DoubleML::IIRM in R,

econML, DoubleML, causalML in Python
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Inference

• Augmented IPW estimators attain the semiparametric efficiency bound
• ≈ CRLB for semiparametric models - see Hahn (1998)

• We want estimators with a familiar ‘parametric’ behaviour that satisfy a CLT of the
√

n(τ̂ − τ) → N (0, V )

√
E
[
(µ̂(w)(Xi) − µ(w)(Xi))

]2
,
√
E [(π̂(Xi) − π(Xi))]2 << n−1/4

•
√

n either by function class of µ̂, π̂ is not too complex (‘Donsker’) or sample splitting (paper,
tutorial)

• Variance of influence function can be used to construct CIs for marginal means or causal contrasts:
• σ̂2

w = V̂(Γ̂(w)
i )

• SE =
√

σ̂2
w/n

5
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Continuous Treatments

• Now consider a case whenw ∈ W ⊆ R, with corresponding potential outcomes Y (w)
i .

• Unconfoundedness’: E [Y w|w, X] = E [Y w|X]
• Positivity’: f(w|X) > 0
• Generalised Propensity Score (Propensity Density) r(w, x) := fw|x(w|X)

• Estimating conditional densities is hard. Recent progress

• The quantity of interest is the does response curve θ(w) := E [Y w] : expected value of the potential outcome across
observations when treatment is set atw. This uses the following construction for the DR score (Kennedy et al 2017,
Colangelo and Lee 2022, Klosin 2022)

Γi = µw(Xi) + Kh(wi − w)
r(w, x) (Yi − µw(Xi))

• Its average derivative can be estimated using residuals-on-residuals regression (Robinson (1988), Powell, Stock, Stoker
(1989))

Yi − µ̂i(Xi) = τ(Wi − π̂(Xi)) + εi

• implementation: npcausal::ctseff, DoubleML::PLM

6
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Panel Data
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Difference in Differences

• Now, write Y w(t) to denote the potential outcomes Y 1, Y 0 at time t ∈ {0, 1} and Y (t) to denote the realised
outcome. The estimand is the ATT in the 2nd periodE

[
Y 1(1) − Y 0(1)|D = 1

]
.

• The conditional parallel trends assumption is written as

E
[
Y 0(1) − Y 0(0) | X, D = 1

]
= E

[
Y 0(1) − Y 0(0) | X, D = 0

]

• Under (c)PT, there are multiple candidate estimators

τ̂ OM = {Ê[Y (1) | X, D = 1] − Ê[Y (1) | X, D = 0]} − {Ê[Y (0) | X, D = 1] − Ê[Y (0) | X, D = 0]}

τ̂ IPW = 1
N

∑
i

Yi(1) − Yi(0) D − ê(Xi)
P (D = 1)(1 − ê(Xi))

τ̂ AIPW = 1
N

∑
i

(Yi(1) − Yi(0) − d(Xi, D = 0)) ·
[

D − ê(Xi)
P (D = 1)(1 − ê(Xi))

]

• where ê is a propensity score and d(·) is an outcomemodel for the trendY (1) − Y (0) in untreated obsD = 0. code

8
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Panel Data

• For one-way panel data: Yit = αi + x′
itβ + εit, one idea is to partial out FEs and work with ÿit, ẍit with clustered

ML (e.g. clustered LASSO)

• However, most panel data typically stipulates the following (two-way fixed effects) outcome model

Y 0
it = αi + γt + x′

itβ + εit; Y 1
it = τitWit + Y 0

it

• Want ATT, or at least convex averages of τit; not guaranteed with TWFE under staggered adoption [cf TWFE lit]

• Panel regression is betting the house on a functional form. Better make it flexible, say with a factor model

Yit = δitWit + x′
itβ + λ′

ift + εit

ft = [f1t, . . . , frt]′ is k × 1 common factors, λi = [λi1, . . . , λir]′ is r × 1 factor loadings.

• ft = 1 =⇒ λi × 1 = λi unit FEs
• λi = 1 =⇒ 1 × ft = ft time FEs
• f1t = 1, f2t = ξt, λi1 = αi, λi2 = 1 =⇒ ft × λi = αi + ξt two-way FEs.
• ft = t =⇒ λi × ft = λi × t Unit-specific linear time trends
• Extends naturally to Matrix Completion

9

https://arxiv.org/pdf/1411.6507.pdf
http://www.columbia.edu/~jb3064/papers/2009_Panel_data_models_with_interactive_fixed_effects.pdf
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Trying to make PT hold using reweighting (Synth and friends)

• balanced panel withN units and T time periods, where the firstNco units are never treated, whileNtr = N −Nco

treated units are exposed after time Tpre

• Following Abadie, Diamond, Hainmueller (2010), a whole family of methods to try to make parallel trends hold using
balancing methods. Comprehensive intro : Yiqing’s course materials

• The following approach is due to Arkhankelsky et al (2021) [Implemented in synthdid ]
• unit weights ω̂sdid align pre-exposure trends in outcomes of unexposed units with those for exposed units∑Nco

i=1 ω̂
sdidYit ≈ N−1

tr

∑N

i=Nco+1 Yit

(
ω̂0, ω̂

sdid ) = arg min
ω0∈R,ω∈Ω

ℓunit (ω0, ω) where

ℓunit (ω0, ω) =
Tpre∑
t=1

(
ω0 +

Nco∑
i=1

ωiYit − 1
Ntr

N∑
i=Nco +1

Yit

)2

+ ζ2Tpre ∥ω∥2
2,

Ω =

{
ω ∈ RN

+ :
Nco∑
i=1

ωi = 1, ωi = N−1
tr for all i = Nco + 1, . . . , N

}
,
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SDID : contd

• time weights λ̂sdid
t that balance pre-exposure time periods with post-exposure time periods for unexposed units.

(
λ̂0, λ̂

sdid ) = arg min
λ0∈R,λ∈Λ

ℓtime (λ0, λ) where

ℓtime (λ0, λ) =
Nco∑
i=1

λ0 +
Tpre∑
t=1

λtYit − 1
Tpost

T∑
t=Tpre+1

Yit

2

Λ =

{
λ ∈ RT

+ :
Tpre∑
t=1

λt = 1, λt = T−1
post for all t = Tpre + 1, . . . , T

}

• Finally: Regression

(τ̂ sdid, µ̂, α̂, β̂) = argmin
τ,µ,α,β

{
N∑

i=1

T∑
t=1

(Yit − µ− αi − βt −Ditτ)2ω̂sdid
i λ̂sdid

t

}
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Heterogeneous Effects
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The problem

• We are interested in the Conditional Average Treatment Effect (CATE):
τ(X) = E[Y (1) − Y (0)|X = x]

• This is a function, not a number, so we may want to summarise
• projecting imputed effects linearly on covariates (BLP)
• binning estimates (GATE)

Parametric Outcome Modeling: Estimate OLS with interactions

• Yi = β0 + β1Wi + β2Xi + β3WiXi + ϵi

• Implicit outcome models: Y 0
i = β2Xi, Y 1

i = Y 0
i + β1 + β3Xi

• ĈATEX = β̂1 + β̂3Xi

• Why do we need machine learning / regularization to do this?
• Overfitting: We know that in general, when k ≈ N , traditional OLS methods will badly overfit
• Unknown Functional Form: The analyst does not know what the underlying heterogeneity looks like
• fishing: Why should the reader believe that this specification fell from the sky?
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Pure ML Ideas

T-Learner

• fits separate models on the treated and controls.
• Learn µ̂(0)(x) by predicting Yi from Xi on the subset of observations with Wi = 0.
• Learn µ̂(1)(x) by predicting Yi from Xi on the subset of observations with Wi = 1.
• Report τ̂(x) = µ̂(1)(x) − µ̂(0)(x).

S-Learner

• fits a single model to all the data.
• Learn µ̂(z) by predicting Yi from Zi := (Xi, Wi) on all the data.
• Report τ̂(x) = µ̂((x, 1)) − µ̂((x, 0)).

14



Pure ML Ideas

T-Learner

• fits separate models on the treated and controls.
• Learn µ̂(0)(x) by predicting Yi from Xi on the subset of observations with Wi = 0.
• Learn µ̂(1)(x) by predicting Yi from Xi on the subset of observations with Wi = 1.
• Report τ̂(x) = µ̂(1)(x) − µ̂(0)(x).

S-Learner

• fits a single model to all the data.
• Learn µ̂(z) by predicting Yi from Zi := (Xi, Wi) on all the data.
• Report τ̂(x) = µ̂((x, 1)) − µ̂((x, 0)).

14



They were bad: Regularization Bias

• Differential shrinkage across treatment levels leads to ‘hallucinated’ heterogeneity

• Problem is generic for any regression learner. Need some kind of ‘joint’ modelling for potential
outcomes.
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Sidestepping Regularisation Bias: Tailored Neural-net achitecture

Dragonnet, Tarnet, etc.

θ̂ = argmin
θ

R̂(θ; X) where

R̂(θ; X) = 1
n

n∑
i=1

((Qnn(wi, Xi, θ) − yi)2+

αCrossEntropy(gnn(Xi; θ), wi))

https://arxiv.org/pdf/1906.02120.pdf
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Sidestepping Regularisation Bias: X, R Learners

X-Learner

• Fit µ̂(0)(x), µ̂(1)(x) using
nonparametric regression

• Define pseudo-effects
D̃1

i := Yi − µ̂(0)(Xi) and
use them to fit τ̂1(Xi) on
{i : Wi = 1}

• Define pseudo-effects
D̃0

i := µ̂(1)(Xi) − Yi and
use them to fit τ̂0(Xi) on
{i : Wi = 0}

• Aggregate them as
τ̂(x) = (1 −
π̂(x))τ̂1(x) + π̂(x)τ̂0(x)

https://arxiv.org/abs/1706.03461

R-Learner

• Minimise Robinson (R) Loss

τ̂ = argmin
τ

{
L̂n(τ(·)) + Λn(τ(·))

}
L̂(τ(·)) = 1

n

n∑
i=1

((Yi − µ̂(Xi)) −

(Wi − π̂(Xi)) τ(Xi))2

• IOW, Regress pseudo outcome
Y −µ(X)
W −π̂(X)

on covariates

ψ(Xi)
• weights (W − π̂(X))2

https://arxiv.org/abs/1712.04912

DR-Learner

• Construct pseudo-outcomes
φ̂(Z) := Γ̂1

i − Γ̂0
i using

AIPW score function

• Regress it on covariates
ψ(Xi)

https://arxiv.org/abs/2004.14497
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In action: RCT, Confounding

• Simulation + Implementation

Experiment
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Summary of Generic Approaches [Knaus et al 2021]

• Di = Wi ∈ {0, 1}
• Ti = 2Di − 1 ∈ {−1, 1}
• Y ∗

IPW = Wi−π(Xi)
π(Xi)(1−π(Xi))

• Y ∗
DR = Γ̂1

i − Γ̂0
i

• All problems solve weighted least
squares

min
τ

(
1
n

n∑
i=1

wi(Y ∗
i − τ(Xi))2

)
https://arxiv.org/abs/1810.13237
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Evaluating HTE Estimators

Stratification

• Since Het-FX estimators produce estimates of
τ̂i, a gut-check for how well this works is to
then stratify on τ̂i (say, J bins), and compute
ÂTE

j
in each bin using say AIPW

• If ÂTE
j
s are sorted along their bin indices, this

increases confidence that τ̂is aren’t all noise

Best linear predictor method

• Create synthetic predictors
Ci = τ(Wi − π̂−i(Xi)) and
D = (τ̂−i(Xi) − τ)(Wi − π̂(Xi))

• Regress Yi − µ̂−i(Xi) ∼ αCi + βDi

• α ≈ 1 indicates quality of ATE

• β ≈ 1 indicates quality of CATE estimates
(p.value is an omnibus test of heterogeneity fit
by τ̂i)

• https://datascience.quantecon.org/applications/heterogeneity.html
• https://grf-labs.github.io/grf/articles/diagnostics.html
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