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Introduction

» Panel methods can be characterised into 3 broad groups (as of 2016):
» Difference-in-differences : AYPoSt — AyPre
» Matching: on both pre-treatment outcomes and other covariates
» Synthetic Control: For each treated unit, a ‘synthetic control’ is constructed as
a weighted average of control units s.t. the weighted average matches
pre-treatment outcomes and covariates

» This paper: framework to nest existing approaches + estimator that relaxes
some assumptions.

» Main contribution: framework to clarify assumptions
» Resting WP; Cannibalised by later papers (esp. Arkhangelsky et al 2020)?
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Outcome Matrices

Yobs Yobs Y (1) Y (O)
Yobs — t, post C,post| _ t, post c, post T x (N +1
[Ya%re Ys,ber {Yt, we(0) Yo, pme(0) (N+1)

_ ? YC, OSt(()) _ ? Yc, ost(o)
Y= [Yt, e(0) Yc,pprew)] - [Yt, el0) Yc,irem)]

» relative magnitudes of 7"and NV might dictate whether we impute the missing
potential outcome 7 using this or this comparison
» Many Units and Multiple Periods: N >> T, Y(0) is ‘fat’, and red comparison
becomes challenging relative to blue. So matching methods are attractive.
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> relative magnitudes of 7"and N might dictate whether we impute the missing
potential outcome ? using this or this comparison

» Many Units and Multiple Periods: N >> Tj, Y(0) is ‘fat’, and red comparison
becomes challenging relative to blue. So matching methods are attractive.

> Ty >> N, Y(0) is ‘tall’, and matching becomes infeasible. So it might be
easier to estimate blue dependence structure.

» Finally, if Tp &~ N, regularization strategy for limiting the number of control
units that enter into the estimation of Y;, 7;,+1(0) may be important
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1. NoIntercept: 1 = 0. Stronger than Parallel trends in DiD.
2. Addingup: """ ; w; = 1. Common to DiD, SC.
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4. Constant Weights: w, =w Vi
DiD imposes 2-4.
ADH(2010, 2014) impose 1-3
» 1+ 2imply ‘No Extrapolation’.
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Relaxing the assumptions

Negative weights

> If treated units are outliers on important covariates, negative weights might
improve fit
> Bias reduction - negative weights increase bias-reduction rate

When N >> Ty, (1-3) alone might not result in a unique solution. Choose by

> Matching on pre-treatment outcomes : one good control unit is better than
synthetic one comprised of disparate units
» Constant weights - implicit in DiD

Given many pairs of (u, w)

prefer values s.t. synthetic control unit is similar to treated units in terms of
lagged outcomes

low dispersion of weights
few control units with non-zero weights
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Case for nonconvex or negative Weights : Hollingworth

A

and Wing (2021)

Case 1: No convex combination of the donor pool can equal
the target time series

Case 2: The best donor series for this time series is
countercyclical and would need a weight of -1
'

'
'
! ‘}argslmvss
'
'

El
3 O
=
Optimal@onor series -5
with weight = 1
and intercept = 4
=50 =25 [] 25 50 =50 =25 0 25 50
Time since treatment Time since treatment
Case 1: Traditional SCM is bound by convex hull and ©  Case 2: Traditional SCM cannot give -1 weight to
cannot use an intercept to select the optimal donor series optimal donor series
1 '
' '
SCUL prediction SCUL pradiction . .
« 5 (dashed-ling) ' /’“"""’
l
E}
0
g

SCM Prediction

SCM Prediction

0
Time since treatment

0
Time since treatment
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The optimisation problem: general case

Ingredients of objective function
» Balance: difference between pre-treatment outcomes for treated and
linear-combination of pre-treatment outcomes for control
> HYt pre — M — WTYC, preH2 Yt pre — M—WTYC, pre)T(Yt, pre—M—WTYC, pre)
> Sparse and small weights:
» sparsity : ||w]|;
> magnitude: ||w]|,

(" (N, ), 0" (A, @) = argmin Q(u, w| Y+ pre, Yo pre; A, @)
1w
2
where Q(M; W|Yt, pre;Yc, pre; A, a) = ||Yt pre — M — WTYC, pre

I,
1 2
+ A ( +a ||w||1>
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Choosing «, A: Tailored regularisation

» don’t want to scale covariates Y pr to preserve interpretability of weights
> Instead, treat each control unit as a ‘pseudo-treated’ unit and compute
Y;r(0) = A (jy c, A) + o @il o, A) - Y22 where

(" (j; A, ), 0" (4; A, @)) = argmin Z ( — i — Z ini,t> +

o i#0,j

1 -«
V(5 2+auw|\1)

pick the value of the tuning parameters (agy;, A5;) that minimises

CV™(a, N) Yir — " (j; o, ) — Zwm]a}\ )

||Mz
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Re-expressing Standard Methods

Difference in Differences Synthetic Control
> assume (2-4) > assume (1-3) (i.e. u = 0)
» No unique u,w solution for T = 2, so fix > For M x M PSD diagonal matrix V
w = ~

GBV) (V) = argmin{ (X, — 4~ X)TV

w?id:% Vie{l,...N} Wbt
1 To 1 To N (Xt _ﬂ_WTX)}
~did N . T .
Pt = > Yos — Yis V= argmin  {(Yt,pre — O(V) Yo pre)
TO 5; NTO 5:21 ; V=diag(vi,...,uvm) Pre
(Yt, pre — @(V)TYC, pre)}
Best Subset; One-to-one Matching Constrained regression: When
(1%,@9) = argmin,, , Q(-; A = 0, ) with X; =Y 1<t <T, (Lagged Outcomes only)

SN Tz0 < k (=1 for 0t0) V=Iyand A=0
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Inference

» Need to be explicit about what is random in
repeated-sampling

» Do not want to argue that controls have
positive probability of treatment

> Since T= )fo‘j%’ — Y'O_T(()), estimation error
arises from imputation error

> (F—7)? = (Yor(0) - Yor(0))?

define matrices Y77£(0), fori < j s <t

Yi+(0) Y;4(0)

Y;.0(0) ¥,.0(0)

Yg;i is the same with unit ¢’s column left out.

Estimators for the missing Y, 1 (0)

(0),1

}/}O,T(O) =g (Yg:f—l’YE(());:;’Y(O),T—l)

which produces variance estimators based on

assignment assumptions.
Random Assignment of Unit

S 1 ¥ $T—1 ~(0,4),T
vczﬁgjm,ﬂm—g(n,l Y (o) T

Random Timing of Treatment

To

PY 1
V== >

5 X (0).¢2
t=Tg—s+1

Combination : double-sum

Vi =g (YOI Y Y

(0,i),T—1
(0,4),1 )

(0),¢—1
i)
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Revisiting ADH California smoking example

California: Smoking per capita

Policy —

California: Weights

wy 1 Wy 4wy m 4wy

= = Actual data Wi 1 wi 4 W — wi

wv 1 wv 4 wv 4 wv

ADH sW!m' - VA 1 VA VA 4 VA

Regression /w restrictions VT | VT | VT VT

Elastic net (opt. A and a) _\#; - ¥; — %{ b _\#;

! ]

Best subset (opt. k) N ™ ™ 1w

Difference-in-Differences sD SsD SD 4 sb

sC sC sC - sC

RI RI RI - RI

PA PA PA - PA

OK OK OK 4 OK

OH OH OH OH

ND ND 4 ND +4 ND

NC NC 4 NC <4 NC

NM NM -~ NM -~ NM

NH NH NH - NH )

NV ] NV m 4 NV 5] 4 NV

NE 1 NE -4 NE - NE

MT - MT =] 4 MT 4 MT

MO 1 MO -4 MO -4 MO

MS 1 MS 4 Ms +4 Ms

MN 1 MN 4 MN 4 MN

ME ME 4 ME 4 ME

LA LA LA LA

KY KY | KY KY

KS KS KS KS

1A 1A 1 1A 1 1A

IN IN B IN 1 IN

L IL - L - L

1D D - 1D - D

GA GA 4 GA —4 GA

DE DE -4 DE -~ DE

CT 1 CcT m 4 CT CT

co ] co 4 co co

AR 1 AR -4 AR -4 AR

AL 1 AL 4 AL 4 AL

-1 05 0 05 -1 05 0 05 1 05 0 05 1 05 0 05
! : ! N ADH synth. I Reg. /w restr. N Elastic net I Best subset

Model 2 Wi W T se.
Original Synth 1 0 -22.1 16.1
Constrained 1 0 -22.9 12.8
Elastic Net .55 18.5 -26.9 16.8
Best Subset .32 37.6 -31.9 20.3
Diff-in-Diff 1 -14.4 -32.4 18.9
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