Controlling for Unmeasured Confounding in Panel Data using Minimal Bridge Functions: From Two-Way Fixed Effects to Factor Models

Imbens, Kallus, Mao (2021)

Presented by Apoorva Lal

October 20, 2021

Introduction

- ▶ Panel data models offer a variety of ways to control for unmeasured confounding
- ▶ Synthetic control, factor models, and matrix-completion require *N*0*, T*0*→∞*
- \triangleright This paper: causal inference from panel data under a linear factor model with *fixed-T* asymptotics
	- ▶ use **bridge functions** that transform pre-treatment variables to control confounding
	- ▶ generically non-unique, so need regularised GMM

Setup

- ▶ *N* units, time *t ∈ {−T*0*, . . . , −*1*,* 0*,* 1*, . . . , T*1*}*
- \blacktriangleright Treatment : $A_i = 1$ (!), Potential outcomes: $Y_{i,t}(0)$ and $Y_{i,t}(1)$
	- \triangleright $\mathcal{C} := \{i : A_i = 0\}$, $\mathcal{T} := \{i : A_i = 0\}$, sizes N_0 , N_1 respectively
	- ▶ pre := $\{t : t < 0\}$, post := $\{t : t > 0\}$
- ▶ Covariates : $X_i \in \mathbb{R}^d$
- ▶ $(A_i, X_i, Y_{i,t}(0), Y_{i,t}(1), −T_0 ≤ t ≤ T_1)$ iid drows from common population

Estimand: ATT at $t = 0$

$$
ACT = \mathbb{E}[Y_{0,0}(1)|A = 1] - \underbrace{\mathbb{E}[Y_{0,0}(0)|A = 1]}_{=: \gamma^*}
$$

Assumptions

- 1. A1 Linear factor model for $Y_{i,t}(0) = \mathbf{V}_t^\top \mathbf{U}_i + \mathbf{b}_t^\top \mathbf{X}_i + \varepsilon_{i,t}; U_i, V_t \in \mathbb{R}^r$
	- ▶ *Y*0(0) *⊥⊥ A|X, U*
- 2. A2 Positivity: $Pr(A = a | X, U) > 0$ almost surely.

TWFE

Special-case of factor model with $Y_{i,t}(0) = U_i + b_t + \varepsilon_{i,t}$. Implies the following estimator for the counterfactual mean:

$$
\widehat{\gamma}_{\text{DID}} = \underbrace{\frac{1}{T_0 N_1} \sum_{t \in \text{pre}} \sum_{i \in \mathcal{T}} Y_{i,t}}_{\mathbb{E} \left[\frac{1}{T_0} \mathbf{1}_{T_0}^{\top} Y_{\text{pre}} | A = 1 \right]} \underbrace{\frac{1}{T_0 N_0} \sum_{t \in \text{pre}} \sum_{i \in \mathcal{C}} Y_{i,t}}_{\mathbb{E} \left[\frac{1}{T_0} \mathbf{1}_{T_0}^{\top} Y_{\text{pre}} | A = 0 \right]} \underbrace{\frac{1}{T_0 N_0} \sum_{i \in \mathcal{C}} Y_{i,0}}_{\mathbb{E}[Y_0 | A = 0]}
$$

Bridge Functions I : DiD

▶ DiD estimand can be written as $\gamma^*_{\text{DID}} = \mathbb{E}\left[h(Y_{\text{pre}}; \theta^*_{\text{DID}}) | A = 1\right]$ where

$$
\blacktriangleright \ h(Y_{\text{pre}};\theta) = \theta_1' Y_{\text{pre}} + \theta_2
$$

$$
\blacktriangleright \; \theta_{\mathsf{DID},\,\mathsf{1}} = \mathbf{1}_{T_0^{\mathsf{0}}}/T_0
$$

$$
\triangleright \theta_{\text{DID}, 2} = \mathbb{E} \left[-\frac{1}{T_0} \sum_{t \in \text{pre}} Y_t + Y_0 \right] = b_0 - b_{\text{pre}}^{\top} \theta_1^*
$$

 \triangleright This transformation is learned based on control units' outcomes *Yi,t∀ i ∈ C, t ∈* pre *∪ {*0*}*

 \triangleright One of many valid transformations

$$
\gamma^* = \mathbb{E}\left[h(Y_{\text{pre}}; \theta^* | A = 1)\right] \hspace{0.2cm} \forall \theta \in \Theta^*_{FE} := \left\{\theta^* : \mathbf{1}^\top_{T_0}\theta^\ast_1 = 1, \theta^\ast_2 = b_0 - b_{\text{pre}}^\top \theta^\ast_1\right\}
$$

 \blacktriangleright which satisfy the condition

$$
\mathbb{E}\left[Y_0(0) - h(Y_{\text{pre}}; \theta^* | U, A = 0)\right] = 0 \,\forall \,\theta^* \in \Theta_{\text{FE}}^*
$$

Definition: Bridge Functions

A function $h(Y_{\text{pre}}, X)$ is called a bridge function if

$$
\mathbb{E}\left[Y_0(0) - h(Y_{\text{pre}}, X; \theta^*) | U, A = 0, X\right] = 0 \tag{1.1}
$$

In words, Bridge functions give some transformations of the pre-treatment outcomes and covariates such that the **unmeasured confounding effects on this transformation exactly reproduce those on the counterfactual outcome**. *Conceptual link to proxy-controls / proxy-outcomes literature*. Under A1 and A2,

$$
\gamma^* = \mathbb{E}\left[Y_0(0) | A=1\right] = \mathbb{E}\left[h(Y_{\text{pre}}, X) | A=1\right]
$$

Equivalent moment equation:

$$
\mathbb{E}\left[A(h(Y_{\text{pre}}, X; \theta) - \gamma^*)\right] = 0 \tag{1.2}
$$

Detour - Proxy Controls and Proxy Outcomes

- ▶ Tchetgen-Tchetgen et al review paper
- ▶ 3 types of proxies
	- ▶ 1: confounds: variables that are common causes of treatment and outcome variables
	- ▶ **2, 3: treatment (outcome) inducing confounding proxies**: potential cause of *outcome (treatment)* which is related with the *treatment (outcome)* through an unmeasured common cause for which the variable is a proxy
		- **proxy outcomes :** W not affected by $A Y_{pre}$
		- **proxy treatments:** Z does not affect W or $Y Y_{\text{post}}$

(a) Type (a) proxy.

(b) Type (b) proxy.

(d) Coexistence of type $(a)(b)(c)$ proxies when NUC holds.

(e) Coexistence of type $(a)(b)(c)$ proxies when NUC fails.

(b) Panels with time-invariant counfounders.

 (\mathbf{c}) Panels with time-varying confounders.

Bridge functions for Factor Models

Existence of bridge functions requires

- ▶ **A3 V-rank : V**pre *∈* R *^T*0*×^r* has full column rank (r)
- \blacktriangleright $\exists \theta_1^* \in \mathbb{R}^{T_0}$ to solve

$$
\mathbf{V}_{\text{pre}}^{\top} \theta_1^* = V_0 \tag{1.3}
$$

$$
\blacktriangleright \implies U^{\top} \mathbf{V}_{\text{pre}}^{\top} \theta_1^* = U^{\top} V_0
$$

Bridge functions for LFMs

$$
h(Y_{\text{pre}}, X, \theta^*) = {\theta_1^*}^T Y_{\text{pre}} + \theta_2^* X
$$

$$
\forall \ \theta^* \in \Theta^* = \left\{ \theta^* : \mathbf{V}_{\text{pre}}^* \theta_1^* = V_0, \theta_2^* = b_0 - \mathbf{B}_{\text{pre}}^{*T} \theta_1^* \right\}
$$

Bridge functions: Identification

- ▶ **A4:** *ε−***Independence** Assume *ε*post *⊥⊥* (*ε*pre*, ε*0) so that *Y*post *⊥⊥* (*Y*pre*, Y*0)*|X, U, A* ; How plausible is this? How to falsify?
- ▶ **A5: More rank**: following two matrices have full rank $\widetilde{r} = r + d$

$$
\mathbb{E}\left[\begin{array}{cc} U & X \end{array}\right] \left[\begin{array}{c} U^{\top} \\ X^{\top} \end{array}\right] \mid A = 0\ \right] \in \mathbb{R}^{\tilde{r} \times \tilde{r}}, \quad \left[\begin{array}{cc} \mathbf{V}_{\text{post}} & \mathbf{B}_{\text{post}} \\ 0_{d \times r} & I_{d \times d} \end{array}\right] \in \mathbb{R}^{(T_1 + d) \times \tilde{r}}
$$

▶ Second-order moment matrix invertible

▶ post outcomes need to be informative about unmeasured confounders

$$
\mathbb{E}\left[m(\mathcal{O},\theta)\right] = \mathbb{E}\left[(1-A)\left(Y_0 - h\left(Y_{\text{pre}}, X; \theta^*\right)\right)\left[\begin{array}{c} Y_{\text{post}} \\ X \end{array}\right]\right] = \mathbf{0}_{(T_1+d)\times 1} \quad \text{(1.4)}
$$

Solutions to 1.4 corresponds to a valid bridge function($\theta^* \in \Theta^*$), which implies γ^* is identifiable.

Regularized GMM for Bridge Non-Uniqueness

- \blacktriangleright whenever $T_0 > r$, there are infinitely many bridge functions
- ▶ vanilla GMM is a bad idea
- ▶ Instead, target **Minimal Bridge Function**

$$
\theta_{\min}^* \coloneqq \operatorname{argmin} \left\{ \left\| \theta \right\|_2 : \mathbb{E} \left[m(\mathcal{O}, \theta) \right] = 0 \right\}
$$

Given p.d. weight matrix **A6: Weight matrix, vanishing tuning param** $W_{m,N} \rightarrow W_{m,\infty}, \lambda_N \rightarrow 0$

$$
\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \left((\widehat{\mathbb{E}}_N[m(O, \theta)])^{\top} \mathcal{W}_{m,N} \widehat{\mathbb{E}}_N[m(O, \theta)] \right) + \lambda_n \left\| \theta \right\|_2^2
$$

$$
\left\| \widehat{\theta} - \theta_{min}^* \right\|_2 = O\left(\lambda_n + \frac{1}{N\lambda_N} + \frac{1}{\sqrt{N}} \right)
$$

Then solve $\widehat{\mathbb{E}}_N[q(O,\widehat{\theta},\widehat{\gamma}] = 0]$ to get counterfactual mean $\widehat{\gamma}$.

Counterfactual Mean is RAL

- \blacktriangleright Semiparametric theory
	- \blacktriangleright Kennedy (2015) review article
	- ▶ Chernozhukov et al chapter on regularized GMM
- \triangleright counterfactual mean can be shown to be distributed

$$
\sqrt{N}(\widehat{\gamma}-\gamma^*)=\frac{1}{\sqrt{N}}\sum_{i=1}^N\psi(O_i,\theta^*_{\min},\gamma^*,\mathcal{W}_{m,\infty})+O\left(\underbrace{\lambda_N\sqrt{N}}_{\rightarrow 0}+\underbrace{\frac{1}{\sqrt{\lambda_N N}}}_{\rightarrow \infty}\right)
$$

► Consistent plug-in estimator for asymptotic variance $\hat{\sigma}^2$ is the variance of the influence function influence function

Summary

- ▶ Proposes a method to estimate causal effects in linear factor model with time-varying confounding using bridge functions
	- \blacktriangleright that transform pre-treatment variables to control for confounding
- ▶ doesn't need *T→∞*, just needs *T*⁰ *≥ r* (where *r* is the 'number' of unmeasured confounders) how do we know *r*?
- ▶ regularized GMM estimation for non-unique bridge functions

Discussion points

- ▶ **intuition for assumptions?**
	- \blacktriangleright strong independence assumption
	- \blacktriangleright rank condition
- ▶ Ideas for other causal problems that can be posed as GMM problems?