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Introduction

» Panel data models offer a variety of ways to control for unmeasured
confounding
» Synthetic control, factor models, and matrix-completion require Ny, To—00
» This paper: causal inference from panel data under a linear factor model with
fixed-T asymptotics
» use bridge functions that transform pre-treatment variables to control

confounding
> generically non-unique, so need regularised GMM
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Setup

» N units, timet € {-Ty,...,—1,0,1,..., 71}

> Treatment: A; = 1 (!), Potential outcomes: Y; ,(0) and Y; (1)
> C:={i: A;=0},T :={i: A; =0}, sizes Ny, Ny respectively
» pre:={t:t <0},post:={t:¢t>0}

» Covariates: X; € R¢

> (A;, X;,Y:4(0),Yi+(1), =Ty < t < T))iid drows from common population

Estimand: ATTat¢ =0

ACT=E[Y o(1)|A=1] - E[Y70(0)|A:1]
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Assumptions

1. AlLinear factor model for Y;;(0) = V/U; + b/ X; + &, U;,V; € R"
> Y(0) 1L A[X,U
2. A2 Positivity: Pr (A = a|X,U) > 0 almost surely.

TWFE

Special-case of factor model with Y; ;(0) = U; + b; + ¢;,. Implies the following
estimator for the counterfactual mean:
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Bridge Functions I: DiD

» DiD estimand can be written as v3;p = E [A(Ypre; O5p)|A = 1] where
> h(YprQS 6) = Hi}/bre + 0
» Opm,1 = 171,/To
» Opip,2 =E [—T% > tepre Yt Yo} = bo — byt
» This transformation is learned based on control units’ outcomes
Yi.VieC,tepred{0}
» One of many valid transformations

v =E[h(Ypre; 0F|A=1)] VO € Oy :={0": 17,67 = 1,05 = by — b0 }

» which satisfy the condition

E[Y5(0) = h(Ypre; 6*[U, A =0)] =0V 0" € O
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Definition: Bridge Functions
A function h(Ypre, X) is called a bridge function if

E [Yp(0) — h(Ypre, X;09)|U, A = 0, X] =0 (1.1)

In words, Bridge functions give some transformations of the pre-treatment
outcomes and covariates such that the unmeasured confounding effects on this
transformation exactly reproduce those on the counterfactual outcome.
Conceptual link to proxy-controls / proxy-outcomes literature.

Under Al and A2,

7 =E[}(0)|A = 1] = E [A(Ypre, X)|A = 1]
Equivalent moment equation:

E [A(h(Yore, X56) —77)] = 0 (1.2)
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Detour - Proxy Controls and Proxy Outcomes

» Tchetgen-Tchetgen et al review paper
» 3 types of proxies

» 1: confounds: variables that are common causes of treatment and outcome
variables
> 2, 3: treatment (outcome) inducing confounding proxies: potential cause of
outcome (treatment) which is related with the treatment (outcome) through an
unmeasured common cause for which the variable is a proxy
> proxy outcomes : 11/ not affected by A - Yyre
> proxy treatments: Z does not affect W or Y — ¥jost
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https://arxiv.org/abs/2009.10982

(a) Type (a) proxy. (b) Type (b) proxy. c¢) Type (¢) proxy.

(d) Coexistence of type (a)(b)(c) proxies when (e) Coexistence of type (a)(b)(c) proxies when
NUC holds. NUC fails.



(b) Panels with time-invariant counfounders.
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(¢) Panels with time-varying confounders.



Bridge functions for Factor Models

Existence of bridge functions requires
» A3 V-rank: V.. € R7™*" has full column rank (r)
» 307 € R to solve
Vel = Vo (1.3)

> = UV =UTV,

Bridge functions for LFMs

h(Ypre, X, 0%) = 0% Yyre + 05X
Vo e = {0* V20 = Vo, 05 = by — B;Iee;}
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Bridge functions: Identification

> A4: c—Independence Assume eyt L (gpre, €0) SO that
Yoost AL (Yore, Y0)| X, U, A ; How plausible is this? How to falsify?
» A5: More rank: following two matrices have full rank 7 = r + d

UT . FXF Vpost Bpost (T1+d)x7
E[ [ U X}{XT} |A_0}€R : {der I eER

» Second-order moment matrix invertible
> post outcomes need to be informative about unmeasured confounders

Bm(0.0)] =& (1= 4) (4~ b (e, X:0) | 5 || = 0nas 09

Solutions to 1.4 corresponds to a valid bridge function(6* € ©*), which implies v*

is identifiable.
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Regularized GMM for Bridge Non-Uniqueness

» whenever Ty > r, there are infinitely many bridge functions
» vanilla GMMis a bad idea
» Instead, target Minimal Bridge Function

O = argmin {]|9]], : E [m(0,0)] = 0)

Given p.d. weight matrix A6: Weight matrix, vanishing tuning param
Wm,N_>Wm7007 )\N—>0

0 = argénin ((]EN[m(O, 6)])TWm,NEN[m(Oa 9)]) + An ||9||;

H@—e*

man

1 1
=0 v o)

Then solve Ey l9(0, 9, ~] = 0 to get counterfactual mean 7.
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Counterfactual Mean is RAL

» Semiparametric theory

» Kennedy (2015) review article
» Chernozhukov et al chapter on regularized GMM

» counterfactual mean can be shown to be distributed

VN(fY 7 \/—§ 7700179|>:~||n7’}/71/\}77100)_{—0 )\NV + — )\ N
N
———

—00

» Consistent plug-in estimator for asymptotic variance 52 is the variance of the
influence function
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https://arxiv.org/abs/1510.04740
https://arxiv.org/abs/1806.01888

Summary

» Proposes a method to estimate causal effects in linear factor model with
time-varying confounding using bridge functions
» that transform pre-treatment variables to control for confounding
» doesn’t need T— o0, just needs T, > r (where r is the ‘number’ of
unmeasured confounders) how do we know r?

» regularized GMM estimation for non-unique bridge functions

Discussion points
» intuition for assumptions?

> strong independence assumption
» rank condition

» Ideas for other causal problems that can be posed as GMM problems?
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