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Introduction

▶ Panel data models offer a variety of ways to control for unmeasured
confounding

▶ Synthetic control, factor models, and matrix-completion requireN0, T0→∞
▶ This paper: causal inference from panel data under a linear factor model with

fixed-T asymptotics
▶ use bridge functions that transform pre-treatment variables to control

confounding
▶ generically non-unique, so need regularised GMM

2 / 14



Setup

▶ N units, time t ∈ {−T0, . . . ,−1, 0, 1, . . . , T1}
▶ Treatment : Ai = 1 (!), Potential outcomes: Yi,t(0) and Yi,t(1)

▶ C := {i : Ai = 0} , T := {i : Ai = 0}, sizesN0, N1 respectively
▶ pre := {t : t < 0}, post := {t : t > 0}

▶ Covariates : Xi ∈ Rd

▶ (Ai, Xi, Yi,t(0), Yi,t(1),−T0 ≤ t ≤ T1) iid drows from common population

Estimand: ATT at t = 0

ACT = E [Y·,0(1)|A = 1]− E [Y·,0(0)|A = 1]︸ ︷︷ ︸
=: γ∗
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Assumptions
1. A1 Linear factor model for Yi,t(0) = V⊤

t Ui + b⊤
t Xi + εi,t; Ui, Vt ∈ Rr

▶ Y0(0) ⊥⊥ A|X,U

2. A2 Positivity: Pr (A = a|X,U) > 0 almost surely.

TWFE
Special-case of factor model with Yi,t(0) = Ui + bt + εi,t. Implies the following
estimator for the counterfactual mean:

γ̂DID =
1

T0N1

∑
t∈pre

∑
i∈T

Yi,t︸ ︷︷ ︸
E
[

1
T0

1⊤
T0

Ypre|A=1
]

− 1

T0N0

∑
t∈pre

∑
i∈C

Yi,t︸ ︷︷ ︸
E
[

1
T0

1⊤
T0

Ypre|A=0
]

+
1

N0

∑
i∈C

Yi,0︸ ︷︷ ︸
E[Y0|A=0]
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Bridge Functions I : DiD
▶ DiD estimand can be written as γ∗DID = E [h(Ypre; θ∗DID)|A = 1] where

▶ h(Ypre; θ) = θ′1Ypre + θ2
▶ θDID, 1 = 1T0/T0

▶ θDID, 2 = E
[
− 1

T0

∑
t∈pre Yt + Y0

]
= b0 − b⊤preθ∗1

▶ This transformation is learned based on control units’ outcomes
Yi,t∀ i ∈ C, t ∈ pre ∪ {0}

▶ One of many valid transformations

γ∗ = E [h(Ypre; θ∗|A = 1)] ∀θ ∈ Θ∗
FE :=

{
θ∗ : 1⊤

T0
θ∗1 = 1, θ∗2 = b0 − b⊤preθ

∗
1

}
▶ which satisfy the condition

E [Y0(0)− h(Ypre; θ∗|U,A = 0)] = 0 ∀ θ∗ ∈ Θ∗
FE
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Definition: Bridge Functions
A function h(Ypre, X) is called a bridge function if

E [Y0(0)− h(Ypre, X; θ∗)|U,A = 0, X] = 0 (1.1)

In words, Bridge functions give some transformations of the pre-treatment
outcomes and covariates such that the unmeasured confounding effects on this
transformation exactly reproduce those on the counterfactual outcome.
Conceptual link to proxy-controls / proxy-outcomes literature.
Under A1 and A2,

γ∗ = E [Y0(0)|A = 1] = E [h(Ypre, X)|A = 1]

Equivalent moment equation:

E [A(h(Ypre, X; θ)− γ∗)] = 0 (1.2)
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Detour - Proxy Controls and Proxy Outcomes

▶ Tchetgen-Tchetgen et al review paper
▶ 3 types of proxies

▶ 1: confounds: variables that are common causes of treatment and outcome
variables

▶ 2, 3: treatment (outcome) inducing confounding proxies: potential cause of
outcome (treatment) which is related with the treatment (outcome) through an
unmeasured common cause for which the variable is a proxy

▶ proxy outcomes : W not affected byA – Ypre
▶ proxy treatments: Z does not affectW or Y – Ypost
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Bridge functions for Factor Models
Existence of bridge functions requires
▶ A3 V-rank : Vpre ∈ RT0×r has full column rank (r)
▶ ∃θ∗1 ∈ RT0 to solve

V⊤
preθ

∗
1 = V0 (1.3)

▶ =⇒ U⊤V⊤
preθ

∗
1 = U⊤V0

Bridge functions for LFMs

h(Ypre, X, θ∗) = θ∗
⊤

1 Ypre + θ∗2X

∀ θ∗ ∈ Θ∗ =
{
θ∗ : V∗

preθ
∗
1 = V0, θ

∗
2 = b0 −B∗⊤

preθ
∗
1

}
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Bridge functions: Identification
▶ A4: ε−Independence Assume εpost ⊥⊥ (εpre, ε0) so that

Ypost ⊥⊥ (Ypre, Y0)|X,U,A ; How plausible is this? How to falsify?
▶ A5: More rank: following two matrices have full rank r̃ = r + d

E
[ [

U X
] [ U⊤

X⊤

]
| A = 0

]
∈ Rr̃×r̃,

[
Vpost Bpost
0d×r Id×d

]
∈ R(T1+d)×r̃

▶ Second-order moment matrix invertible
▶ post outcomes need to be informative about unmeasured confounders

E [m(O, θ)] = E
[
(1− A) (Y0 − h (Ypre , X; θ∗))

[
Ypost
X

]]
= 0(T1+d)×1 (1.4)

Solutions to 1.4 corresponds to a valid bridge function(θ∗ ∈ Θ∗), which implies γ∗
is identifiable.
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Regularized GMM for Bridge Non-Uniqueness
▶ whenever T0 > r, there are infinitely many bridge functions
▶ vanilla GMM is a bad idea
▶ Instead, target Minimal Bridge Function

θ∗min := argmin {∥θ∥2 : E [m(O, θ)] = 0}

Given p.d. weight matrix A6: Weight matrix, vanishing tuning param
Wm,N→Wm,∞, λN→0

θ̂ = argmin
θ

(
(ÊN [m(O, θ)])⊤Wm,N ÊN [m(O, θ)]

)
+ λn ∥θ∥22∥∥∥θ̂ − θ∗min

∥∥∥
2
= O

(
λn +

1

NλN
+

1√
N

)
Then solve ÊN [g(O, θ̂, γ̂] = 0 to get counterfactual mean γ̂.
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Counterfactual Mean is RAL

▶ Semiparametric theory
▶ Kennedy (2015) review article
▶ Chernozhukov et al chapter on regularized GMM

▶ counterfactual mean can be shown to be distributed

√
N(γ̂ − γ∗) =

1√
N

N∑
i=1

ψ(Oi, θ
∗
min, γ

∗,Wm,∞) + O

λN√N︸ ︷︷ ︸
→0

+
1√
λNN︸ ︷︷ ︸
→∞


▶ Consistent plug-in estimator for asymptotic variance σ̂2 is the variance of the

influence function
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Summary

▶ Proposes a method to estimate causal effects in linear factor model with
time-varying confounding using bridge functions
▶ that transform pre-treatment variables to control for confounding

▶ doesn’t need T→∞, just needs T0 ≥ r (where r is the ‘number’ of
unmeasured confounders) how do we know r?

▶ regularized GMM estimation for non-unique bridge functions

Discussion points
▶ intuition for assumptions?

▶ strong independence assumption
▶ rank condition

▶ Ideas for other causal problems that can be posed as GMM problems?
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