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Heterogeneous Treatment Effects - Setup

• For i.i.d. observations i ∈ {1, .., N}, we observe {Yi, Xi, Wi}N
i where:

• Yi ∈ R is the outcome
• Wi ∈ {0, . . . , K} is the treatment assignment
• Xi ∈ Rk is the feature vector

• We posit the existence of potential outcomes Y 0, . . . , Y k for each unit. Append them into a
‘science table’ that is N × K .

• Treatment effects (estimands) are defined as functions of potential outcomes, and since
(K − 1)/K of them are unobserved, we need assumptions to use estimators to compute them
using data.
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Identifying counterfactual means and friends

• Causal Consistency / SUTVA : Yi =
∑

k
1Wi=kY

k
i . What does this assume?

• i’s outcome is only affected by i’s treatment status. This may not be the case in many settings,
e.g. with peer effects/interference/spillovers/contagion.

• In such settings, the potential outcomes are indexed by Y W. In the extreme case of unrestricted
interference, the ‘science table’ has width Kn. Need new assumptions / different estimands.

• Unconfoundedness: Y 1, Y 0 ⊥⊥ Wi|Xi. Treatment is as good as random given covariates.
• Overlap: 0 < πw(X) < 1. Each unit has positive probability of treatment.

Then, the Counterfactual mean is non-parametrically identified, as are causal contrasts. AIPW estimator:

Γ̂(w)
i = µ̂w(X)︸ ︷︷ ︸

Outcome Model

+ 1Wi=w

π̂w(X)︸ ︷︷ ︸
(Inv) Propensity score

(Yi − µ̂w(X))

• µ̂w(·), π̂w(·) are nuisance functions (potentially) high-dim quantities incidental to low-dim target (marginal mean,
causal contrast).

• All nuisance functions are henceforth cross-fit
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Heterogeneous Effects

• Focus (w.log) on binary treatment case
• We are interested in the Conditional Average Treatment Effect (CATE):

τ(X) = E[Y (1) − Y (0)|X = x]
• This is a function, not a number, so we may want to summarise

• projecting imputed effects linearly on covariates (BLP)
• binning estimates (GATE)
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Parametric Outcome Modeling: Estimate OLS with interactions

• Yi = β0 + β1Wi + β2Xi + β3WiXi + ϵi

• Implicit outcome models: Y 0
i = β2Xi, Y 1

i = Y 0
i + β1 + β3Xi

• ĈATEX = β̂1 + β̂3Xi

• Why do we need machine learning / regularization to do this?

• Overfitting: We know that in general, when k ≈ N , traditional OLS methods will badly overfit
• Unknown Functional Form: The analyst does not know what the underlying heterogeneity looks like
• fishing: Why should the reader believe that this specification fell from the sky?
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Pure ML Ideas

T-Learner

• fits separate models on the treated and controls.
• Learn µ̂(0)(x) by predicting Yi from Xi on the subset of observations with Wi = 0.
• Learn µ̂(1)(x) by predicting Yi from Xi on the subset of observations with Wi = 1.
• Report τ̂(x) = µ̂(1)(x) − µ̂(0)(x).

S-Learner

• fits a single model to all the data.
• Learn µ̂(z) by predicting Yi from Zi := (Xi, Wi) on all the data.
• Report τ̂(x) = µ̂((x, 1)) − µ̂((x, 0)).
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They were bad: Regularization Bias

• Differential shrinkage across treatment levels leads to ‘hallucinated’ heterogeneity

• Problem is generic for any regression learner. Need some kind of ‘joint’ modelling for potential
outcomes.
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Sidestepping Regularisation Bias: Tailored Neural-net achitecture

Dragonnet, Tarnet, etc.

θ̂ = argmin
θ

R̂(θ; X) where

R̂(θ; X) = 1
n

n∑
i=1

((Qnn(wi, Xi, θ) − yi)2+

αCrossEntropy(gnn(Xi; θ), wi))

https://arxiv.org/pdf/1906.02120.pdf
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Sidestepping Regularisation Bias: X, R Learners

X-Learner

• Fit µ̂(0)(x), µ̂(1)(x) using
nonparametric regression

• Define pseudo-effects
D̃1

i := Yi − µ̂(0)(Xi) and
use them to fit τ̂1(Xi) on
{i : Wi = 1}

• Define pseudo-effects
D̃0

i := µ̂(1)(Xi) − Yi and
use them to fit τ̂0(Xi) on
{i : Wi = 0}

• Aggregate them as
τ̂(x) = (1 −
π̂(x))τ̂1(x) + π̂(x)τ̂0(x)

https://arxiv.org/abs/1706.03461

R-Learner

• Minimise Robinson (R) Loss

τ̂ = argmin
τ

{
L̂n(τ(·)) + Λn(τ(·))

}
L̂(τ(·)) = 1

n

n∑
i=1

((Yi − µ̂(Xi)) −

(Wi − π̂(Xi)) τ(Xi))2

• IOW, Regress pseudo outcome
Y −µ(X)
W −π̂(X)

on covariates

ψ(Xi)
• weights (W − π̂(X))2

https://arxiv.org/abs/1712.04912

DR-Learner

• Construct pseudo-outcomes
φ̂(Z) := Γ̂1

i − Γ̂0
i using

AIPW score function

• Regress it on covariates
ψ(Xi)

https://arxiv.org/abs/2004.14497
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In action: RCT, Confounding

• Simulation + Implementation

Experiment
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Summary of Generic Approaches [Knaus et al 2021]

• Di = Wi ∈ {0, 1}
• Ti = 2Di − 1 ∈ {−1, 1}
• Y ∗

IPW = Wi−π(Xi)
π(Xi)(1−π(Xi))

• Y ∗
DR = Γ̂1

i − Γ̂0
i

• All problems solve weighted least
squares

min
τ

(
1
n

n∑
i=1

wi(Y ∗
i − τ(Xi))2

)
https://arxiv.org/abs/1810.13237
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Evaluating HTE Estimators

Stratification

• Since Het-FX estimators produce estimates of
τ̂i, a gut-check for how well this works is to
then stratify on τ̂i (say, J bins), and compute
ÂTE

j
in each bin using say AIPW

• If ÂTE
j
s are sorted along their bin indices, this

increases confidence that τ̂is aren’t all noise

Best linear predictor method

• Create synthetic predictors
Ci = τ(Wi − π̂−i(Xi)) and
D = (τ̂−i(Xi) − τ)(Wi − π̂(Xi))

• Regress Yi − µ̂−i(Xi) ∼ αCi + βDi

• α ≈ 1 indicates quality of ATE

• β ≈ 1 indicates quality of CATE estimates
(p.value is an omnibus test of heterogeneity fit
by τ̂i)

• https://datascience.quantecon.org/applications/heterogeneity.html
• https://grf-labs.github.io/grf/articles/diagnostics.html

12

https://datascience.quantecon.org/applications/heterogeneity.html
https://grf-labs.github.io/grf/articles/diagnostics.html


Rank Average Treatment Effects (RATE)

• Define a targeting rule S(Xi) which may be based on
τ̂s, risk scores, costs (typical S is simply τi)

• Define the Targeting Operator Characteristic (TOC) given
distributionF(S(Xi)) and q ∈ (0, 1]

TOC = E
[
Y 1

i − Y 0
i |S(Xi) ≥ F−1

S(Xi)(1 − q)
]

− E
[
Y 1

i − Y 0
i

]
• This is largest for small qs and decays down to the ATE.

If RATE ≈ 0, not much gain from prioritisation

https://grf-labs.github.io/grf/articles/rate.html
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Summary

• Model-free estimation of ATE and friends largely settled : DML
• In contrast, CATE estimation is a very active area of research
• No silver bullets; good estimators typically depend on substantive knowledge of DGP [Smooth v

sparse, etc]
• prefer estimators that don’t bake in function form (e.g. X,R,DR)

• Also prefer estimators that account for confounding (even in RCTs) because of incidental imbalance
• What to do with estimates? Optimal assignment policy learning, AUTOC, etc.
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