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ABSTRACT
Double Machine Learning is commonly used to estimate causal

effects in large observational datasets. The “residuals-on-residuals”

regression estimator (RORR) is especially popular for its simplicity

and computational tractability. However, when treatment effects

are heterogeneous, the proper interpretation of RORR may not be

well understood. We show that, for many-valued treatments with

continuous dose-response functions, RORR converges to a condi-

tional variance-weighted average of derivatives evaluated at points

not in the observed dataset, which generally differs from the Aver-

age Causal Derivative (ACD). Hence, even if all units share the same

dose-response function, RORR does not in general converge to an

average treatment effect in the population represented by the sam-

ple. We propose an alternative estimator suitable for large datasets.

We demonstrate the pitfalls of RORR and the favorable properties

of the proposed estimator in both an illustrative numerical example

and an application to real-world data from Netflix.

1 INTRODUCTION
Double Machine Learning (DML) [5, 8, 18] is fast becoming the

standard for estimating causal effects in large, high-dimensional

datasets under conditional ignorability assumptions, which stipu-

late that the treatment is as good as randomly assigned given ob-

served covariates [13]. To strengthen such assumptions, researchers

in a wide variety of fields use the DML method to condition on

many covariates without strong commitments to functional form

[9, 12, 15]. While DML encompasses a large family of methods, this

paper focuses on the Partially Linear Model (PLM), which relates

an outcome 𝑌𝑖 to a (continuous- or discrete-valued) treatment 𝑇𝑖
conditional on pretreatment covariates 𝑋𝑖 as follows:

𝑌𝑖 = 𝜃𝑇𝑖 + 𝑔(𝑋𝑖 ) + 𝑒𝑖 and 𝑇𝑖 = ℎ(𝑋𝑖 ) + 𝑢𝑖 .
The PLM imposes very weak assumptions on how the treatment

and outcome relate to the covariates. It also motivates an intuitive

two-step DML estimator of 𝜃 , the residuals-on-residuals regression

(RORR). RORR, a natural extension of the Frisch-Waugh-Lovell

theorem, involves first “partialing out” the effect of𝑋𝑖 using flexible

machine learning methods, then forming the residuals:

𝑌𝑖 = 𝑌𝑖 − 𝑔(𝑋𝑖 ) and 𝑇𝑖 = 𝑇𝑖 − ℎ̂(𝑋𝑖 ),
and lastly regressing 𝑌𝑖 on 𝑇𝑖 to obtain the estimate

ˆ𝜃 [19].

When the treatment effect 𝜃 is the same for all units in the pop-

ulation, it is also the Average Treatment Effect (ATE) for binary

treatments, the Average Causal Derivative (ACD) for continuous
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treatments, and the Average Incremental Effect (AIE) for integer-

valued treatments. Alternatively, we study the probability limit

(plim) and interpretation of
ˆ𝜃 when treatment effects are hetero-

geneous. Under such heterogeneity,
ˆ𝜃 converges to a conditional

variance-weighted average of causal effects, which puts greater

weight on units whose treatment values are less predictable. For

example, when 𝑋 is discrete, the RORR estimand places the most

weight on the treatment effects in the strata where the treatment

has the most variance [1, 3, 20]. When treatments are many-valued

(for example, continuous), RORR may be subject to other, more sub-

tle biases. In this paper, we provide a general analysis of RORR with

binary and many-valued treatments. We demonstrate the empirical

relevance of these biases both in a stylized numerical example and

with real-world data from Netflix. Lastly, we propose an alternative

estimator that utilizes Augmented Inverse Propensity Weighting

(AIPW) along with binning the treatment [7] and demonstrate its

favorable properties theoretically and in our empirical application.

2 RESIDUALS-ON-RESIDUALS REGRESSION
WITH TREATMENT EFFECT
HETEROGENEITY

RORR has many favorable attributes that make it attractive in em-

pirical applications. As mentioned above, it enables highly flexible

estimation of the nuisance functions. Furthermore, RORR has the

doubly-robust property, converging to the true 𝜃 if either the treat-

ment model or the outcome model is correct. When both models

are correct, it is also the efficient estimator [10]. Recent applications

of RORR include studies in economics [4], ecology [11], and public

health [21].

In commercial settings – characterized by large datasets, short

timelines, and stakeholders with diverse technical backgrounds

– RORR is also used for practical reasons. For example, the final

regression step is computationally efficient, as only a small number

of statistics is needed to compute the final estimate of 𝜃 . Moreover,

the recipe of (1) removing variation explainable by pretreatment

covariates and (2) estimating the effect of the remaining exogenous

variation in 𝑇𝑖 on 𝑌𝑖 is intuitive and easy to explain to non-experts.

However, this simplicity can come at a cost: The interpretation

of 𝜃 as an “average” treatment effect (whether the ATE, ACD, or

AIE) depends on the assumption of a homogeneous treatment ef-

fect embedded in the PLM, which may not hold in applications. In

this section, we discuss the interpretation of
ˆ𝜃 under two common

violations of this assumption: binary treatments with heteroge-

neous effects across individuals and many-valued treatments with

continuous dose-response functions.
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2.1 Binary Treatments with Heterogeneous
Treatment Effects

We begin by studying the plim of the RORR estimator for binary

treatments with heterogeneous treatment effects. Letting𝑇𝑖 ∈ {0, 1}
denote the binary treatment indicator, we consider the model:

𝑌𝑖 = 𝜃𝑖𝑇𝑖 + 𝑔(𝑋𝑖 ) + 𝑒𝑖 (1)

𝑇𝑖 = ℎ(𝑋𝑖 ) + 𝑢𝑖 ,

where 𝜃𝑖 is a individual treatment effect. We further assume that the

errors are conditionally exogenous and uncorrelated: 𝐸 [𝑒𝑖 |𝑋𝑖 ] = 0,

𝐸 [𝑢𝑖 |𝑋𝑖 ] = 0, and 𝐸 [𝑒𝑖𝑢𝑖 |𝑋𝑖 ] = 0. This is a linear instantiation of

conditional ignorability. Note that this assumption implies that

𝑔(𝑋𝑖 ) = 𝐸 [𝑌𝑖 − 𝜃𝑖𝑇𝑖 |𝑋𝑖 ] and ℎ(𝑋𝑖 ) = 𝐸 [𝑇𝑖 |𝑋𝑖 ]. We also assume that

𝜃𝑖 is conditionally independent of 𝑇𝑖 given 𝑋𝑖 , 𝜃𝑖 ⊥⊥ 𝑇𝑖 |𝑋𝑖 .
We consider the plim of the OLS regression of 𝑌𝑖 − 𝑔(𝑋𝑖 ) on

𝑇𝑖 − ℎ(𝑋𝑖 ) with observations 𝑂𝑖 = (𝑌𝑖 ,𝑇𝑖 , 𝑋𝑖 ), 𝑖 = 1, . . . 𝑁 . We

assume that the observations 𝑂1, . . . ,𝑂𝑁 ∼ 𝑂 are independent and

identically distributed. While 𝑔 and ℎ must be estimated in practice,

for ease of exposition, we assume consistent estimators for these

and focus on the (true) limiting 𝑔 and ℎ.1

First observe that:

ˆ𝜃
𝑝
→ 𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 )) (𝑌𝑖 − 𝑔(𝑋𝑖 ))]

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]
(2)

=
𝐸 [𝜃𝑖 (𝑇 2

𝑖
−𝑇𝑖ℎ(𝑋𝑖 ))]

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]
.

Using the fact that 𝑇𝑖 is binary and applying the law of iterated

expectations, we can rewrite this as:

𝐸 [𝜃𝑖 (𝑇 2

𝑖
−𝑇𝑖ℎ(𝑋𝑖 ))]

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]
=

𝐸 [𝜃𝑖𝐸 [𝑇𝑖 (1 − ℎ(𝑋𝑖 )) |𝑋𝑖 ]]
𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]

(3)

=
𝐸 [𝜃𝑖 (𝑇𝑖 − ℎ(𝑋𝑖 ))2]
𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]

, (4)

where Equation (3) follows from 𝜃𝑖 being conditionally indepen-

dent of 𝑇𝑖 . This demonstrates the known result that, with a binary

treatment, linear regression converges to a conditional variance-

weighted average of individual treatment effects [1, 3].

For an intuitive restatement, denote the conditional variance

weights by 𝜔𝑖 :=
(𝑇𝑖−ℎ (𝑋𝑖 ) )2

𝐸 [ (𝑇𝑖−ℎ (𝑋𝑖 ) )2 ] and note that 𝐸 [𝜔𝑖 ] = 1 by con-

struction. Then the bias of the RORR plim (which we will denote

by
˜𝜃 ) with respect to the ATE can be written as:

˜𝜃 − 𝐸 [𝜃𝑖 ] = 𝐸 [𝜔𝑖𝜃𝑖 ] − 𝐸 [𝜃𝑖 ] (5)

= Cov(𝜔𝑖 , 𝜃𝑖 ). (6)

In other words, the bias of RORR for binary treatments when treat-

ment effects are heterogeneous is equal to the covariance of the

individual treatment effects and the conditional variance of the

treatment residual. This covariance will not equal zero except in

special cases (e.g., the treatment is assigned uniformly at random)

and therefore
˜𝜃 ≠ 𝐸 [𝜃𝑖 ] in general.

2

1
Researchers typically use extremely flexible function classes for 𝑔 andℎ (e.g., gradient

boosted trees or deep neural networks) that are able to approximate the true nuisance

functions arbitrarily closely.

2
A corollary is that ranking treatments based on their PLM coefficient is not the same

as ranking them based on their ATEs [17].

2.2 Many-Valued Treatments
We now turn our attention to many-valued (e.g., continuous or

integer-valued) treatments with continuous dose-response func-

tions. Although previous research has studied the effect of treatment

effect heterogeneity on the interpretation of linear treatment effect

estimators, it has mainly done so in the context of binary treatments

and/or linear treatment effects [3]. However, in many applications,

treatments are continuous and/or have nonlinear effects on the

outcome (for example, they may have diminishing returns). Such

nonlinearity is an important form of treatment effect heterogene-

ity that has received less attention in previous work, with notable

exceptions [e.g., 2, 22].

Specifically, we study the model:

𝑌𝑖 = 𝑓 (𝑇𝑖 ) + 𝑔(𝑋𝑖 ) + 𝑒𝑖 (7)

𝑇𝑖 = ℎ(𝑋𝑖 ) + 𝑢𝑖 ,

where 𝑓 is a continuously differentiable function of a many-valued

treatment 𝑇𝑖 . For reasons that will become apparent, we assume

that 𝑓 is well-defined on the convex hull of 𝑇𝑖 , even if 𝑇𝑖 itself

is not continuous. As before, we assume conditional exogeneity,

consistent estimators for 𝑔 and ℎ, and iid observations.

Under these assumptions, the RORR estimate converges in prob-

ability to:

ˆ𝜃
𝑝
→ 𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 )) 𝑓 (𝑇𝑖 )]

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]
. (8)

Since ℎ(𝑋𝑖 ) is a constant given 𝑋𝑖 and applying the law of iterated

expectations, we can rewrite the above as:

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 )) 𝑓 (𝑇𝑖 )]
𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]

(9)

=
𝐸 [𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 )) (𝑓 (𝑇𝑖 ) − 𝑓 (ℎ(𝑋𝑖 ))) |𝑋𝑖 ]]

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]
.

By the mean value theorem, there exists a𝑇 ∗
𝑖
between𝑇𝑖 and ℎ(𝑋𝑖 )

for every 𝑋𝑖 such that:

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 )) (𝑓 (𝑇𝑖 ) − 𝑓 (ℎ(𝑋𝑖 ))) |𝑋𝑖 ]
𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]

(10)

=
𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2 𝑓 ′ (𝑇 ∗

𝑖
)]

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]

=
𝐸 [𝜔𝑖 𝑓 ′ (𝑇 ∗

𝑖
)]

𝐸 [𝜔𝑖 ]
,

showing that, as in the binary case,
ˆ𝜃 also converges to a conditional

variance-weighted average of causal effects.
3
However, unlike in

the binary treatment case, the quantity being averaged cannot be

interpreted as the causal effect of increasing the treatment in the

population represented by the sample. This is because the point 𝑇 ∗
𝑖

is not actually the treatment dose received by 𝑖 , but rather a convex

combination of the received treatment 𝑇𝑖 and its conditional mean

ℎ(𝑋𝑖 ). As such, 𝑇 ∗
𝑖
may not be an observed treatment level. If 𝑇𝑖 is

not continuous, it may not even be a realizable treatment value.

Proposition 1 derives the conditions under which
˜𝜃 converges

to the ACD.

3
Not coincidentally, this representation of the OLS estimator closely resembles the rep-

resentation of the Wald estimator with a binary instrument and continuous treatment

as an first-stage effect-weighted average of derivatives at the mean values𝑇 ∗
𝑖 [2].
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Proposition 1. Let 𝑂𝑖 = (𝑌𝑖 ,𝑇𝑖 , 𝑋𝑖 ), 𝑖 = 1, . . . 𝑁 be iid draws
from some distribution obeying the model (7). We assume 𝑓 and ℎ
are consistently estimated and that 𝐸 [𝑒𝑖 |𝑋𝑖 ] = 0, 𝐸 [𝑢𝑖 |𝑋𝑖 ] = 0, and
𝐸 [𝑒𝑖𝑢𝑖 |𝑋𝑖 ] = 0. We also assume that 𝑓 is everywhere differentiable
and that 𝑓 ′ is Lipschitz with constant 𝐿. Lastly, we assume that
𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2] > 0. Then the residuals-on-residuals regression
(RORR) plim ˜𝜃 equals the Average Causal Derivative (ACD) 𝐸 [𝑓 ′ (𝑇𝑖 )]
if 𝑓 is affine (𝐿 = 0).

Proof. With iid observations, conditional ignorability, and 𝑓

andℎ consistently estimated,
˜𝜃 is as given in (10).We can decompose

the bias of
˜𝜃 relative to the ACD into two pieces by adding and

subtracting:

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2 𝑓 ′ (𝑇 ∗
𝑖
)]

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]
− 𝐸 [𝑓 ′ (𝑇𝑖 )] (11)

=
𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2 𝑓 ′ (𝑇 ∗

𝑖
)]

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]
− 𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2 𝑓 ′ (𝑇𝑖 )]

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]︸                                                              ︷︷                                                              ︸
:=𝐴

+ 𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))
2 𝑓 ′ (𝑇𝑖 )]

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]
− 𝐸 [𝑓 ′ (𝑇𝑖 )]︸                                          ︷︷                                          ︸

:=𝐵

.

The first piece (𝐴) is the difference between the RORR plim and

the variance-weighted average causal derivative evaluated over the

treatment distribution actually observed in the sample. Note that

we can bound the absolute value of this term as a function of 𝐿 and

the distribution of 𝑇𝑖 . First, rewrite 𝐴 as:

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2 𝑓 ′ (𝑇 ∗
𝑖
)]

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]
− 𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2 𝑓 ′ (𝑇𝑖 )]

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]
(12)

=
𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2 (𝑓 ′ (𝑇 ∗

𝑖
) − 𝑓 ′ (𝑇𝑖 ))]

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]
.

Under the assumption that 𝑓 ′ is Lipschitz, there exists a constant
𝐿 ≥ 0 such that, for all 𝑢, 𝑣 :

|𝑓 ′ (𝑢) − 𝑓 ′ (𝑣) | ≤ 𝐿 |𝑢 − 𝑣 |. (13)

Since 𝑇 ∗
𝑖
lies between 𝑇𝑖 and ℎ(𝑋𝑖 ), we have that:

|𝑓 ′ (𝑇 ∗
𝑖 ) − 𝑓

′ (𝑇𝑖 ) | ≤ 𝐿 |𝑇 ∗
𝑖 −𝑇𝑖 | ≤ 𝐿 |𝑇𝑖 − ℎ(𝑋𝑖 ) |. (14)

Multiplying both sides by (𝑇𝑖 − ℎ(𝑋𝑖 ))2 and taking expectations

yields:

𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2 |𝑓 ′ (𝑇 ∗
𝑖 ) − 𝑓

′ (𝑇𝑖 ) |] (15)

≤ 𝐿𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2 |𝑇𝑖 − ℎ(𝑋𝑖 ) |] = 𝐿𝐸 [|𝑇𝑖 − ℎ(𝑋𝑖 ) |3] .

Dividing both sides by 𝐸 [(𝑇𝑖 −ℎ(𝑋𝑖 ))2] yields the following bound:

|𝐴| ≤ 𝐿
𝐸 [|𝑇𝑖 − ℎ(𝑋𝑖 ) |3]
𝐸 [(𝑇𝑖 − ℎ(𝑋𝑖 ))2]︸                ︷︷                ︸

:=𝜅

. (16)

Note that |𝑇𝑖 −ℎ(𝑋𝑖 ) |3 is always weakly positive. Therefore, 𝜅 only

equals zero if𝑇𝑖 = ℎ(𝑋𝑖 ) almost surely. However, 𝐸 [(𝑇𝑖−ℎ(𝑋𝑖 ))2] >
0 by assumption, so𝑇𝑖 cannot equal ℎ(𝑋𝑖 ) almost surely. Therefore,

the right-hand side of (16) equals zero if and only if 𝐿 = 0.

The second term 𝐵 is the familiar bias between the variance-

weighted average derivative and the ACD. This has a similar inter-

pretation as in the binary treatment case. That is, letting 𝜔𝑖 once

again denote the conditional variance weight:

𝐸 [𝜔𝑖 𝑓 ′ (𝑇𝑖 )] − 𝐸 [𝑓 ′ (𝑇𝑖 )] = Cov(𝜔𝑖 , 𝑓 ′ (𝑇𝑖 )), (17)

which is the continuous analog of Equation 6. If 𝑓 is affine, 𝑓 ′ (𝑇𝑖 )
is a constant, so Cov(𝜔𝑖 , 𝑓 ′ (𝑇𝑖 )) = 0, Therefore, the absolute bias

of
˜𝜃 is equal to |𝐴 + Cov(𝜔𝑖 , 𝑓 ′ (𝑇𝑖 )) | ≤ |𝐴| + | Cov(𝜔𝑖 , 𝑓 ′ (𝑇𝑖 )) | ≤

𝐿𝜅 + | Cov(𝜔𝑖 , 𝑓 ′ (𝑇𝑖 )) | = 0 when 𝑓 is affine, which obtains the

result. □

Corollary 1. Proposition 1 establishes that 𝑓 being affine is suffi-
cient for ˜𝜃 = 𝐸 [𝑓 ′ (𝑇𝑖 )]. If we further assume that 𝐿 > 0 =⇒ 𝐴 ≠ 0

and𝐴 ≠ −𝐵, where𝐴 and 𝐵 are defined as in (11), then ˜𝜃 = 𝐸 [𝑓 ′ (𝑇𝑖 )]
if and only if 𝑓 is affine.

In other words,
˜𝜃 will be closer to the conditional variance-

weighted average of 𝑓 ′ when 𝑓 is close to affine. In turn, the condi-

tional variance-weighted average of 𝑓 ′ is equal to 𝐸 [𝑓 ′ (𝑇𝑖 )] when
Cov(𝜔𝑖 , 𝑓 ′ (𝑇𝑖 )) = 0, which holds trivially if 𝑓 is affine. Therefore,

both biases vanish when 𝑓 is affine (and thus the PLM is correctly

specified). However, if 𝑓 is not affine, then
˜𝜃 ≠ 𝐸 [𝑓 ′ (𝑇𝑖 )] except in

contrived cases (e.g., both biases exactly offset).

3 NUMERICAL EXAMPLE
To help build intuition, this section presents a stylized numerical

example.
4
Although we make simplistic assumptions to facilitate

closed-form analysis, our choices are also intended to reflect quali-

tative aspects of real-world data. In particular, we assume that:

(1) While 𝐸 [𝑌𝑖 |𝑇𝑖 , 𝑋𝑖 ] is increasing in 𝑇𝑖 , it also exhibits di-

minishing returns. That is, letting 𝑓 (𝑇𝑖 ) be defined as in

Equation (7), 𝑓 ′ (𝑇 ) > 0 and 𝑓 ′′ (𝑇 ) < 0.

(2) 𝑇𝑖 is an overdispersed count variable, such that even a cor-

rect model for 𝐸 [𝑇𝑖 |𝑋𝑖 ] has heteroskedastic errors.
Let 𝑋𝑖 be a Categorical variable that takes on values 𝑗 = 1, . . . , 𝐽

with probabilities 𝜋1, . . . , 𝜋 𝐽 and 𝑇𝑖 be a Poisson distributed condi-

tional on 𝑋𝑖 with parameters 𝜆 𝑗 . We further assume that 𝑓 (𝑇𝑖 ) =
log(𝑇𝑖 + 1). This allows us to derive the following expression for

the conditional expected derivative of 𝑌𝑖 with respect to 𝑇𝑖 given

𝑋𝑖 (see Appendix A.1):

𝐸 [𝑓 ′ (𝑇𝑖 ) |𝑋 = 𝑗] =
1 − exp(−𝜆 𝑗 )

𝜆 𝑗
. (18)

The ACD is then just

∑
𝑗 𝜋 𝑗

1−exp(−𝜆 𝑗 )
𝜆 𝑗

.

We can also derive the RORR plim analytically as:

ˆ𝜃
𝑝
→ ˜𝜃 =

∑𝐽
𝑗
𝜋 𝑗𝐸 [(𝑇𝑖 − 𝜆 𝑗 )2 𝑓 ′ (𝑇 ∗

𝑖
) |𝑋𝑖 = 𝑗]∑𝐽

𝑗
𝜋 𝑗𝜆 𝑗

, (19)

where, as before, 𝑇 ∗
𝑖
is a point between 𝑇𝑖 and 𝜆 𝑗 . Note the two

biases relative to the ACD: First, rather than evaluate 𝑓 ′ at 𝑇𝑖 , we
evaluate it at𝑇 ∗

𝑖
. Second, we additionally weight each 𝑓 ′ (𝑇 ∗

𝑖
) by its

squared deviation from the mean.

4
Code to reproduce all figures and tables in this section are available from https:

//github.com/winston-chou/rorr.

https://github.com/winston-chou/rorr
https://github.com/winston-chou/rorr
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Figure 1: Bias of Residuals-on-Residuals Regression

Figure 1 illustrates the resulting bias via simulation from this

data-generating process. First, we plot 𝑓 (𝑇𝑖 ) = log(𝑇𝑖 + 1) in top

panel of Figure 1, as well as tangent lines with slopes equal to

𝐸 [𝑓 ′ (𝑇𝑖 )] in blue and to 𝐸 [𝑓 ′ (𝜔𝑖𝑇 ∗
𝑖
)] in red, where 𝜔𝑖𝑇

∗
𝑖
is the

“effective” treatment analyzed by RORR. The key takeaway is that

RORR targets a quantity other (and smaller) than the ACD.
5
The

subsequent panels give intuition for this result: After weighting by

𝜔𝑖 and transforming𝑇𝑖 to𝑇
∗
𝑖
, the effective treatment distribution is

much more right-skewed than the observed treatment distribution.

This means that we tend to evaluate the slope of 𝑓 at higher values

of 𝑇𝑖 . This leads to negative bias because 𝑓 ′′ (𝑇𝑖 ) < 0.

5
An analogous result in the welfare economics literature is that OLS up-weights the

slopes of higher-income groups in regressions of consumption on income, leading to

attenuation [22].

Table 1: Simulation Results for RORR and ACD

Sample Size Empirical RORR RORR 95% CI RORR Plim

10,000 0.250 (0.237, 0.262) 0.247

100,000 0.248 (0.244, 0.252) 0.247

1,000,000 0.248 (0.247, 0.249) 0.247

Sample Size Empirical ACD ACD 95% CI True ACD

10,000 0.362 (0.357, 0.367) 0.365

100,000 0.364 (0.362, 0.366) 0.365

1,000,000 0.365 (0.364, 0.365) 0.365

In Table 1, we report the estimated empirical RORR from simu-

lations at varying sample sizes. For comparison, we also report the

empirical ACD (calculated as the sample mean of
1

𝑇𝑖+1 ) and the true
ACD computed using (18). Note that, because 𝑇𝑖 is integer-valued

in this example, the more appropriate causal estimand is arguably

the Average Incremental Effect (AIE), defined as:

𝐸 [𝑌𝑖 (𝑇𝑖 + 1) − 𝑌𝑖 (𝑇𝑖 )] =
∞∑︁
𝑡=0

(𝑓 (𝑡 + 1) − 𝑓 (𝑡))𝑝 (𝑡), (20)

where 𝑝 is the mass function of 𝑇𝑖 . However, because the RORR

plim is a weighted average of derivatives, we focus on the ACD in

Table 1 and propose a consistent estimator of the AIE in Section 4.

As Table 1 shows, the RORR plim is negatively biased for the ACD.

This is due to the fact that it places more weight on the derivative

of the dose-response curve at larger values of the treatment. In

the following section, we propose a consistent estimator for the

AIE with integer-valued treatments and the ACD with continuous

treatments.

4 COARSENED AUGMENTED IPW
ESTIMATOR

A common benchmark for estimating the Average Causal Derivative

(ACD) with continuous treatments is the Generalized Propensity

Score (GPS) [14]. However, GPS requires estimating the conditional

density of the treatment, which can suffer from slow rates and

instability without simplifying parametric assumptions [16].

As an alternative to both RORR and GPS, we propose a simple

coarsened Augmented Inverse Propensity Weighting (AIPW) esti-

mator, which uses the AIPW estimator of counterfactual means as

building blocks [7]. This estimator proceeds by first partitioning

the support of 𝑇𝑖 into 𝐾 disjoint segments (or bins) {𝑆1, 𝑆2, . . . , 𝑆𝐾 }
with 𝑆𝑘 = [𝑡𝑘−1, 𝑡𝑘 ). For each bin 𝑆𝑘 , we estimate the bin-level

propensity score 𝑝𝑘 (𝑋𝑖 ) := Pr(𝑇𝑖 ∈ 𝑆𝑘 | 𝑋𝑖 ), for example by fitting

a multiclass classification model. Denote this estimate by 𝑝𝑘 (𝑋𝑖 ).
We also estimate a flexible outcome regression for𝑚𝑘 (𝑋𝑖 ) := E[𝑌𝑖 |
𝑇𝑖 ∈ 𝑆𝑘 , 𝑋𝑖 ], which we denote by �̂�𝑘 (𝑋𝑖 ).

Next, we form the usual AIPW estimator for the marginal mean

in bin 𝑆𝑘 :

ˆ𝜓𝑘 :=
1

𝑁

𝑁∑︁
𝑖=1

( [
1(𝑇𝑖 ∈ 𝑆𝑘 )
𝑝𝑘 (𝑋𝑖 )

(𝑌𝑖 − �̂�𝑘 (𝑋𝑖 ))
]
+ �̂�𝑘 (𝑋𝑖 )

)
.

Like the RORR, this estimator is doubly robust, meaning that if

either 𝑝𝑘 or �̂� is consistently estimated, then
ˆ𝜓𝑘 is also consistent.
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Note that the plim of
ˆ𝜓𝑘 has a somewhat subtle interpretation due

to averaging over the bin. Under standard assumptions, it can be

interpreted as the population-average potential outcome if units

are treated under the conditional distribution of 𝑇𝑖 given 𝑋𝑖 and

𝑇𝑖 ∈ 𝑆𝑘 .
We further define weights𝑤𝑘 for each bin that are proportional

to their empirical proportion:

𝑤𝑘 =


P̂r(𝑇𝑖 ∈𝑆𝑘 )∑𝐾−1
ℓ=1 P̂r(𝑇𝑖 ∈𝑆ℓ )

for 𝑘 < 𝐾

0 for 𝑘 = 𝐾.

Lastly, the overall ACD estimate is given by:

ˆ𝜓 :=

𝐾−1∑︁
𝑘=1

𝑤𝑘

(
ˆ𝜓𝑘+1 − ˆ𝜓𝑘

𝑡𝑘+1 − 𝑡𝑘

)
,

where 𝑡𝑘 =
𝑡𝑘+1+𝑡𝑘

2
is the midpoint of 𝑆𝑘 . Heuristically,

ˆ𝜓 ap-

proximates 𝑓 ′ using a piecewise linear function and computes its

weighted average using the empirical distribution of the lower seg-

ment. Appendix B proves the consistency of this estimator for the

ACD as both 𝑁 and 𝐾 tend to infinity.

Table 2 shows the results of applying this estimator to the simu-

lated data from Section 3. Because the treatment is integer-valued,

we can simply set the bins to each observed treatment value. As

the table shows, this yields a consistent estimator for the AIE.
6

Table 2: Simulation Results for Coarsened AIPW and AIE

Sample Size Empirical AIE AIE 95% CI True AIE

10,000 0.277 (0.247, 0.308) 0.295

100,000 0.291 (0.282, 0.300) 0.295

1,000,000 0.295 (0.290, 0.300) 0.295

5 EMPIRICAL APPLICATION
We now demonstrate the empirical relevance of our theoretical

analysis using real-world data fromNetflix. Althoughwe are limited

in what we can share for confidentiality reasons, the main thrust of

this section is to show that the theoretical biases discussed above

can (and, in our experience, often do) appear in real-world data.

In this particular application, we sought to understand how the

use of a feature, which we will call Feature A, affects future visits

to Netflix. To answer this question, we drew a random sample of

2,971,128 members and counted the number of times they used

Feature A over a 28 day window. We then divided this number by

the member’s count of visits to Netflix over the same period to

define our continuous treatment, Feature A Usage Rate. Next,
we defined our outcome as the count of each member’s visits to

Netflix in the next 28 day window. As covariates, we included the

count of times each member used Feature A and the count of times

each member visited Netflix in the seven, 14, and 28 days preceding

the treatment period.
7

6
Note that the AIE is less than the ACD because 𝑓 (𝑡+1) − 𝑓 (𝑡 ) = log

(
1 + 1

𝑡+1
)
≤ 1

𝑡+1
for all 𝑡 ≥ 0.

7
We complemented these six covariates with an additional 25 covariates; most of these

measured the usage of other Netflix features in the 28 days preceding to the treatment

period.

We divided our dataset into roughly equal-sized training, valida-

tion, and test datasets consisting of ≈980,000 units each. To estimate

the nuisance parameters in the PLM, we fit gradient boosted regres-

sion trees to the treatment and outcome variables observed in the

training dataset, using the validation dataset to tune the number of

boosting rounds. Lastly, we regressed the outcome residuals on the

treatment residuals in the test dataset to obtain the RORR treatment

estimate, which is shown in Table 3. As the table shows, the RORR

estimate of the effect of Feature A on subsequent visits is small,

negative, and statistically significant.
8
This finding contradicted

our prior belief that Feature A would increase visits to Netflix.

Table 3: RORR and AIPW Estimates of the Effect of Feature
A Usage on Netflix Visits (N = 980,139)

RORR Std. Err. 95% CI

Feature A Usage Rate -0.0038 0.001 (-0.005, -0.002)

AIPW Std. Err. 95% CI

Feature A Usage Rate 5.343 0.010 (5.324, 5.362)

Our coarsened AIPW estimator helps provide intuition for this

puzzling result. To fit this estimator, we first coarsened the treat-

ment into five bins and then fit a multiclass classifier using gradient

boosting to the resulting bins. We assigned zero values (i.e., no

usage of Feature A during the treatment period) to the first bin and

then divided the remaining non-zero values into quartiles. For the

outcome regression, we reused the same function used to fit the

RORR.

Figure 2: Balance in Pre-Treatment Outcomes After Inverse
Propensity Score Weighting

Figure 2 is a standard diagnostic that plots the difference in the

standardized pretreatment value of the outcome in each bin and

bin 1 before and after inverse propensity score weighting. As the

figure shows, IPW significantly reduces pretreatment differences

8
Note that treatment effects are reported after standardizing the treatment and outcome

by their respective standard deviations.
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Figure 3: Treatment Effects of Feature A Usage on Netflix
Visits After AIPW Weighting. Note that we remove y-axis
labels to preserve confidentiality.

in the outcome variable, making the bins more comparable to each

other and strengthening the credibility of conditional ignorability.

We plot the main results in Figure 3, whose panels show, from top

to bottom, the counterfactual mean of the post-treatment outcome

in each treatment bin; the estimated treatment effect associated

with incrementing each bin; and lastly the proportion of the dataset

in each bin, which is clearly concentrated in the zero-usage bin.

As Figure 3 shows, AIPW estimates a large positive treatment

effect of moving from the zero-usage bin (bin 1) to the next bin

(bin 2). Moreover, because Feature A usage is zero-inflated, bin 1

is the most representative bin. Therefore, as shown in Table 3, the

coarsened AIPW estimate is positive, statistically significant, and

substantially larger in magnitude than the RORR estimate. This

discrepancy arises because the coarsened AIPW estimator explicitly

weights the treatment effects to be representative of the treatment

distribution, whereas RORR up-weights units with higher values of

the treatment, where the dose-response curve is downward-sloping.

The discrepancy is highly relevant for decision making: Although

RORR indicates that Feature A has a negative treatment effect on

the outcome, the AIPW results show that increasing Feature A

usage would have a positive effect for the vast majority of members.

Indeed, all nonzero Feature A usage bins have a higher conditional

means than the zero-usage bin, indicating that any Feature A usage

is preferable to none.

6 CONCLUSION
Although DML estimators are becoming increasingly popular in

both academic and commercial research, researchers must – as

ever – carefully evaluate their suitability for specific applications.

Focusing on the special case of residuals-on-residuals regression

(RORR), this paper studies the proper interpretation of RORR when

treatment effects are heterogeneous and/or when treatments are

many-valued with nonlinear dose-response functions. We show

that, in the latter case, RORR converges to a conditional variance-

weighted average of causal derivatives, with the added complication

that these derivatives are evaluated on a “pseudo-treatment” dis-

tribution that differs from the treatment distribution seen in the

data. As our empirical application shows, the subtle biases of RORR

relative to any “average” treatment effect can have significant con-

sequences for decision-making. To address these biases, we propose

a coarsened AIPW estimator and show that it yields more repre-

sentative estimates of causal effects.
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A DERIVATIONS
A.1 Derivation of Equation 18
Note that, in our stylized example,𝑇𝑖 is Poisson(𝜆 𝑗 ) conditional on
𝑋𝑖 = 𝑗 . Therefore, its probability mass function is given by:

𝑃 (𝑇𝑖 = 𝑡 |𝑋𝑖 = 𝑗) = 𝑒−𝜆 𝑗
𝜆𝑡
𝑗

𝑡 !
, 𝑡 = 0, 1, 2, . . . , (21)

and the conditional expectation of the causal derivative
1

𝑇𝑖+1 given

𝑋𝑖 = 𝑗 is:
∞∑︁
𝑡=0

1

𝑡 + 1

𝑒−𝜆 𝑗
𝜆𝑡
𝑗

𝑡 !
=

∞∑︁
𝑡=0

𝑒−𝜆 𝑗
𝜆𝑡
𝑗

(𝑡 + 1)! . (22)

Define 𝑠 := 𝑡 + 1. Then we can rewrite the above as:

∞∑︁
𝑠=1

𝑒−𝜆 𝑗
𝜆𝑠−1
𝑗

𝑠!
=

𝑒−𝜆 𝑗

𝜆 𝑗

∞∑︁
𝑠=1

𝜆𝑠
𝑗

𝑠!
(23)

=
(𝑒𝜆 𝑗 − 1)
𝜆 𝑗𝑒

𝜆 𝑗
(24)

=
1 − 𝑒−𝜆 𝑗
𝜆 𝑗

. (25)

where the second-to-last equality uses the identity

∑∞
𝑠=0

𝑥𝑠

𝑠!
= 𝑒𝑥 .

A.2 Derivation of 𝑇 ∗
𝑖

Within a given stratum 𝑋𝑖 = 𝑗 , ℎ(𝑋𝑖 ) = 𝐸 [𝑇𝑖 |𝑋𝑖 ] = 𝜆 𝑗 by assump-

tion. We want to derive the point𝑇 ∗
𝑖
between𝑇𝑖 and 𝜆 𝑗 at which we

are evaluating the derivative 𝑓 ′ (𝑡) = 1/(𝑡 + 1). We will condition

on 𝑋𝑖 throughout.

By the mean value theorem, there is some 𝑇 ∗
𝑖
between 𝑇𝑖 and 𝜆 𝑗

for which:

𝑓 (𝑇𝑖 ) − 𝑓 (𝜆 𝑗 ) = 𝑓 ′ (𝑇 ∗
𝑖 ) (𝑇𝑖 − 𝜆 𝑗 ).

Plugging in the definition of 𝑓 and its derivative, we write this

as:

log(𝑇𝑖 + 1) − log(𝜆 𝑗 + 1) = 1

𝑇 ∗
𝑖
+ 1

(𝑇𝑖 − 𝜆 𝑗 ).

Solving for 𝑇 ∗
𝑖
yields:

𝑇 ∗
𝑖 =

𝑇𝑖 − 𝜆 𝑗
log

𝑇𝑖+1
𝜆 𝑗+1

− 1.

Note that, when 𝑇𝑖 = 𝜆 𝑗 , this quantity is undefined (in which case

we just set 𝑇 ∗
𝑖
= 𝑇𝑖 ).

In our simulations, we estimate the theoretical plim of RORR

by taking many draws of 𝑇𝑖 , plugging them into this formula, and

using the resulting stratum means to estimate Equation 19

B PROOF OF CONSISTENCY OF COARSENED
AIPW

We assume the PLM for continuous treatments, but introduce the

potential outcomes notation:

𝑌𝑖 (𝑡) = 𝑓 (𝑡) + 𝑔(𝑋𝑖 ) + 𝑒𝑖 (26)

𝑇𝑖 = ℎ(𝑋𝑖 ) + 𝑢𝑖 . (27)

We assume that 𝑓 is continuously differentiable, 𝐸 [𝑒𝑖 |𝑋𝑖 ] = 0,

𝐸 [𝑢𝑖 |𝑋𝑖 ] = 0, and 𝐸 [𝑒𝑖𝑢𝑖 |𝑋𝑖 ] = 0. Note that the last of these as-

sumptions implies that 𝑌𝑖 (𝑡) is conditionally independent of 𝑇𝑖

given 𝑋𝑖 . We further require positivity of treatment for all 𝑥 and 𝑡 :

𝑝 (𝑡 |𝑥) ≥ 𝜖 > 0, (28)

where 𝑝 (𝑡 |𝑥) is the continuous conditional density of 𝑇𝑖 given 𝑋𝑖 .

This is the continuous analog of the overlap assumption under

binary or discrete treatments, which requires that every unit has a

positive probability of treatment given covariates.

Partition the domain of𝑇𝑖 into𝐾 equal-spaced segments, denoted

by 𝑆𝑘 , 𝑘 = 1, . . . , 𝐾 , with 𝑆𝑘 = [𝑡𝑘 , 𝑡𝑘+1) and 𝑡𝑘+1 − 𝑡𝑘 = 𝐶𝐾−1
for

all 𝑘 , where 𝐶 is some positive constant that spans the domain of

𝑇𝑖 . Define 𝑝𝑘 (𝑋𝑖 ) = Pr(𝑇𝑖 ∈ 𝑆𝑘 |𝑋𝑖 ) and𝑚𝑘 (𝑋𝑖 ) = 𝐸 [𝑌𝑖 |𝑇𝑖 ∈ 𝑆𝑘 , 𝑋𝑖 ]
and let one or both 𝑝𝑘 and �̂�𝑘 be consistent estimators.

The coarsened AIPW estimator for a given segment 𝑆𝑘 is defined

as:

ˆ𝜓𝑘 :=
1

𝑁

𝑁∑︁
𝑖=1

1(𝑇𝑖 ∈ 𝑆𝑘 )
𝑝𝑘 (𝑋𝑖 )

(𝑌𝑖 − �̂�𝑘 ) + �̂�𝑘 . (29)

Further define the approximate weights:

𝑤𝑘 =

{
Pr(𝑇𝑖 ∈𝑆𝑘 )
Pr(𝑇𝑖∉𝑆𝐾 ) for 𝑘 < 𝐾

0 for 𝑘 = 𝐾,
(30)

and denote the midpoint of bin 𝑆𝑘 by 𝑡𝑘 =
𝑡𝑘+1−𝑡𝑘

2
.

Then coarsened AIPW estimator of the Average Causal Deriva-

tive is defined as

ˆ𝜓 :=

𝐾−1∑︁
𝑘=1

𝑤𝑘

(
ˆ𝜓𝑘+1 − ˆ𝜓𝑘

𝑡𝑘+1 − 𝑡𝑘

)
.

Theorem 1.
ˆ𝜓 converges in probability to the Average Causal

Derivative 𝐸 [𝑓 ′ (𝑇𝑖 )] as both the number of observations 𝑁 and the
number of segments 𝐾 → ∞.

Proof. By consistency of 𝑝𝑘 or �̂�𝑘 and conditional indepen-

dence of 𝑌𝑖 (𝑡) and 𝑋𝑖 ,

ˆ𝜓𝑘
𝑝
→

∫ ∫
𝑌𝑖 (𝑡)

𝑝 (𝑡 |𝑥)1(𝑡 ∈ 𝑆𝑘 )
Pr(𝑡 ∈ 𝑆𝑘 |𝑥)

𝑝 (𝑥)𝑑𝑡𝑑𝑥 . (31)

Subtracting
ˆ𝜓𝑘 from

ˆ𝜓𝑘+1 and plugging in the definition of 𝑌𝑖
yields:

ˆ𝜓𝑘+1 − ˆ𝜓𝑘 (32)

𝑝
→

∫ ( ∫
𝑓 (𝑡) 𝑝 (𝑡 |𝑥)1(𝑡 ∈ 𝑆𝑘+1)

Pr(𝑡 ∈ 𝑆𝑘+1 |𝑥)
𝑑𝑡

−
∫

𝑓 (𝑡) 𝑝 (𝑡 |𝑥)1(𝑡 ∈ 𝑆𝑘 )
Pr(𝑡 ∈ 𝑆𝑘 |𝑥)

𝑑𝑡

)
𝑝 (𝑥)𝑑𝑥

:= Δ𝑘 .

Δ𝑘 has a subtle interpretation: It is the “effect” of moving from

segment 𝑆𝑘 to 𝑆𝑘+1 when units are treated according to the condi-

tional treatment distribution in each segment. We now show that

Δ𝑘 can be interpreted as a very specific ATE. Given continuity of 𝑓 ,

𝑝 , and positivity, the mean value theorem for integrals states that

there exists a 𝑡𝑘 ∈ 𝑆𝑘 such that∫
𝑓 (𝑡) 𝑝 (𝑡 |𝑥)1(𝑡 ∈ 𝑆𝑘 )

Pr(𝑡 ∈ 𝑆𝑘 |𝑥)
𝑑𝑡 = 𝑓 (𝑡𝑘 ) .

Therefore, we can rewrite the above as:

Δ𝑘 =

∫
(𝑓 (𝑡𝑘+1) − 𝑓 (𝑡𝑘 ))𝑝 (𝑥)𝑑𝑥, (33)

showing that Δ𝑘 is the ATE of fixing 𝑇𝑖 to 𝑡𝑘+1 compared to 𝑡𝑘 .
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By another application of the mean value theorem, there exists

a 𝑡∗
𝑘
between 𝑡𝑘 and 𝑡𝑘+1 such that:∫

(𝑓 (𝑡𝑘+1) − 𝑓 (𝑡𝑘 ))𝑝 (𝑥)𝑑𝑥 (34)

=

∫
𝑓 ′ (𝑡∗

𝑘
) (𝑡𝑘+1 − 𝑡𝑘 )𝑝 (𝑥)𝑑𝑥

= 𝐸 [𝑓 ′ (𝑡∗
𝑘
) (𝑡𝑘+1 − 𝑡𝑘 )] .

Note that the absolute difference between any of 𝑡𝑘 , 𝑡
∗
𝑘
, and 𝑡𝑘 is

bounded by |2𝐶𝐾−1 |. Therefore, as 𝐾 → ∞, these converge to the

same point. Consequently:

𝐾−1∑︁
𝑘=1

𝑤𝑘

(
ˆ𝜓𝑘+1 − ˆ𝜓𝑘

𝑡𝑘+1 − 𝑡𝑘

)
𝑝
→

∫
𝑓 ′ (𝑡) 𝑡𝑘+1 − 𝑡𝑘

𝑡𝑘+1 − 𝑡𝑘
𝑝 (𝑡)𝑑𝑡 = 𝐸 [𝑓 ′ (𝑡)] . (35)

□

C CHOOSING THE NUMBER OF SEGMENTS
Choosing the number of segments 𝐾 in which to bin the treatment

involves the usual considerations of bias and variance. In many

practical applications, interpretability is also a goal. In this section,

we provide a semiformal justification, relying on many simplifying

assumptions, for choosing 𝐾 = 𝑂 (𝑁 1/7). This implies fewer than

ten bins for medium to large datasets (i.e., between 100,000 to

1,000,000 units).

In our practical work at Netflix, we find that a relatively small

number of bins – for example, dividing users into low, medium,

and high usage segments – is sufficient to detect meaningful het-

erogeneity in the dose-response function. Although using a small

number of bins increases bias, it reduces variance, adds robustness

to slow nuisance estimation rates, and increases interpretability.

The MSE of the coarsened AIPW estimator is:

𝑀𝑆𝐸 ( ˆ𝜓 ) = (𝐸 [ ˆ𝜓 ] − 𝐸 [𝑓 ′ (𝑡)])2︸                   ︷︷                   ︸
Bias

2

+Var( ˆ𝜓 ) . (36)

We begin by decomposing the Bias term into three components:

𝐸 [ ˆ𝜓 ] − 𝐸 [𝑓 ′ (𝑡)] (37)

= 𝐸

[
𝐾−1∑︁
𝑘=1

𝑤𝑘

(
ˆ𝜓𝑘+1 − ˆ𝜓𝑘

𝑡𝑘+1 − 𝑡𝑘

)]
−
𝐾−1∑︁
𝑘=1

𝑤𝑘

(
Δ𝑘

𝑡𝑘+1 − 𝑡𝑘

)
︸                                                          ︷︷                                                          ︸

:=𝑎

+
𝐾−1∑︁
𝑘=1

𝑤𝑘

(
Δ𝑘

𝑡𝑘+1 − 𝑡𝑘

)
−
𝐾−1∑︁
𝑘=1

𝑤𝑘 𝑓
′ (𝑡𝑘 )︸                                          ︷︷                                          ︸

:=𝑏

+
𝐾−1∑︁
𝑘=1

𝑤𝑘 𝑓
′ (𝑡𝑘 ) − 𝐸 [𝑓 ′ (𝑡)]︸                          ︷︷                          ︸

:=𝑐

.

In other words, 𝑎 is statistical estimation error, 𝑏 is the bias incurred

by approximating 𝑓 by a piecewise linear function, and 𝑐 is the bias

incurred by approximating an integral by a series of rectangles.

For simplicity, we will assume that 𝑇𝑖 is uniformly distributed,

such that the number of units in each bin 𝑁𝑘 = 𝑁 /𝐾 , 𝑡𝑘+1 − 𝑡𝑘
is a constant ℓ ∝ 𝐾−1

, and 𝑤𝑘 = (𝐾 − 1)−1 for all 𝑘 . We will also

assume that 𝑓 is at least thrice continuously differentiable. Also for

simplicity, we ignore cross-fitting and assume that the nuisance

functions are estimated on a separate dataset of equal size (i.e., also

consisting of 𝑁 units partitioned into 𝐾 bins). We assume the esti-

mated nuisances satisfy standard regularity conditions, specifically

𝛿 < 𝑝 (𝑥) < 1 − 𝛿 for some 𝛿 ∈ (0, 1) and �̂�(𝑥, 𝑘)2 < ∞ almost

surely and that 𝑌 2

𝑖
< ∞, so that Var(𝜓𝑖 ) = 𝑂 (1).

Suppose that
ˆ𝜓𝑘 −𝑚𝑘 = 𝑜𝑝

(
(𝑁 /𝐾)−1/2

)
. Then, under mild regu-

larity conditions, 𝑎 =
∑𝐾
𝑘=1

𝑂

(
(𝑁 /𝐾)−1/2

)
= 𝑂 (𝐾3/2𝑁 −1/2). The

error of the midpoint approximation 𝑏 when 𝑓 is thrice continu-

ously differentiable is known to be 𝑂 (ℓ2) = 𝑂 (𝐾−2) [6, p. 177].
The error of the Riemann sum approximation is also known to be

𝑐 = 𝑂 (𝐾−2) [6, p. 207]. Therefore, the error of the Bias2 term is:

(𝑎 + 𝑏 + 𝑐)2 = 𝑂 (𝐾3𝑁 −1) +𝑂 (𝐾−4) . (38)

The variance is:

Var( ˆ𝜓 ) = Var

(
𝐾−1∑︁
𝑘=1

𝑤𝑘

(
ˆ𝜓𝑘+1 − ˆ𝜓𝑘

𝑏

))
(39)

= 𝐾 Var( ˆ𝜓𝐾 − ˆ𝜓1)
= 𝑂 (𝐾2𝑁 −1) .

Putting these together, we obtain

𝑀𝑆𝐸 ( ˆ𝜓 ) = 𝑂 (𝐾3𝑁 −1) +𝑂 (𝐾−4) +𝑂 (𝐾2𝑁 −1) .
The 𝐾∗

that minimizes this is 𝑂 (𝑁 1/7).
More generally, suppose that 𝜓𝑘 is 𝑛−1/𝑑 consistent for 𝑑 > 0.

Then the Bias
2
term is 𝑂 (𝐾2(𝑑+1)/𝑑𝑁 −2/𝑑 ) + 𝑂 (𝐾−4), while the

variance remains𝑂 (𝐾2𝑁 −1). If 𝑑 < 2, the variance term dominates

and the optimal 𝐾∗ = 𝑂
(
𝑁 1/6

)
. If 𝑑 ≥ 2, the bias term dominates,

and the optimal 𝐾∗ = 𝑂
(
𝑁 1/(3𝑑+1)

)
.
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