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ABSTRACT

Double Machine Learning is commonly used to estimate causal
effects in large observational datasets. The “residuals-on-residuals”
regression estimator (RORR) is especially popular for its simplicity
and computational tractability. However, when treatment effects
are heterogeneous, the proper interpretation of RORR may not be
well understood. We show that, for many-valued treatments with
continuous dose-response functions, RORR converges to a condi-
tional variance-weighted average of derivatives evaluated at points
not in the observed dataset, which generally differs from the Aver-
age Causal Derivative (ACD). Hence, even if all units share the same
dose-response function, RORR does not in general converge to an
average treatment effect in the population represented by the sam-
ple. We propose an alternative estimator suitable for large datasets.
We demonstrate the pitfalls of RORR and the favorable properties
of the proposed estimator in both an illustrative numerical example
and an application to real-world data from Netflix.

1 INTRODUCTION

Double Machine Learning (DML) [5, 8, 18] is fast becoming the
standard for estimating causal effects in large, high-dimensional
datasets under conditional ignorability assumptions, which stipu-
late that the treatment is as good as randomly assigned given ob-
served covariates [13]. To strengthen such assumptions, researchers
in a wide variety of fields use the DML method to condition on
many covariates without strong commitments to functional form
[9, 12, 15]. While DML encompasses a large family of methods, this
paper focuses on the Partially Linear Model (PLM), which relates
an outcome Y; to a (continuous- or discrete-valued) treatment T;
conditional on pretreatment covariates X; as follows:

Y; =0T; +9(Xi)+e; and T; = h(X;) +u;.

The PLM imposes very weak assumptions on how the treatment
and outcome relate to the covariates. It also motivates an intuitive
two-step DML estimator of 6, the residuals-on-residuals regression
(RORR). RORR, a natural extension of the Frisch-Waugh-Lovell
theorem, involves first “partialing out” the effect of X; using flexible
machine learning methods, then forming the residuals:

Y, =Yi-§(X;) and T;=T;—h(X;)

and lastly regressing ¥; on T; to obtain the estimate 6 [19].

When the treatment effect 6 is the same for all units in the pop-
ulation, it is also the Average Treatment Effect (ATE) for binary
treatments, the Average Causal Derivative (ACD) for continuous
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treatments, and the Average Incremental Effect (AIE) for integer-
valued treatments. Alternatively, we study the probability limit
(plim) and interpretation of 6 when treatment effects are hetero-
geneous. Under such heterogeneity, 6 converges to a conditional
variance-weighted average of causal effects, which puts greater
weight on units whose treatment values are less predictable. For
example, when X is discrete, the RORR estimand places the most
weight on the treatment effects in the strata where the treatment
has the most variance [1, 3, 20]. When treatments are many-valued
(for example, continuous), RORR may be subject to other, more sub-
tle biases. In this paper, we provide a general analysis of RORR with
binary and many-valued treatments. We demonstrate the empirical
relevance of these biases both in a stylized numerical example and
with real-world data from Netflix. Lastly, we propose an alternative
estimator that utilizes Augmented Inverse Propensity Weighting
(AIPW) along with binning the treatment [7] and demonstrate its
favorable properties theoretically and in our empirical application.

2 RESIDUALS-ON-RESIDUALS REGRESSION
WITH TREATMENT EFFECT
HETEROGENEITY

RORR has many favorable attributes that make it attractive in em-
pirical applications. As mentioned above, it enables highly flexible
estimation of the nuisance functions. Furthermore, RORR has the
doubly-robust property, converging to the true 0 if either the treat-
ment model or the outcome model is correct. When both models
are correct, it is also the efficient estimator [10]. Recent applications
of RORR include studies in economics [4], ecology [11], and public
health [21].

In commercial settings — characterized by large datasets, short
timelines, and stakeholders with diverse technical backgrounds
— RORR is also used for practical reasons. For example, the final
regression step is computationally efficient, as only a small number
of statistics is needed to compute the final estimate of §. Moreover,
the recipe of (1) removing variation explainable by pretreatment
covariates and (2) estimating the effect of the remaining exogenous
variation in T; on Y; is intuitive and easy to explain to non-experts.

However, this simplicity can come at a cost: The interpretation
of 6 as an “average” treatment effect (whether the ATE, ACD, or
AIE) depends on the assumption of a homogeneous treatment ef-
fect embedded in the PLM, which may not hold in applications. In
this section, we discuss the interpretation of 6 under two common
violations of this assumption: binary treatments with heteroge-
neous effects across individuals and many-valued treatments with
continuous dose-response functions.
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2.1 Binary Treatments with Heterogeneous
Treatment Effects

We begin by studying the plim of the RORR estimator for binary
treatments with heterogeneous treatment effects. Letting T; € {0, 1}
denote the binary treatment indicator, we consider the model:

Y; 0;Ti +g(X;) +e; (1)
Ti = h(X)+u,

where 0; is a individual treatment effect. We further assume that the
errors are conditionally exogenous and uncorrelated: E[e;|X;] = 0,
E[ui|X;] = 0, and E[e;u;|X;] = 0. This is a linear instantiation of
conditional ignorability. Note that this assumption implies that
9(X;) = E[Y; — 0;T;|1X;] and h(X;) = E[T;|X;]. We also assume that
0; is conditionally independent of T; given X;, 6; 1L T;|X;.

We consider the plim of the OLS regression of ¥; — g(X;) on
T; — h(X;) with observations O; = (Y;,T;,X;),i = 1,...N. We
assume that the observations Oy, ...,On ~ O are independent and
identically distributed. While g and h must be estimated in practice,
for ease of exposition, we assume consistent estimators for these
and focus on the (true) limiting g and h.!

First observe that:

» E[(T - h(Xi)(Yi - 9(Xi))]
E[(T; - h(Xi))?]
E[0;(T} - Th(X;))]
E[(T; = h(Xi))?]
Using the fact that T; is binary and applying the law of iterated
expectations, we can rewrite this as:
E[6: (T2 = Tih(X,)]
EL(T; — h(X0))?]

0 ()

E[6:E[T; (1 - h(X;))|X;]]
E[(T; - h(X;))?]

E[6:;(T; — h(Xi))?]

E[(T; = h(X)?]

where Equation (3) follows from 6; being conditionally indepen-
dent of T;. This demonstrates the known result that, with a binary
treatment, linear regression converges to a conditional variance-
weighted average of individual treatment effects [1, 3].

For an intuitive restatement, denote the conditional variance
(Ti-h(Xi))*
E[(T;i-h(X;))?]
struction. Then the bias of the RORR plim (which we will denote

by é) with respect to the ATE can be written as:

©)

4)

weights by w; = and note that E[w;] = 1 by con-

0-E[6;] = E[wib;]-E[0] (5)
Cov(wj, ;). 6)

In other words, the bias of RORR for binary treatments when treat-
ment effects are heterogeneous is equal to the covariance of the
individual treatment effects and the conditional variance of the
treatment residual. This covariance will not equal zero except in
special cases (e.g., the treatment is assigned uniformly at random)
and therefore 0 # E [6;] in general ?

IResearchers typically use extremely flexible function classes for g and h (e.g., gradient
boosted trees or deep neural networks) that are able to approximate the true nuisance
functions arbitrarily closely.

2A corollary is that ranking treatments based on their PLM coefficient is not the same
as ranking them based on their ATEs [17].
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2.2 Many-Valued Treatments

We now turn our attention to many-valued (e.g., continuous or
integer-valued) treatments with continuous dose-response func-
tions. Although previous research has studied the effect of treatment
effect heterogeneity on the interpretation of linear treatment effect
estimators, it has mainly done so in the context of binary treatments
and/or linear treatment effects [3]. However, in many applications,
treatments are continuous and/or have nonlinear effects on the
outcome (for example, they may have diminishing returns). Such
nonlinearity is an important form of treatment effect heterogene-
ity that has received less attention in previous work, with notable
exceptions [e.g., 2, 22].
Specifically, we study the model:

Y; f(T) +9(X;) + e (7)
T; h(Xi) + u,

where f is a continuously differentiable function of a many-valued
treatment T;. For reasons that will become apparent, we assume
that f is well-defined on the convex hull of T;, even if T; itself
is not continuous. As before, we assume conditional exogeneity,
consistent estimators for g and h, and iid observations.

Under these assumptions, the RORR estimate converges in prob-
ability to:

; » ELT-h(X0)f(T)]
E[(T; - h(X:))?]

Since h(Xj) is a constant given X; and applying the law of iterated
expectations, we can rewrite the above as:

E[(Ti = h(Xi))f(T)]
E[(Ti - h(X3))?]
_ EIE[(Ti - h(Xi))(f (Ti) — f(h(X)))1Xi]]
E[(Ti - h(X3))?] '
By the mean value theorem, there exists a T;" between T; and h(X;)
for every X; such that:
E[(T; — h(X))(f (Ti) — f(h(Xi)))|Xi]
E[(T; - h(Xi))?]
_EU(T = h(X)2f/(T})]
- ENT - h(X)?]
_ Eloif'(1))]
Eloi]

®)

©)

(10)

showing that, as in the binary case, 6 also converges to a conditional
variance-weighted average of causal effects.> However, unlike in
the binary treatment case, the quantity being averaged cannot be
interpreted as the causal effect of increasing the treatment in the
population represented by the sample. This is because the point T
is not actually the treatment dose received by i, but rather a convex
combination of the received treatment T; and its conditional mean
h(X;). As such, T may not be an observed treatment level. If T; is
not continuous, it may not even be a realizable treatment value.

Proposition 1 derives the conditions under which 0 converges
to the ACD.

3Not coincidentally, this representation of the OLS estimator closely resembles the rep-
resentation of the Wald estimator with a binary instrument and continuous treatment
as an first-stage effect-weighted average of derivatives at the mean values T;" [2].
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ProrosiTiON 1. Let O; = (Y;, T3, X;), i = 1,...N be iid draws
from some distribution obeying the model (7). We assume f and h
are consistently estimated and that E[e;|X;] = 0, E[u;|X;] = 0, and
Ele;u;|X;] = 0. We also assume that f is everywhere differentiable
and that f’ is Lipschitz with constant L. Lastly, we assume that
E[(T; — h(X;))?] > 0. Then the residuals-on-residuals regression
(RORR) plim 6 equals the Average Causal Derivative (ACD) E[f'(T;)]
if f is affine (L = 0).

Proor. With iid observations, conditional ignorability, and f
and h consistently estimated, fis as given in (10). We can decompose
the bias of 0 relative to the ACD into two pieces by adding and
subtracting:

EL(T - hCOEP (T
BT - by S v

E[(T; - h(X))*f/(T)] E[(Ti = h(X:)f" (T)]
E[(T; - h(X))?] E[(T; - h(Xi))?]

=A
o BT = h(X)) 2 (T)]

BT —hoany U )]

=B
The first piece (A) is the difference between the RORR plim and
the variance-weighted average causal derivative evaluated over the
treatment distribution actually observed in the sample. Note that
we can bound the absolute value of this term as a function of L and
the distribution of T;. First, rewrite A as:

E[(Ti — h(X)*f"(T)]  E[(T; - h(X)*f' ()]
E[(T; = h(Xi))?] E[(T; = h(Xi))?]
E[(T; = h(X))*(f'(T}") - f'(T)]
E[(Ti = h(X))?] '
Under the assumption that f” is Lipschitz, there exists a constant
L > 0 such that, for all u, v:

(12)

If' () = f' ()| < Llu—ol. (13)
Since T;" lies between T; and h(X;), we have that:
If'(T7) = f/(T)| < LIT; = Ti| < LIT; = h(X)]. (14)

Multiplying both sides by (T; — h(X;))? and taking expectations
yields:

E[(T; = k(X)) *If () = £/ (T)]] (15)

< LE[(T; = h(X))*|Ti = h(X))[] = LE[|T; — h(X))|].
Dividing both sides by E[(T; — h(X;))?] yields the following bound:
E[IT; - h(X)P*]

A= L T —han?) 1€)

Note that |T; — h(X;)|? is always weakly positive. Therefore, k only
equals zero if T; = h(X;) almost surely. However, E[ (T; —h(X;))?] >
0 by assumption, so T; cannot equal h(X;) almost surely. Therefore,
the right-hand side of (16) equals zero if and only if L = 0.

The second term B is the familiar bias between the variance-
weighted average derivative and the ACD. This has a similar inter-
pretation as in the binary treatment case. That is, letting w; once
again denote the conditional variance weight:

Elwif (T)] - E[f'(T})] = Cov(wi, f'(T7), (17)

which is the continuous analog of Equation 6. If f is affine, f’ (T;)
is a constant, so Cov(wj, f'(T;)) = 0, Therefore, the absolute bias
of 0 is equal to |A + Cov(w;, f'(Ti))| < |A] + | Cov(wi, f/(T;))] <
Lk + | Cov(w;, f'(T;))] = 0 when f is affine, which obtains the
result. O

CoROLLARY 1. Proposition 1 establishes that f being affine is suffi-
cient for 6 = E[f'(T;)]. If we further assume thatL >0 => A #0
and A # —B, where A and B are defined as in (11), then 6= E[f(T})]
if and only if f is affine.

In other words, 6 will be closer to the conditional variance-
weighted average of f” when f is close to affine. In turn, the condi-
tional variance-weighted average of f” is equal to E[f”(T;)] when
Cov(w;, f'(T;)) = 0, which holds trivially if f is affine. Therefore,
both biases vanish when f is affine (and thus the PLM is correctly
specified). However, if f is not affine, then 6+ E[f’(T;)] except in
contrived cases (e.g., both biases exactly offset).

3 NUMERICAL EXAMPLE

To help build intuition, this section presents a stylized numerical
example.* Although we make simplistic assumptions to facilitate
closed-form analysis, our choices are also intended to reflect quali-
tative aspects of real-world data. In particular, we assume that:

(1) While E[Y;|T;, X;] is increasing in Tj, it also exhibits di-
minishing returns. That is, letting f(T;) be defined as in
Equation (7), f/(T) > 0 and f”'(T) < 0.

(2) T;is an overdispersed count variable, such that even a cor-
rect model for E[T;|X;] has heteroskedastic errors.

Let X; be a Categorical variable that takes on values j =1,...,]
with probabilities 71, ..., 7y and T; be a Poisson distributed condi-
tional on X; with parameters A;. We further assume that f(T;) =
log(T; + 1). This allows us to derive the following expression for
the conditional expected derivative of Y; with respect to T; given
Xi (see Appendix A.1):

, - 1—exp(-4j)
Elf ()X =jl= ———". (18)
J
. . 1-exp(—4;)
The ACD is then just X ; mj ———.
J

We can also derive the RORR plim analytically as:

Cp - XImENT - )AF(THIX = ]
gL T T O (19)

J
D j TiAj
where, as before, Tl* is a point between T; and A;. Note the two
biases relative to the ACD: First, rather than evaluate f” at T;, we
. N . . v, .
evaluate it at T;". Second, we additionally weight each f’(T}") by its
squared deviation from the mean.

4Code to reproduce all figures and tables in this section are available from https:
//github.com/winston-chou/rorr.
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Figure 1: Bias of Residuals-on-Residuals Regression

Figure 1 illustrates the resulting bias via simulation from this
data-generating process. First, we plot f(T;) = log(T; + 1) in top
panel of Figure 1, as well as tangent lines with slopes equal to

E[f’(T;)] in blue and to E[f’(w;T;")] in red, where o;T;" is the
“effective” treatment analyzed by RORR. The key takeaway is that
RORR targets a quantity other (and smaller) than the ACD.> The
subsequent panels give intuition for this result: After weighting by
w; and transforming T; to Ti*’ the effective treatment distribution is

much more right-skewed than the observed treatment distribution.

This means that we tend to evaluate the slope of f at higher values
of T;. This leads to negative bias because "/ (T;) < 0.

5An analogous result in the welfare economics literature is that OLS up-weights the
slopes of higher-income groups in regressions of consumption on income, leading to
attenuation [22].
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Table 1: Simulation Results for RORR and ACD

Sample Size Empirical RORR RORR 95% CI RORR Plim

10,000 0.250  (0.237, 0.262) 0.247
100,000 0.248  (0.244, 0.252) 0.247
1,000,000 0.248  (0.247, 0.249) 0.247
Sample Size ~ Empirical ACD  ACD 95% CI ~ True ACD
10,000 0.362  (0.357, 0.367) 0.365
100,000 0.364  (0.362, 0.366) 0.365
1,000,000 0.365  (0.364, 0.365) 0.365

In Table 1, we report the estimated empirical RORR from simu-
lations at varying sample sizes. For comparison, we also report the
empirical ACD (calculated as the sample mean of ﬁ) and the true
ACD computed using (18). Note that, because T; is integer-valued
in this example, the more appropriate causal estimand is arguably
the Average Incremental Effect (AIE), defined as:

(e8]
E[Yi(Ti+1) - Yi(Ty)] = Z(f(t +1) = f()p(e),  (20)

=0
where p is the mass function of T;. However, because the RORR
plim is a weighted average of derivatives, we focus on the ACD in
Table 1 and propose a consistent estimator of the AIE in Section 4.
As Table 1 shows, the RORR plim is negatively biased for the ACD.
This is due to the fact that it places more weight on the derivative
of the dose-response curve at larger values of the treatment. In
the following section, we propose a consistent estimator for the
AIE with integer-valued treatments and the ACD with continuous

treatments.

4 COARSENED AUGMENTED IPW
ESTIMATOR

A common benchmark for estimating the Average Causal Derivative
(ACD) with continuous treatments is the Generalized Propensity
Score (GPS) [14]. However, GPS requires estimating the conditional
density of the treatment, which can suffer from slow rates and
instability without simplifying parametric assumptions [16].

As an alternative to both RORR and GPS, we propose a simple
coarsened Augmented Inverse Propensity Weighting (AIPW) esti-
mator, which uses the AIPW estimator of counterfactual means as
building blocks [7]. This estimator proceeds by first partitioning
the support of T; into K disjoint segments (or bins) {S1, Sz, ..., Sk}
with S = [tx_1, ;). For each bin S, we estimate the bin-level
propensity score pr(X;) := Pr(T; € Sg | X;), for example by fitting
a multiclass classification model. Denote this estimate by py (X;).
We also estimate a flexible outcome regression for my (X;) = E[Y; |
T; € Sk, Xi], which we denote by i (X;).

Next, we form the usual AIPW estimator for the marginal mean
in bin S:

1(T; € S) )
-=—Z([ LS (v, - g (1)
~\ pe(X)

Like the RORR, this estimator is doubly robust, meaning that if

either py or m is consistently estimated, then lﬁk is also consistent.

+ rﬁk(x») .
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Note that the plim of 1/;k has a somewhat subtle interpretation due
to averaging over the bin. Under standard assumptions, it can be
interpreted as the population-average potential outcome if units
are treated under the conditional distribution of T; given X; and
T; € Sk.

We further define weights wy. for each bin that are proportional
to their empirical proportion:

Pr(T;€S)

= fork<K
wy = 4 265 Pr(TieS,)
0 for k = K.
Lastly, the overall ACD estimate is given by:
K-1 ; >
; Vi1 — Vi
l// = Wi | =7/ |
kz:; T — Ik

where t;, = is the midpoint of Si. Heuristically, 1/; ap-
proximates f” using a piecewise linear function and computes its
weighted average using the empirical distribution of the lower seg-
ment. Appendix B proves the consistency of this estimator for the
ACD as both N and K tend to infinity.

Table 2 shows the results of applying this estimator to the simu-
lated data from Section 3. Because the treatment is integer-valued,
we can simply set the bins to each observed treatment value. As
the table shows, this yields a consistent estimator for the AIE.%

tepr +k
2

Table 2: Simulation Results for Coarsened AIPW and AIE

Sample Size Empirical AIE~ AIE 95% CI True AIE

10,000 0.277  (0.247, 0.308) 0.295
100,000 0.291 (0.282, 0.300) 0.295
1,000,000 0.295 (0.290, 0.300) 0.295

5 EMPIRICAL APPLICATION

We now demonstrate the empirical relevance of our theoretical
analysis using real-world data from Netflix. Although we are limited
in what we can share for confidentiality reasons, the main thrust of
this section is to show that the theoretical biases discussed above
can (and, in our experience, often do) appear in real-world data.

In this particular application, we sought to understand how the
use of a feature, which we will call Feature A, affects future visits
to Netflix. To answer this question, we drew a random sample of
2,971,128 members and counted the number of times they used
Feature A over a 28 day window. We then divided this number by
the member’s count of visits to Netflix over the same period to
define our continuous treatment, Feature A Usage Rate. Next,
we defined our outcome as the count of each member’s visits to
Netflix in the next 28 day window. As covariates, we included the
count of times each member used Feature A and the count of times
each member visited Netflix in the seven, 14, and 28 days preceding
the treatment period.’

®Note that the AIE is less than the ACD because f (¢+1) — f(¢) = log (1 + ﬁ) < ﬁ

forallt > 0.

"We complemented these six covariates with an additional 25 covariates; most of these
measured the usage of other Netflix features in the 28 days preceding to the treatment
period.

We divided our dataset into roughly equal-sized training, valida-
tion, and test datasets consisting of ~980,000 units each. To estimate
the nuisance parameters in the PLM, we fit gradient boosted regres-
sion trees to the treatment and outcome variables observed in the
training dataset, using the validation dataset to tune the number of
boosting rounds. Lastly, we regressed the outcome residuals on the
treatment residuals in the test dataset to obtain the RORR treatment
estimate, which is shown in Table 3. As the table shows, the RORR
estimate of the effect of Feature A on subsequent visits is small,
negative, and statistically significant.® This finding contradicted
our prior belief that Feature A would increase visits to Netflix.

Table 3: RORR and AIPW Estimates of the Effect of Feature
A Usage on Netflix Visits (N = 980,139)

RORR  Std. Err. 95% CI
Feature A Usage Rate -0.0038 0.001  (-0.005, -0.002)
AIPW  Std. Err. 95% CI

Feature A Usage Rate 5.343 0.010 (5.324, 5.362)

Our coarsened AIPW estimator helps provide intuition for this
puzzling result. To fit this estimator, we first coarsened the treat-
ment into five bins and then fit a multiclass classifier using gradient
boosting to the resulting bins. We assigned zero values (i.e., no
usage of Feature A during the treatment period) to the first bin and
then divided the remaining non-zero values into quartiles. For the
outcome regression, we reused the same function used to fit the
RORR.

Balance in Pre-Treatment Outcome After Weighting
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Figure 2: Balance in Pre-Treatment Outcomes After Inverse
Propensity Score Weighting

Figure 2 is a standard diagnostic that plots the difference in the
standardized pretreatment value of the outcome in each bin and
bin 1 before and after inverse propensity score weighting. As the
figure shows, IPW significantly reduces pretreatment differences

8Note that treatment effects are reported after standardizing the treatment and outcome
by their respective standard deviations.
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Figure 3: Treatment Effects of Feature A Usage on Netflix
Visits After AIPW Weighting. Note that we remove y-axis
labels to preserve confidentiality.

in the outcome variable, making the bins more comparable to each
other and strengthening the credibility of conditional ignorability.

We plot the main results in Figure 3, whose panels show, from top
to bottom, the counterfactual mean of the post-treatment outcome
in each treatment bin; the estimated treatment effect associated
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with incrementing each bin; and lastly the proportion of the dataset
in each bin, which is clearly concentrated in the zero-usage bin.

As Figure 3 shows, AIPW estimates a large positive treatment
effect of moving from the zero-usage bin (bin 1) to the next bin
(bin 2). Moreover, because Feature A usage is zero-inflated, bin 1
is the most representative bin. Therefore, as shown in Table 3, the
coarsened AIPW estimate is positive, statistically significant, and
substantially larger in magnitude than the RORR estimate. This
discrepancy arises because the coarsened AIPW estimator explicitly
weights the treatment effects to be representative of the treatment
distribution, whereas RORR up-weights units with higher values of
the treatment, where the dose-response curve is downward-sloping.
The discrepancy is highly relevant for decision making: Although
RORR indicates that Feature A has a negative treatment effect on
the outcome, the AIPW results show that increasing Feature A
usage would have a positive effect for the vast majority of members.
Indeed, all nonzero Feature A usage bins have a higher conditional
means than the zero-usage bin, indicating that any Feature A usage
is preferable to none.

6 CONCLUSION

Although DML estimators are becoming increasingly popular in
both academic and commercial research, researchers must — as
ever — carefully evaluate their suitability for specific applications.
Focusing on the special case of residuals-on-residuals regression
(RORR), this paper studies the proper interpretation of RORR when
treatment effects are heterogeneous and/or when treatments are
many-valued with nonlinear dose-response functions. We show
that, in the latter case, RORR converges to a conditional variance-
weighted average of causal derivatives, with the added complication
that these derivatives are evaluated on a “pseudo-treatment” dis-
tribution that differs from the treatment distribution seen in the
data. As our empirical application shows, the subtle biases of RORR
relative to any “average” treatment effect can have significant con-
sequences for decision-making. To address these biases, we propose
a coarsened AIPW estimator and show that it yields more repre-
sentative estimates of causal effects.
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A DERIVATIONS

A.1 Derivation of Equation 18
Note that, in our stylized example, T; is Poisson(A j) conditional on
Xi = j. Therefore, its probability mass function is given by:

t

P(T;=tlX;j=j)=e" ft—t—()lZ (21)
and the conditional expectation of the causal derivative -~ given
X;=jis:

) t ) t
LI Vi A N
— e ) (22)
; ; (t+1)!
Define s := t + 1. Then we can rewrite the above as:
oo /13 1 —A oo AS
Dl = (23)
s! Aj
s=1
i—1
_ u (24)
Ajelj
~A;
1—e™
N (25)
A

x5 _ x
1

where the second-to-last equality uses the identity 377 %

A.2 Derivation of T
Within a given stratum X; = j, h(X;) = E[T;|X;] = A; by assump-
tion. We want to derive the point T;" between T; and A; at which we
are evaluating the derivative f/(t) = 1/(t + 1). We will condition
on X; throughout.

By the mean value theorem, there is some T;" between T; and A
for which:

FT) = F)) = £/ (T(T = ).

Plugging in the definition of f and its derivative, we write this

as: )
log(T; +1) —log(A; +1) = W(Ti - Aj).
L

Solving for T} yields:

el T A
i 1 T;+1
Og/1+1

Note that, when T; = A;, this quantity is undefined (in which case
we just set T, = T;).

In our simulations, we estimate the theoretical plim of RORR
by taking many draws of T;, plugging them into this formula, and
using the resulting stratum means to estimate Equation 19

B PROOF OF CONSISTENCY OF COARSENED
AIPW

We assume the PLM for continuous treatments, but introduce the
potential outcomes notation:

Yi() = f(O)+9(Xi)+ei (26)
T = hX)+u. (27)
We assume that f is continuously differentiable, E[e;|X;] = 0,

E[u;|X;] = 0, and E[e;u;|X;] = 0. Note that the last of these as-
sumptions implies that Y;(¢) is conditionally independent of T;
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given X;. We further require positivity of treatment for all x and ¢:
p(tlx) = € >0, (28)

where p(t|x) is the continuous conditional density of T; given X;.
This is the continuous analog of the overlap assumption under
binary or discrete treatments, which requires that every unit has a
positive probability of treatment given covariates.

Partition the domain of T; into K equal-spaced segments, denoted
by S,k =1,...,K, with Sp. = [y, tgy1) and tyq — f = CK™1 for
all k, where C is some positive constant that spans the domain of
T;. Define Pk(Xi) = Pr(Ti (S Sk |Xl) and mk(Xi) = E[Y1|T1 S Sk,Xi]
and let one or both p and ry be consistent estimators.

The coarsened AIPW estimator for a given segment Sy is defined

as:
1(T; € S) X .
———=(Y; — i) + . (29)
¢k IZ; Pk (Xi) ' k
Further define the approximate weights:
Pr(T;€Sk)
W = Pr(TigSx) fork < K (30)
0 for k = K,

and denote the midpoint of bin S by . = %
Then coarsened AIPW estimator of the Average Causal Deriva-

tive is defined as

K-1
F= S (!//k+1 Ui

tit1 — tk

k=1

THEOREM 1. lﬁ converges in probability to the Average Causal
Derivative E[ f’(T;)] as both the number of observations N and the
number of segments K — co.

Proor. By consistency of pp or iy and conditional indepen-
dence of Y;(¢) and Xj,

i [ [ vt o (31)

Subtracting l//k from ¢k+1 and plugging in the definition of Y¥;
yields:

lpk+1 (32)
t|x)1(t € S,
/ [ ot s,
Pr(t € Sgy1lx)
P01t € Sp) |
d

- [ 10 P o

= Ap.

Ay has a subtle interpretation: It is the “effect” of moving from
segment Si to Sg,; when units are treated according to the condi-
tional treatment distribution in each segment. We now show that
Ay can be interpreted as a very specific ATE. Given continuity of f,

p, and positivity, the mean value theorem for integrals states that
there exists a f; € Sy such that

P eS)
[ roP i g

Therefore, we can rewrite the above as:
di= [ (Flin) - FEDpI (33)

showing that Ay is the ATE of fixing T; to f;,, compared to .



Does Residuals-on-Residuals Regression Produce Representative Estimates of Causal Effects?

By another application of the mean value theorem, there exists
a t] between iy and i,y such that:

/ (Fhan) - F(E))p(x)dx (34)

/ () o — B)p()d

E[f" (t0) (b1 — B)]-
Note that the absolute difference between any of #, t,and r is

bounded by |2CK ~1|. Therefore, as K — o, these converge to the
same point. Consequently:

K-1 . .
Vke1 — Yk | P g oo berl — Ik ,
| K+l K dt = E 4
kZ:; Wi ( L — T ) /f (1) o tkp(t) t=E[f ()]. (35

u]

C CHOOSING THE NUMBER OF SEGMENTS

Choosing the number of segments K in which to bin the treatment
involves the usual considerations of bias and variance. In many
practical applications, interpretability is also a goal. In this section,
we provide a semiformal justification, relying on many simplifying
assumptions, for choosing K = O(N'/7). This implies fewer than
ten bins for medium to large datasets (i.e., between 100,000 to
1,000,000 units).

In our practical work at Netflix, we find that a relatively small
number of bins — for example, dividing users into low, medium,
and high usage segments - is sufficient to detect meaningful het-
erogeneity in the dose-response function. Although using a small
number of bins increases bias, it reduces variance, adds robustness
to slow nuisance estimation rates, and increases interpretability.

The MSE of the coarsened AIPW estimator is:

MSE()) = (E[y] - E[f' ()])° + Var(). (36)
N
Bias?

We begin by decomposing the Bias term into three components:

E[y] - ELf(1)] (37)
K-1 ~ » K-1
S w (M) SN (i)

1

Ek+l - ;k

K-1
+ > wief (8) — ELF/ ()]
k=1

=c

In other words, a is statistical estimation error, b is the bias incurred

by approximating f by a piecewise linear function, and c is the bias

incurred by approximating an integral by a series of rectangles.
For simplicity, we will assume that T; is uniformly distributed,

such that the number of units in each bin Ni. = N/K, tj4; —
is a constant £ o« K1, and wy = (K — 1)~! for all k. We will also

assume that f is at least thrice continuously differentiable. Also for
simplicity, we ignore cross-fitting and assume that the nuisance
functions are estimated on a separate dataset of equal size (i.e., also
consisting of N units partitioned into K bins). We assume the esti-
mated nuisances satisfy standard regularity conditions, specifically
§ < p(x) < 1 -6 for some § € (0,1) and ri(x, k)?> < oo almost
surely and that Yl.2 < oo, so that Var(i;) = O(1).

Suppose that i —my, = 0p ((N/K)_l/z). Then, under mild regu-
larity conditions, a = Zlk(:l 0 ((N/K)_l/z) = O(K3/2N~1/2), The
error of the midpoint approximation b when f is thrice continu-
ously differentiable is known to be O(£?) = O(K~?) [6, p. 177].

The error of the Riemann sum approximation is also known to be
¢ = O(K™2) [6, p. 207]. Therefore, the error of the Bias? term is:

(a+b+c)? = OKNH+0K™. (38)
The variance is:
ST
Var(lﬁ) = Var(kZ::1 W (%)) (39)
= KVar(Jx — )
= O(K®N7D.

Putting these together, we obtain
MSE(§)) = O(K3N™Y) + O(K™*) + O(K?N™1).

The K* that minimizes this is O(N 1/ 7.

More generally, suppose that ¥ is n~1/4 consistent for d > 0.
Then the Bias? term is O(K2(d+D/dN~2/dy 4 O0(Kk~4), while the
variance remains O(K?N~1).If d < 2, the variance term dominates
and the optimal K* = O (Nl/é). If d > 2, the bias term dominates,

and the optimal K* = O (Nl/(3d+l)).
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