
Optimization-based statistics with pyensmallen
Apoorva Lal

AWS

The Challenge: Scaling Statistical Computing

Modern statistical applications frequently involve large datasets with millions of ob-
servations.

Many popular Python libraries for statistical modeling, such as SciPy and statsmodels,
were not designed for these scales. This results in excessive computation times for
large problems, poor convergence properties, and limits the use of computationally
intensive methods like the nonparametric bootstrap.

convergence rates of pyensmallen, scipy, and statsmodels across linear, logistic, and Poisson regressionmodels with grow-
ing sample size (x-axis) and problem size (rows). ‘statsmodels‘ implementation of Poisson fails to converge with alarming
regularity.

Our Solution: pyensmallen

pyensmallen solves this problem by providing Python bindings to the highly optimized,
header-only C++ ensmallen library. [1] It leverages high-performance linear algebra
via the Armadillo library. It can be used in combination with JAX [2] gradients for large
problems with many parameters.

This enables Python users to access powerful, fast optimization algorithms for statisti-
cal estimation, bridging the gap between high-level prototyping and high-performance
execution.

Optimization for M-Estimation

Many statistical estimators can be framed as M-estimators, which seek to find param-
eters θ that minimize an objective function QN(θ):

θ̂ = arg min
θ∈Θ

QN(θ) =
1

N

N∑
i=1

m(yi, xi, θ)

Examples include Maximum Likelihood Estimation (MLE), M-Estimation, and General-
ized Method of Moments.

Unconstrained Optimization: L-BFGS

For smooth, unconstrained problems like MLE, pyensmallen offers L-BFGS, a quasi-
Newton method. It iteratively approximates the inverse Hessian matrix to find an op-
timal search direction. The parameter update follows:

θk+1 = θk − αkHk∇Q(θk)

where Hk is the approximate inverse Hessian and αk is the step size. L-BFGS is highly
effective due to its low memory footprint and fast convergence.

Constrained Optimization: Frank-Wolfe

For optimization over a constrained set S, the Frank-Wolfe (conditional gradient) algo-
rithm is available. It avoids projection by iteratively solving a linear approximation over
the constraint set. At each step k:

1. Find sk that minimizes the linear approximation:
sk = arg min

s∈S
sT∇Q(θk)

2. Update the parameters by moving towards sk:
θk+1 = (1− γk)θk + γksk

This is ideal for problems with lp-ball or simplex constraints. This optimizer is used in
an applications library synthlearners, which focusses on causal inference with panel
data andprovides fast synthetic control and synthetic-difference-in-differences imple-
mentations powered by ensmallen.

Availability

pyensmallen is open-source and available on PyPI and GitHub. [2, 4]

uv pip install pyensmallen

Benchmark Highlights

Our benchmarks show pyensmallen consistently outperforms SciPy and statsmod-
els, with the advantage growing as dataset size increases.

Linear Regression : 5-11x faster than SciPy & 3-4x faster than statsmodels for
10M obs.
Logistic Regression : 11-15x speedup over SciPy & 2-4.5x faster than
statsmodels for 1m+ obs
Poisson Regression: Up to 13x faster than SciPy & 30x faster than statsmodels.

Performance Comparison

Performance comparison of pyensmallen, scipy, and statsmodels across linear, logistic, and Poisson regressionmodels with
k=5 and k=20 features. Full benchmarks are reproducible from the code repository.

References

1. Bhardwaj, S., Curtin, R. R., Edel, M., Mentekidis, Y., & Sanderson, C. (2018). Ensmallen: A Flexible c++ Library for
Efficient Function Optimization. Workshop on Systems for ML and Open Source Software at NeurIPS.

2. Bradbury, J., Frostig, R., Hawkins, P., et al. (2018). JAX: Composable Transformations of Python+NumPy Programs.
3. Sanderson, C., & Curtin, R. R. (2016). The Design and Implementation of the Armadillo c++ Linear Algebra Library.

Mathematical Software-ICMS 2016.


