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Introduction

▶ Panel methods can be characterised into 3 broad groups (as of 2016):
▶ Difference-in-differences : ∆Y post −∆Y pre

▶ Matching: on both pre-treatment outcomes and other covariates
▶ Synthetic Control: For each treated unit, a ‘synthetic control’ is constructed as

a weighted average of control units s.t. the weighted average matches
pre-treatment outcomes and covariates

▶ This paper: framework to nest existing approaches + estimator that relaxes
some assumptions.
▶ Main contribution: framework to clarify assumptions
▶ Resting WP; Cannibalised by later papers (esp. Arkhangelsky et al 2020)?
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Notation

▶ N + 1 units observed for T periods, with a subset of treated units (for
simplicity - unit 0) treated from T0 onwards

▶ Treatment : Wi,t = 1i=0 ∧ t∈T0+1,...,T

▶ Potential outcomes for unit 0 define the treatment effect:
τ0,t := Y0,t(1)− Y0,t(0) for t = T0 + 1, . . . , T

▶ Observed outcome: Y obs
i,t = Yi,t(Wi,t)

▶ Time-invariant characteristicsXi := (Xi,1, . . . , Xi,M)⊤ for each unit, which
may include lagged outcomes Y obs

i,t for t ≤ T0

▶ Xc isN ×M matrix that stacksXs for control units
▶ Xt isM− row vector of covariates for control
▶ stack them to getX
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Outcome Matrices

Yobs =

[
Yobs

t, post Yobs
c, post

Yobs
t, pre Yobs

c, pre

]
=

[
Yt, post(1) Yc, post(0)
Yt, pre(0) Yc, pre(0)

]
T × (N + 1)

Y(0) =

[
? Yc, post(0)

Yt, pre(0) Yc, pre(0)

]
=

[
? Yc, post(0)

Yt, pre(0) Yc, pre(0)

]
▶ relative magnitudes of T andN might dictate whether we impute the missing

potential outcome ? using this or this comparison
▶ Many Units and Multiple Periods: N >> T0,Y(0) is ‘fat’, and red comparison

becomes challenging relative to blue. So matching methods are attractive.

▶ T0 >> N ,Y(0) is ‘tall’, and matching becomes infeasible. So it might be
easier to estimate blue dependence structure.

▶ Finally, if T0 ≈ N , regularization strategy for limiting the number of control
units that enter into the estimation of Y0,T0+1(0)may be important
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Common Structure: 4 assumptions
▶ Focus on last period for now: τ0,T = Y0,T (1)− Y0,T (0) = Y obs

0,T − Y0,T (0)

▶ Many estimators impute Y0,T (0) with the linear structure
Ŷ0,T (0) = µ+

∑n
i=1 ωi · Y obs

i,T

▶ Methods differ in how µ and ω are chosen as a function ofYobs
c, post,Y

obs
t, pre,Y

obs
c, pre

▶ Impose four constraints

1. No Intercept: µ = 0. Stronger than Parallel trends in DiD.
2. Adding up :

∑n
i=1 ωi = 1. Common to DiD, SC.

3. Non-negativity: ωi ≥ 0 ∀ i. Ensures uniqueness via ‘coarse’ regularisation +
precision control. Negative weights may improve out-of-sample prediction.

4. Constant Weights: ωi = ω ∀ i

▶ DiD imposes 2-4.
▶ ADH(2010, 2014) impose 1-3

▶ 1 + 2 imply ‘No Extrapolation’.
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Relaxing the assumptions
▶ Negative weights

▶ If treated units are outliers on important covariates, negative weights might
improve fit

▶ Bias reduction - negative weights increase bias-reduction rate
▶ WhenN >> T0, (1-3) alone might not result in a unique solution. Choose by

▶ Matching on pre-treatment outcomes : one good control unit is better than
synthetic one comprised of disparate units

▶ Constant weights - implicit in DiD
▶ Given many pairs of (µ, ω)
▶ prefer values s.t. synthetic control unit is similar to treated units in terms of

lagged outcomes
▶ low dispersion of weights
▶ few control units with non-zero weights
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Case for nonconvex or negative Weights : Hollingworth
and Wing (2021)
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The optimisation problem: general case
Ingredients of objective function
▶ Balance: difference between pre-treatment outcomes for treated and

linear-combination of pre-treatment outcomes for control
▶ ∥∥Yt, pre − µ− ω⊤Yc, pre

∥∥2
2
= (Yt, pre−µ−ω⊤Yc, pre)

⊤(Yt, pre−µ−ω⊤Yc, pre)

▶ Sparse and small weights:
▶ sparsity : ∥ω∥1
▶ magnitude: ∥ω∥2

(µ̂en(λ, α), ω̂en(λ, α)) = argmin
µ,ω

Q(µ, ω|Yt, pre,Yc, pre;λ, α)

where Q(µ, ω|Yt, pre,Yc, pre;λ, α) =
∥∥Yt, pre − µ− ω⊤Yc, pre

∥∥2
2

+ λ

(
1− α

2
∥ω∥22 + α ∥ω∥1

)
8 / 12



Choosing α, λ: Tailored regularisation
▶ don’t want to scale covariatesYc, pre to preserve interpretability of weights
▶ Instead, treat each control unit as a ‘pseudo-treated’ unit and compute

Ŷj,T (0) = µ̂en(j;α, λ) +
∑

i ̸=j ω̂i(j;α, λ) · Y obs
i,T where

(µ̂en(j;λ, α), ω̂en(j;λ, α)) = argmin
µ,ω

T0∑
t=1

(
Yj,t − µ−

∑
i ̸=0,j

ωiYi,t

)2

+

λ

(
1− α

2
∥ω∥22 + α ∥ω∥1

)
pick the value of the tuning parameters (αen

opt, λ
en
opt) that minimises

CV en(α, λ) =
1

N

N∑
j=1

(Yj,T −

Ŷj,T (0)︷ ︸︸ ︷
µ̂en(j;α, λ)−

∑
i ̸=0,j

ω̂en
i (j;α, λ) · Yi,T )
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Re-expressing Standard Methods
Difference in Differences

▶ assume (2-4)
▶ No unique µ, ω solution for T = 2, so fix

ω = 1
N

ωdid
i =

1

N
∀i ∈ {1, . . . N}

µ̂did =
1

T0

T0∑
s=1

Y0,s −
1

NT0

T0∑
s=1

N∑
i=1

Yi,s

Best Subset; One-to-one Matching
(µ̂S , ω̂S) = argminµ,ω Q(·;λ = 0, α) with∑N

i=1 1ωi ̸=0 ≤ k (=1 for OtO)

Synthetic Control
▶ assume (1-3) (i.e. µ = 0)
▶ ForM ×M PSD diagonal matrixV

(ω̂(V), µ̂(V)) = argmin
ω,µ

{(Xt − µ− ω⊤X)⊤V

(Xt − µ− ω⊤X)}

V̂ = argmin
V=diag(v1,...,vM )

{(Yt, pre − ω̂(V)⊤Yc, pre)
⊤

(Yt, pre − ω̂(V)⊤Yc, pre)}

Constrained regression: When
Xi = Yi,t; 1 ≤ t ≤ T0 (Lagged Outcomes only)
V = IN and λ = 0
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Inference
▶ Need to be explicit about what is random in

repeated-sampling
▶ Do not want to argue that controls have

positive probability of treatment
▶ Since τ = Y obs

0,T − Y0,T (0), estimation error
arises from imputation error

▶ (τ̂ − τ)2 = (Y0,T (0)− Ŷ0,T (0))
2

define matricesYj,t
i,s(0), for i ≤ j s ≤ t

Yj,t
i,s :=

Yi,t(0) · · · Yj,t(0)
...

. . .
...

Yi,s(0) · · · Yj,s(0)


Y

(i),t
(i),s is the same with unit i’s column left out.

Estimators for the missing Y0,T (0)

Ŷ0,T (0) = g
(
Y0,T−1

0,1 ,Y
(0),T
(0),T ,Y

(0),T−1
(0),1

)
which produces variance estimators based on
assignment assumptions.
Random Assignment of Unit

V̂c =
1

N

N∑
i

(Yi,T (0) − g
(
Y

i,T−1
i,1 ,Y

(0,i),T
(0,i),T

,Y
(0,i),T−1
(0,i),1

)

Random Timing of Treatment

V̂t =
1

s

T0∑
t=T0−s+1

(Yi,T (0) − g
(
Y

0,t−1
i,1 ,Y

(0),t
(0),t

,Y
(0),t−1
(0),1

)

Combination : double-sum
11 / 12



Revisiting ADH California smoking example

Model
∑

i ωi µ τ̂ s.e.
Original Synth 1 0 -22.1 16.1
Constrained 1 0 -22.9 12.8
Elastic Net .55 18.5 -26.9 16.8
Best Subset .32 37.6 -31.9 20.3
Diff-in-Diff 1 -14.4 -32.4 18.9
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